Last modified by Mengting Qiu on 2025/06/04 18:42

From version 113.2
edited by Xiaoling
on 2023/04/24 11:51
Change comment: There is no comment for this version
To version 165.1
edited by Dilisi S
on 2024/11/06 22:47
Change comment: some minor edits on 6th nov. as part 1

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,32 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 -(((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,162 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
54 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
101 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
105 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 207  == 1.5 Hardware Variants ==
208 208  
209 209  
210 -(% border="1" style="background-color:#f2f2f2; width:500px" %)
211 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
117 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
212 212  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 213  (% style="text-align:center" %)
214 214  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -221,97 +221,149 @@
221 221  * 1 x Counting Port
222 222  )))
223 223  
224 -= 2. Power ON Device =
131 += 2. Assembling the Device =
225 225  
133 +== 2.1 What is included in the package? ==
226 226  
227 -(((
228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 -)))
135 +The package includes the following items:
230 230  
231 -(((
232 -PWR will on when device is properly powered.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
233 233  
234 -
235 -)))
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
236 236  
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering the LT-22222-L ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
237 237  [[image:1653297104069-180.png]]
238 238  
239 239  
240 240  = 3. Operation Mode =
241 241  
242 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
243 243  
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
244 244  
245 -(((
246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 -)))
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
248 248  
249 -(((
250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
252 252  
190 +== 3.2 Registering with a LoRaWAN network server ==
253 253  
254 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
255 255  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
256 256  
257 -(((
258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
259 259  
260 -
261 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
262 262  
263 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
264 264  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
265 265  
266 -(((
267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
268 268  
269 -
270 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
271 271  
272 -(((
273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 -)))
210 +==== Using the LoRaWAN Device Repository: ====
275 275  
276 -(((
277 -Each LT is shipped with a sticker with the default device EUI as below:
278 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
279 279  
280 -[[image:1653297924498-393.png]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
281 281  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
282 282  
283 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
284 284  
285 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
286 286  
287 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
288 288  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
289 289  
290 -**Add APP KEY and DEV EