Last modified by Mengting Qiu on 2025/06/04 18:42

From version 115.1
edited by Xiaoling
on 2023/04/25 17:34
Change comment: Uploaded new attachment "image-20230425173427-2.png", version {1}
To version 163.1
edited by Dilisi S
on 2024/11/06 04:29
Change comment: minor edits set 1

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,32 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 -(((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Set up your own private LoRaWAN network.
44 +
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,164 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
54 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
101 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
105 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 -
208 -
209 209  == 1.5 Hardware Variants ==
210 210  
211 211  
212 -(% border="1" style="background-color:#f2f2f2; width:500px" %)
213 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
117 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
214 214  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
215 215  (% style="text-align:center" %)
216 216  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -223,133 +223,193 @@
223 223  * 1 x Counting Port
224 224  )))
225 225  
131 += 2. Assembling the Device =
226 226  
133 +== 2.1 What is included in the package? ==
227 227  
228 -= 2. Power ON Device =
135 +The package includes the following items:
229 229  
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
230 230  
231 -(((
232 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
233 -)))
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
234 234  
235 -(((
236 -PWR will on when device is properly powered.
144 +== 2.2 Terminals ==
237 237  
238 -
239 -)))
146 +Upper screw terminal block (from left to right):
240 240  
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering the LT-22222-L  ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
241 241  [[image:1653297104069-180.png]]
242 242  
243 243  
244 244  = 3. Operation Mode =
245 245  
246 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
247 247  
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
248 248  
249 -(((
250 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
251 -)))
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
252 252  
253 -(((
254 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
255 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
256 256  
190 +== 3.2 Registering with a LoRaWAN network server ==
257 257  
258 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
259 259  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
260 260  
261 -(((
262 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
263 263  
264 -
265 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
266 266  
267 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
268 268  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
269 269  
270 -(((
271 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
272 272  
273 -
274 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
275 275  
276 -(((
277 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
278 -)))
210 +==== Using the LoRaWAN Device Repository: ====
279 279  
280 -(((
281 -Each LT is shipped with a sticker with the default device EUI as below:
282 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
283 283  
284 -[[image:1653297924498-393.png]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
285 285  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
286 286  
287 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
288 288  
289 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
290 290  
291 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
292 292  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
293 293  
294 -**Add APP KEY and DEV EUI**
295 295  
296 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
297 297  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
298 298  
299 299  
300 -(((
301 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
252 +==== Joining ====
302 302  
303 -
304 -)))
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
305 305  
306 306  [[image:1653298044601-602.png||height="405" width="709"]]
307 307  
308 308  
309 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
310 310  
311 311  
312 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
313 313  
314 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
265 +
315 315  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267 +
316 316  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269 +
317 317  * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271 +
318 318  * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273 +
319 319  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
320 320  
321 -
322 -
323 323  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
324 324  
325 325  
326 326  (((
327 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
281 +
282 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
284 +|Value|(((
285 +AVI1 voltage
286 +)))|(((
287 +AVI2 voltage
288 +)))|(((
289 +ACI1 Current
290 +)))|(((
291 +ACI2 Current
292 +)))|DIDORO*|(((
293 +Reserve
294 +)))|MOD
328 328  )))
329 329  
330 -[[image:image-20220523174024-3.png]]
331 -
332 332  (((
333 -
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
334 334  
335 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
300 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
336 336  )))
337 337  
338 -[[image:image-20220523174254-4.png]]
305 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
339 339  
340 -* RO is for relay. ROx=1 : close,ROx=0 always open.
341 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
342 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
343 343  
344 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
345 345  
346 -For example if payload is: [[image:image-20220523175847-2.png]]
347 347  
314 +**The interface values can be calculated as follows:  **
348 348  
349 -**The value for the interface is **
316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
350 350  
351 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
352 -
353 353  AVI2 channel voltage is 0x04AC/1000=1.196V
354 354  
355 355  ACI1 channel current is 0x1310/1000=4.880mA
... ... @@ -356,98 +356,92 @@
356 356  
357 357  ACI2 channel current is 0x1300/1000=4.864mA
358 358  
359 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= **10101010**(b) means,
360 360  
361 -* [1] RO1 relay channel is close and the RO1 LED is ON.
362 -* [0] RO2 relay channel is open and RO2 LED is OFF;
326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 - not used for LT-22222-L.
335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 +* [0] DO1 channel output state:
337 +** DO1 is FLOATING when there is no load between DO1 and V+.
338 +** DO1 is HIGH when there is a load between DO1 and V+.
339 +** DO1 LED is OFF in both cases.
363 363  
364 -**LT22222-L:**
365 -
366 -* [1] DI2 channel is high input and DI2 LED is ON;
367 -* [0] DI1 channel is low input;
368 -
369 -* [0] DO3 channel output state
370 -** DO3 is float in case no load between DO3 and V+.;
371 -** DO3 is high in case there is load between DO3 and V+.
372 -** DO3 LED is off in both case
373 -* [1] DO2 channel output is low and DO2 LED is ON.
374 -* [0] DO1 channel output state
375 -** DO1 is float in case no load between DO1 and V+.;
376 -** DO1 is high in case there is load between DO1 and V+.
377 -** DO1 LED is off in both case
378 -
379 -
380 -
381 381  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
382 382  
383 383  
384 384  (((
385 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
386 386  )))
387 387  
388 388  (((
389 -Total : 11 bytes payload
349 +The uplink payload is 11 bytes long.
350 +
351 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
352 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
353 +|Value|COUNT1|COUNT2 |DIDORO*|(((
354 +Reserve
355 +)))|MOD
390 390  )))
391 391  
392 -[[image:image-20220523180452-3.png]]
358 +(((
359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
393 393  
361 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
394 394  
395 -(((
396 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
365 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
397 397  )))
398 398  
399 -[[image:image-20220523180506-4.png]]
368 +* FIRST: Indicates that this is the first packet after joining the network.
369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
400 400  
401 -* RO is for relay. ROx=1 : close,ROx=0 always open.
402 -* FIRST: Indicate this is the first packet after join network.
403 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
404 -
405 405  (((
406 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
407 -)))
372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
408 408  
409 -(((
410 410  
375 +)))
411 411  
412 -**To use counting mode, please run:**
377 +(((
378 +**To activate this mode, run the following AT commands:**
413 413  )))
414 414  
381 +(((
415 415  (% class="box infomessage" %)
416 416  (((
417 -(((
418 -(((
419 419  **AT+MOD=2**
420 -)))
421 421  
422 -(((
423 423  **ATZ**
424 424  )))
425 425  )))
426 -)))
427 427  
428 428  (((
429 429  
430 430  
431 431  (% style="color:#4f81bd" %)**AT Commands for counting:**
432 -
433 -
434 434  )))
435 435  
436 436  (((
437 437  **For LT22222-L:**
438 438  
399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
439 439  
440 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
441 441  
442 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
443 443  
444 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
445 445  
446 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
447 447  
448 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
449 -
450 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
451 451  )))
452 452  
453 453  
... ... @@ -454,46 +454,50 @@
454 454  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
455 455  
456 456  
457 -**LT22222-L**: This mode the DI1 is used as a counting pin.
416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
458 458  
459 -[[image:image-20220523181246-5.png]]
418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
420 +|Value|COUNT1|(((
421 +ACI1 Current
422 +)))|(((
423 +ACI2 Current
424 +)))|DIDORO*|Reserve|MOD
460 460  
461 461  (((
462 -
427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
463 463  
464 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
429 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
465 465  )))
466 466  
467 -[[image:image-20220523181301-6.png]]
434 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 +* FIRST: Indicates that this is the first packet after joining the network.
436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
468 468  
469 -* RO is for relay. ROx=1 : close,ROx=0 always open.
470 -* FIRST: Indicate this is the first packet after join network.
471 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
472 -
473 473  (((
474 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
475 475  )))
476 476  
477 477  
478 478  (((
479 -**To use counting mode, please run:**
444 +**To activate this mode, run the following AT commands:**
480 480  )))
481 481  
447 +(((
482 482  (% class="box infomessage" %)
483 483  (((
484 -(((
485 -(((
486 486  **AT+MOD=3**
487 -)))
488 488  
489 -(((
490 490  **ATZ**
491 491  )))
492 492  )))
493 -)))
494 494  
495 495  (((
496 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
457 +AT Commands for counting:
458 +
459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
497 497  )))
498 498  
499 499  
... ... @@ -501,67 +501,64 @@
501 501  
502 502  
503 503  (((
504 -**LT22222-L**: This mode the DI1 is used as a counting pin.
467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
505 505  )))
506 506  
507 507  (((
508 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
472 +
473 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
475 +|Value|COUNT1|AVI1 Counting|DIDORO*|(((
476 +Reserve
477 +)))|MOD
509 509  )))
510 510  
511 -[[image:image-20220523181903-8.png]]
512 -
513 -
514 514  (((
515 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
482 +
483 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
516 516  )))
517 517  
518 -[[image:image-20220523181727-7.png]]
488 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 +* FIRST: Indicates that this is the first packet after joining the network.
490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
519 519  
520 -* RO is for relay. ROx=1 : close,ROx=0 always open.
521 -* FIRST: Indicate this is the first packet after join network.
522 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
523 -
524 524  (((
525 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
526 -)))
493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
527 527  
528 -(((
529 529  
496 +)))
530 530  
531 -**To use this mode, please run:**
498 +(((
499 +**To activate this mode, run the following AT commands:**
532 532  )))
533 533  
502 +(((
534 534  (% class="box infomessage" %)
535 535  (((
536 -(((
537 -(((
538 538  **AT+MOD=4**
539 -)))
540 540  
541 -(((
542 542  **ATZ**
543 543  )))
544 544  )))
545 -)))
546 546  
547 -
548 548  (((
549 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
550 550  )))
551 551  
552 552  (((
553 -
516 +**In addition to that, below are the commands for AVI1 Counting:**
554 554  
555 -**Plus below command for AVI1 Counting:**
518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
556 556  
557 -
558 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
559 -
560 560  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
561 561  
562 562  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
563 563  
564 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
565 565  )))
566 566  
567 567  
... ... @@ -568,47 +568,53 @@
568 568  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
569 569  
570 570  
571 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
572 572  
573 -[[image:image-20220523182334-9.png]]
533 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
534 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
535 +|Value|(((
536 +AVI1 voltage
537 +)))|(((
538 +AVI2 voltage
539 +)))|(((
540 +ACI1 Current
541 +)))|COUNT1|DIDORO*|(((
542 +Reserve
543 +)))|MOD
574 574  
575 575  (((
576 -
546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
577 577  
578 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
550 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
579 579  )))
580 580  
581 -* RO is for relay. ROx=1 : closeROx=0 always open.
582 -* FIRST: Indicate this is the first packet after join network.
553 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 +* FIRST: Indicates that this is the first packet after joining the network.
583 583  * (((
584 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
585 585  )))
586 586  
587 587  (((
588 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
589 589  )))
590 590  
591 591  (((
592 -
593 -
594 -**To use this mode, please run:**
564 +**To activate this mode, run the following AT commands:**
595 595  )))
596 596  
567 +(((
597 597  (% class="box infomessage" %)
598 598  (((
599 -(((
600 -(((
601 601  **AT+MOD=5**
602 -)))
603 603  
604 -(((
605 605  **ATZ**
606 606  )))
607 607  )))
608 -)))
609 609  
610 610  (((
611 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
612 612  )))
613 613  
614 614  
... ... @@ -615,23 +615,23 @@
615 615  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
616 616  
617 617  
618 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
619 619  
620 -For example, if user has configured below commands:
586 +For example, if you configured the following commands:
621 621  
622 622  * **AT+MOD=1 ** **~-~->**  The normal working mode
623 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
624 624  
625 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
626 626  
627 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
628 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
629 629  
596 +
630 630  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
631 631  
599 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
632 632  
633 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
634 -
635 635  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
636 636  
637 637  
... ... @@ -642,9 +642,8 @@
642 642  AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
643 643  
644 644  
611 +(% style="color:#4f81bd" %)**Trigger based on current**:
645 645  
646 -(% style="color:#4f81bd" %)**Trigger base on current**:
647 -
648 648  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
649 649  
650 650  
... ... @@ -653,7 +653,6 @@
653 653  AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
654 654  
655 655  
656 -
657 657  (% style="color:#4f81bd" %)**Trigger base on DI status**:
658 658  
659 659  DI status trigger Flag.
... ... @@ -700,12 +700,39 @@
700 700  
701 701  MOD6 Payload : total 11 bytes payload
702 702  
703 -[[image:image-20220524085923-1.png]]
667 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
668 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
669 +|Value|(((
670 +TRI_A FLAG
671 +)))|(((
672 +TRI_A Status
673 +)))|(((
674 +TRI_DI FLAG+STA
675 +)))|Reserve|Enable/Disable MOD6|(((
676 +MOD(6)
677 +)))
704 704  
705 -
706 706  (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
707 707  
708 -[[image:image-20220524090106-2.png]]
681 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
682 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
683 +|(((
684 +AV1_LOW
685 +)))|(((
686 +AV1_HIGH
687 +)))|(((
688 +AV2_LOW
689 +)))|(((
690 +AV2_HIGH
691 +)))|(((
692 +AC1_LOW
693 +)))|(((
694 +AC1_HIGH
695 +)))|(((
696 +AC2_LOW
697 +)))|(((
698 +AC2_HIGH
699 +)))
709 709  
710 710  * Each bits shows if the corresponding trigger has been configured.
711 711  
... ... @@ -714,10 +714,27 @@
714 714  10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
715 715  
716 716  
717 -
718 718  (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
719 719  
720 -[[image:image-20220524090249-3.png]]
710 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
711 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
712 +|(((
713 +AV1_LOW
714 +)))|(((
715 +AV1_HIGH
716 +)))|(((
717 +AV2_LOW
718 +)))|(((
719 +AV2_HIGH
720 +)))|(((
721 +AC1_LOW
722 +)))|(((
723 +AC1_HIGH
724 +)))|(((
725 +AC2_LOW
726 +)))|(((
727 +AC2_HIGH
728 +)))
721 721  
722 722  * Each bits shows which status has been trigger on this uplink.
723 723  
... ... @@ -728,7 +728,9 @@
728 728  
729 729  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
730 730  
731 -[[image:image-20220524090456-4.png]]
739 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
740 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
741 +|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
732 732  
733 733  * Each bits shows which status has been trigger on this uplink.
734 734  
... ... @@ -774,8 +774,6 @@
774 774  
775 775  * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
776 776  
777 -
778 -
779 779  === 3.4.1 Common Commands ===
780 780  
781 781  
... ... @@ -810,14 +810,10 @@
810 810  
811 811  Set work mode.
812 812  
813 -* (% style="color:#037691" %)**AT Command:**
821 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
814 814  
815 -(% style="color:blue" %)**AT+MOD=N  **
816 -
817 -
818 818  **Example**: AT+MOD=2. Set work mode to Double DI counting mode
819 819  
820 -
821 821  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
822 822  
823 823  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
... ... @@ -827,16 +827,12 @@
827 827  ==== 3.4.2.3 Poll an uplink ====
828 828  
829 829  
830 -* (% style="color:#037691" %)**AT Command:**
834 +* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
831 831  
832 -There is no AT Command to poll uplink
833 -
834 -
835 835  * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
836 836  
837 837  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
838 838  
839 -
840 840  **Example**: 0x08FF, ask device to send an Uplink
841 841  
842 842  
... ... @@ -846,10 +846,8 @@
846 846  
847 847  Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
848 848  
849 -* (% style="color:#037691" %)**AT Command:**
849 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
850 850  
851 -(% style="color:blue" %)**AT+ADDMOD6=1 or 0**
852 -
853 853  (% style="color:red" %)**1:** (%%)Enable Trigger Mode
854 854  
855 855  (% style="color:red" %)**0: **(%%)Disable Trigger Mode
... ... @@ -864,13 +864,12 @@
864 864  ==== 3.4.2.5 Poll trigger settings ====
865 865  
866 866  
867 -Poll trigger settings,
865 +Poll trigger settings
868 868  
869 869  * (% style="color:#037691" %)**AT Command:**
870 870  
871 871  There is no AT Command for this feature.
872 872  
873 -
874 874  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
875 875  
876 876  (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
... ... @@ -882,15 +882,11 @@
882 882  
883 883  Enable Disable DI1/DI2/DI2 as trigger,
884 884  
885 -* (% style="color:#037691" %)**AT Command:**
882 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
886 886  
887 -(% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
884 +**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
888 888  
889 889  
890 -**Example:**
891 -
892 -AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
893 -
894 894  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
895 895  
896 896  (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
... ... @@ -902,20 +902,15 @@
902 902  
903 903  Set DI1 or DI3(for LT-33222-L) trigger.
904 904  
905 -* (% style="color:#037691" %)**AT Command:**
898 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
906 906  
907 -(% style="color:blue" %)**AT+TRIG1=a,b**
908 -
909 909  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
910 910  
911 911  (% style="color:red" %)**b :** (%%)delay timing.
912 912  
904 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
913 913  
914 -**Example:**
915 915  
916 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
917 -
918 -
919 919  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
920 920  
921 921  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
... ... @@ -927,20 +927,15 @@
927 927  
928 928  Set DI2 trigger.
929 929  
930 -* (% style="color:#037691" %)**AT Command:**
918 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
931 931  
932 -(% style="color:blue" %)**AT+TRIG2=a,b**
933 -
934 934  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
935 935  
936 936  (% style="color:red" %)**b :** (%%)delay timing.
937 937  
924 +**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
938 938  
939 -**Example:**
940 940  
941 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
942 -
943 -
944 944  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
945 945  
946 946  (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
... ... @@ -952,11 +952,8 @@
952 952  
953 953  Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
954 954  
955 -* (% style="color:#037691" %)**AT Command**
938 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
956 956  
957 -(% style="color:blue" %)**AT+ACLIM**
958 -
959 -
960 960  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
961 961  
962 962  (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -968,11 +968,8 @@
968 968  
969 969  Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
970 970  
971 -* (% style="color:#037691" %)**AT Command**
951 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
972 972  
973 -(% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
974 -
975 -
976 976  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
977 977  
978 978  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -984,18 +984,13 @@
984 984  
985 985  Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
986 986  
987 -* (% style="color:#037691" %)**AT Command**
964 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
988 988  
989 -(% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
990 -
991 -
992 992  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
993 993  
994 994  (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
995 995  
996 996  (((
997 -
998 -
999 999  (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1000 1000  )))
1001 1001  
... ... @@ -1010,8 +1010,9 @@
1010 1010  
1011 1011  
1012 1012  * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1013 -* (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1014 1014  
986 +(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
987 +
1015 1015  (((
1016 1016  If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1017 1017  )))
... ... @@ -1018,10 +1018,14 @@
1018 1018  
1019 1019  (((
1020 1020  01: Low,  00: High ,  11: No action
994 +
995 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
996 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
997 +|02  01  00  11|Low|High|No Action
998 +|02  00  11  01|High|No Action|Low
999 +|02  11  01  00|No Action|Low|High
1021 1021  )))
1022 1022  
1023 -[[image:image-20220524092754-5.png]]
1024 -
1025 1025  (((
1026 1026  (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1027 1027  )))
... ... @@ -1058,24 +1058,31 @@
1058 1058  
1059 1059  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1060 1060  
1061 -[[image:image-20220524093238-6.png]]
1038 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1039 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1040 +|0x01|DO1 set to low
1041 +|0x00|DO1 set to high
1042 +|0x11|DO1 NO Action
1062 1062  
1063 -
1064 1064  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1065 1065  
1066 -[[image:image-20220524093328-7.png]]
1046 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1047 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1048 +|0x01|DO2 set to low
1049 +|0x00|DO2 set to high
1050 +|0x11|DO2 NO Action
1067 1067  
1068 -
1069 1069  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1070 1070  
1071 -[[image:image-20220524093351-8.png]]
1054 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1055 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1056 +|0x01|DO3 set to low
1057 +|0x00|DO3 set to high
1058 +|0x11|DO3 NO Action
1072 1072  
1060 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1073 1073  
1074 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1075 1075  
1076 - Latching time. Unit: ms
1077 -
1078 -
1079 1079  (% style="color:red" %)**Note: **
1080 1080  
1081 1081   Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
... ... @@ -1082,7 +1082,6 @@
1082 1082  
1083 1083   Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1084 1084  
1085 -
1086 1086  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1087 1087  
1088 1088  
... ... @@ -1106,7 +1106,7 @@
1106 1106  
1107 1107  
1108 1108  
1109 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1092 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1110 1110  
1111 1111  
1112 1112  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1124,11 +1124,18 @@
1124 1124  )))
1125 1125  
1126 1126  (((
1127 -01: Close ,  00: Open , 11: No action
1128 -)))
1110 +00: Close ,  01: Open , 11: No action
1129 1129  
1130 -(((
1131 -[[image:image-20220524093724-9.png]]
1112 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1113 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1114 +|03  00  11|Open|No Action
1115 +|03  01  11|Close|No Action
1116 +|03  11  00|No Action|Open
1117 +|03  11  01|No Action|Close
1118 +|03  00  00|Open|Open
1119 +|03  01  01|Close|Close
1120 +|03  01  00|Close|Open
1121 +|03  00  01|Open|Close
1132 1132  )))
1133 1133  
1134 1134  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
... ... @@ -1202,11 +1202,8 @@
1202 1202  
1203 1203  When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1204 1204  
1205 -* (% style="color:#037691" %)**AT Command:**
1195 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1206 1206  
1207 -(% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1208 -
1209 -
1210 1210  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1211 1211  
1212 1212  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
... ... @@ -1216,10 +1216,8 @@
1216 1216  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1217 1217  
1218 1218  
1219 -* (% style="color:#037691" %)**AT Command:**
1206 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1220 1220  
1221 -(% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1222 -
1223 1223  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1224 1224  
1225 1225  (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
... ... @@ -1236,11 +1236,8 @@
1236 1236  
1237 1237  Clear counting for counting mode
1238 1238  
1239 -* (% style="color:#037691" %)**AT Command:**
1224 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1240 1240  
1241 -(% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1242 -
1243 -
1244 1244  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1245 1245  
1246 1246  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
... ... @@ -1368,75 +1368,91 @@
1368 1368  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1369 1369  
1370 1370  
1371 -== 3.5 Integrate with Mydevice ==
1353 +== 3.5 Integrating with ThingsEye.io ==
1372 1372  
1355 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1373 1373  
1374 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1357 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1375 1375  
1376 -(((
1377 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1378 -)))
1359 +* Go to your Application and select MQTT under Integrations.
1360 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1361 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1379 1379  
1380 -(((
1381 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1363 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1382 1382  
1383 -
1384 -)))
1365 +=== 3.5.2 Configuring ThingsEye.io ===
1385 1385  
1386 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1367 +* Login to your thingsEye.io account.
1368 +* Under the Integrations center, click Integrations.
1369 +* Click the Add integration button (the button with the + symbol).
1387 1387  
1371 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1388 1388  
1389 1389  
1390 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1374 +On the Add integration page configure the following:
1391 1391  
1376 +Basic settings:
1392 1392  
1393 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1378 +* Select The Things Stack Community from the Integration type list.
1379 +* Enter a suitable name for your integration in the Name box or keep the default name.
1380 +* Click the Next button.
1394 1394  
1395 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1382 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1396 1396  
1397 -Search under The things network
1384 +Uplink Data converter:
1398 1398  
1399 -[[image:1653356838789-523.png||height="337" width="740"]]
1386 +* Click the Create New button if it is not selected by default.
1387 +* Click the JavaScript button.
1388 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1389 +* Click the Next button.
1400 1400  
1391 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1401 1401  
1393 +Downlink Data converter (this is an optional step):
1402 1402  
1403 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1395 +* Click the Create new button if it is not selected by default.
1396 +* Click the JavaScript button.
1397 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1398 +* Click the Next button.
1404 1404  
1405 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1400 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1406 1406  
1402 +Connection:
1407 1407  
1408 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1404 +* Choose Region from the Host type.
1405 +* Enter the cluster of your The Things Stack in the Region textbox.
1406 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1407 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1408 +* Click the Add button.
1409 1409  
1410 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1410 1410  
1411 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1412 1412  
1413 +Your integration is added to the integrations list and it will display on the Integrations page.
1413 1413  
1414 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1415 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1415 1415  
1416 1416  
1417 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1418 +== 3.6 Interface Details ==
1418 1418  
1419 -
1420 -== 3.6 Interface Detail ==
1421 -
1422 1422  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1423 1423  
1424 1424  
1425 -Support NPN Type sensor
1423 +Support NPN-type sensor
1426 1426  
1427 1427  [[image:1653356991268-289.png]]
1428 1428  
1429 1429  
1430 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1428 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1431 1431  
1432 1432  
1433 1433  (((
1434 -The DI port of LT-22222-L can support NPN or PNP output sensor.
1432 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1435 1435  )))
1436 1436  
1437 1437  (((
1438 1438  (((
1439 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1437 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1440 1440  
1441 1441  
1442 1442  )))
... ... @@ -1446,7 +1446,7 @@
1446 1446  
1447 1447  (((
1448 1448  (((
1449 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1447 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1450 1450  )))
1451 1451  )))
1452 1452  
... ... @@ -1455,22 +1455,22 @@
1455 1455  )))
1456 1456  
1457 1457  (((
1458 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1456 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1459 1459  )))
1460 1460  
1461 1461  (((
1462 -This type of sensor will output a low signal GND when active.
1460 +This type of sensor outputs a low (GND) signal when active.
1463 1463  )))
1464 1464  
1465 1465  * (((
1466 -Connect sensor's output to DI1-
1464 +Connect the sensor's output to DI1-
1467 1467  )))
1468 1468  * (((
1469 -Connect sensor's VCC to DI1+.
1467 +Connect the sensor's VCC to DI1+.
1470 1470  )))
1471 1471  
1472 1472  (((
1473 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1471 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1474 1474  )))
1475 1475  
1476 1476  (((
... ... @@ -1478,7 +1478,7 @@
1478 1478  )))
1479 1479  
1480 1480  (((
1481 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1479 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1482 1482  )))
1483 1483  
1484 1484  (((
... ... @@ -1486,22 +1486,22 @@
1486 1486  )))
1487 1487  
1488 1488  (((
1489 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1487 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1490 1490  )))
1491 1491  
1492 1492  (((
1493 -This type of sensor will output a high signal (example 24v) when active.
1491 +This type of sensor outputs a high signal (e.g., 24V) when active.
1494 1494  )))
1495 1495  
1496 1496  * (((
1497 -Connect sensor's output to DI1+
1495 +Connect the sensor's output to DI1+
1498 1498  )))
1499 1499  * (((
1500 -Connect sensor's GND DI1-.
1498 +Connect the sensor's GND DI1-.
1501 1501  )))
1502 1502  
1503 1503  (((
1504 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1502 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1505 1505  )))
1506 1506  
1507 1507  (((
... ... @@ -1509,7 +1509,7 @@
1509 1509  )))
1510 1510  
1511 1511  (((
1512 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1510 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1513 1513  )))
1514 1514  
1515 1515  (((
... ... @@ -1517,22 +1517,22 @@
1517 1517  )))
1518 1518  
1519 1519  (((
1520 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1518 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1521 1521  )))
1522 1522  
1523 1523  (((
1524 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1522 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1525 1525  )))
1526 1526  
1527 1527  * (((
1528 -Connect sensor's output to DI1+ with a serial 50K resistor
1526 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1529 1529  )))
1530 1530  * (((
1531 -Connect sensor's GND DI1-.
1529 +Connect the sensor's GND DI1-.
1532 1532  )))
1533 1533  
1534 1534  (((
1535 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1533 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1536 1536  )))
1537 1537  
1538 1538  (((
... ... @@ -1540,24 +1540,37 @@
1540 1540  )))
1541 1541  
1542 1542  (((
1543 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1541 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1544 1544  )))
1545 1545  
1546 1546  
1547 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1545 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1548 1548  
1547 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1549 1549  
1550 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1549 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1551 1551  
1552 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1551 +[[image:image-20230616235145-1.png]]
1553 1553  
1553 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1554 +
1555 +[[image:image-20240219115718-1.png]]
1556 +
1557 +
1558 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1559 +
1560 +
1561 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1562 +
1563 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1564 +
1554 1554  [[image:1653357531600-905.png]]
1555 1555  
1556 1556  
1557 -=== 3.6.4 Analog Input Interface ===
1568 +=== 3.6.4 Analog Input Interfaces ===
1558 1558  
1559 1559  
1560 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1571 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1561 1561  
1562 1562  
1563 1563  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1564,20 +1564,19 @@
1564 1564  
1565 1565  [[image:1653357592296-182.png]]
1566 1566  
1567 -Example to connect a 4~~20mA sensor
1578 +Example: Connecting a 4~~20mA sensor
1568 1568  
1569 -We take the wind speed sensor as an example for reference only.
1580 +We will use the wind speed sensor as an example for reference only.
1570 1570  
1571 1571  
1572 1572  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1573 1573  
1574 -(% style="color:red" %)**Red:  12~~24v**
1585 +(% style="color:red" %)**Red:  12~~24V**
1575 1575  
1576 1576  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1577 1577  
1578 1578  **Black:  GND**
1579 1579  
1580 -
1581 1581  **Connection diagram:**
1582 1582  
1583 1583  [[image:1653357640609-758.png]]
... ... @@ -1585,13 +1585,29 @@
1585 1585  [[image:1653357648330-671.png||height="155" width="733"]]
1586 1586  
1587 1587  
1598 +Example: Connecting to a regulated power supply to measure voltage
1599 +
1600 +[[image:image-20230608101532-1.png||height="606" width="447"]]
1601 +
1602 +[[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1603 +
1604 +[[image:image-20230608101722-3.png||height="102" width="1139"]]
1605 +
1606 +
1607 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1608 +
1609 +(% style="color:red" %)**Red:  12~~24v**
1610 +
1611 +**Black:  GND**
1612 +
1613 +
1588 1588  === 3.6.5 Relay Output ===
1589 1589  
1590 1590  
1591 1591  (((
1592 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1618 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1593 1593  
1594 -**Note**: RO pins go to Open(NO) when device is power off.
1620 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1595 1595  )))
1596 1596  
1597 1597  [[image:image-20220524100215-9.png]]
... ... @@ -1603,20 +1603,41 @@
1603 1603  == 3.7 LEDs Indicators ==
1604 1604  
1605 1605  
1606 -[[image:image-20220524100748-11.png]]
1632 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1633 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1634 +|**PWR**|Always on if there is power
1635 +|**TX**|(((
1636 +(((
1637 +Device boot: TX blinks 5 times.
1638 +)))
1607 1607  
1640 +(((
1641 +Successful join network: TX ON for 5 seconds.
1642 +)))
1608 1608  
1609 -= 4. Use AT Command =
1644 +(((
1645 +Transmit a LoRa packet: TX blinks once
1646 +)))
1647 +)))
1648 +|**RX**|RX blinks once when receiving a packet.
1649 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1650 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1651 +|**DI1**|(((
1652 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1653 +)))
1654 +|**DI2**|(((
1655 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1656 +)))
1657 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1658 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1610 1610  
1611 -== 4.1 Access AT Command ==
1660 += 4. Using AT Command =
1612 1612  
1662 +== 4.1 Connecting the LT-22222-L to a computer ==
1613 1613  
1614 -(((
1615 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1616 -)))
1617 1617  
1618 1618  (((
1619 -
1666 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1620 1620  )))
1621 1621  
1622 1622  [[image:1653358238933-385.png]]
... ... @@ -1623,7 +1623,7 @@
1623 1623  
1624 1624  
1625 1625  (((
1626 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1673 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1627 1627  )))
1628 1628  
1629 1629  [[image:1653358355238-883.png]]
... ... @@ -1630,10 +1630,12 @@
1630 1630  
1631 1631  
1632 1632  (((
1633 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1680 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1634 1634  )))
1635 1635  
1636 1636  (((
1684 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1685 +
1637 1637  AT+<CMD>?        : Help on <CMD>
1638 1638  )))
1639 1639  
... ... @@ -1937,8 +1937,6 @@
1937 1937  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1938 1938  
1939 1939  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1940 -
1941 -
1942 1942  )))
1943 1943  
1944 1944  (((
... ... @@ -1945,9 +1945,6 @@
1945 1945  [[image:1653359097980-169.png||height="188" width="729"]]
1946 1946  )))
1947 1947  
1948 -(((
1949 -
1950 -)))
1951 1951  
1952 1952  === 4.2.3 Change to Class A ===
1953 1953  
... ... @@ -1955,8 +1955,9 @@
1955 1955  (((
1956 1956  (% style="color:blue" %)**If sensor JOINED:**
1957 1957  
1958 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
1959 -ATZ**
2002 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2003 +
2004 +(% style="background-color:#dcdcdc" %)**ATZ**
1960 1960  )))
1961 1961  
1962 1962  
... ... @@ -1979,7 +1979,7 @@
1979 1979  * For bug fix
1980 1980  * Change LoRaWAN bands.
1981 1981  
1982 -Below shows the hardware connection for how to upload an image to the LT:
2027 +Below is the hardware connection for how to upload an image to the LT:
1983 1983  
1984 1984  [[image:1653359603330-121.png]]
1985 1985  
... ... @@ -1986,7 +1986,7 @@
1986 1986  
1987 1987  (((
1988 1988  (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1989 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2034 +(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
1990 1990  (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1991 1991  
1992 1992  
... ... @@ -2009,7 +2009,6 @@
2009 2009  
2010 2010  (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2011 2011  
2012 -
2013 2013  [[image:1653360054704-518.png||height="186" width="745"]]
2014 2014  
2015 2015  
... ... @@ -2073,13 +2073,21 @@
2073 2073  
2074 2074  (((
2075 2075  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2120 +
2076 2076  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2122 +
2077 2077  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2124 +
2078 2078  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2126 +
2079 2079  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2128 +
2080 2080  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2130 +
2081 2081  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2132 +
2082 2082  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2134 +
2083 2083  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2084 2084  )))
2085 2085  
... ... @@ -2091,14 +2091,20 @@
2091 2091  [[image:1653360498588-932.png||height="485" width="726"]]
2092 2092  
2093 2093  
2094 -== 6.4 Can I see counting event in Serial? ==
2146 +== 6.4 How to change the uplink interval? ==
2095 2095  
2096 2096  
2149 +Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2150 +
2151 +
2152 +== 6.5 Can I see counting event in Serial? ==
2153 +
2154 +
2097 2097  (((
2098 2098  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2099 2099  
2100 2100  
2101 -== 6.5 Can i use point to point communication for LT-22222-L? ==
2159 +== 6.6 Can i use point to point communication for LT-22222-L? ==
2102 2102  
2103 2103  
2104 2104  Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
... ... @@ -2107,7 +2107,7 @@
2107 2107  )))
2108 2108  
2109 2109  (((
2110 -== 6.Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2168 +== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2111 2111  
2112 2112  
2113 2113  If the device is not shut down, but directly powered off.
... ... @@ -2119,7 +2119,7 @@
2119 2119  After restart, the status before power failure will be read from flash.
2120 2120  
2121 2121  
2122 -== 6.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2180 +== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2123 2123  
2124 2124  
2125 2125  LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
... ... @@ -2128,12 +2128,18 @@
2128 2128  [[image:image-20221006170630-1.png||height="610" width="945"]]
2129 2129  
2130 2130  
2131 -== 6.Can LT22222-L save RO state? ==
2189 +== 6.9 Can LT22222-L save RO state? ==
2132 2132  
2133 2133  
2134 2134  Firmware version needs to be no less than 1.6.0.
2135 2135  
2136 2136  
2195 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2196 +
2197 +
2198 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2199 +
2200 +
2137 2137  = 7. Trouble Shooting =
2138 2138  )))
2139 2139  
... ... @@ -2174,6 +2174,13 @@
2174 2174  )))
2175 2175  
2176 2176  
2241 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2242 +
2243 +
2244 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2245 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2246 +
2247 +
2177 2177  = 8. Order Info =
2178 2178  
2179 2179  
... ... @@ -2191,8 +2191,6 @@
2191 2191  * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2192 2192  * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2193 2193  
2194 -
2195 -
2196 2196  = 9. Packing Info =
2197 2197  
2198 2198  
... ... @@ -2210,8 +2210,6 @@
2210 2210  * Package Size / pcs : 14.5 x 8 x 5 cm
2211 2211  * Weight / pcs : 170g
2212 2212  
2213 -
2214 -
2215 2215  = 10. Support =
2216 2216  
2217 2217  
... ... @@ -2219,7 +2219,7 @@
2219 2219  Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2220 2220  )))
2221 2221  * (((
2222 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2289 +Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2223 2223  
2224 2224  
2225 2225  
... ... @@ -2231,5 +2231,3 @@
2231 2231  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2232 2232  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2233 2233  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2234 -
2235 -
image-20230426161322-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +15.2 KB
Content
image-20230608101532-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +563.0 KB
Content
image-20230608101608-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +287.8 KB
Content
image-20230608101722-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +25.4 KB
Content
image-20230616235145-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content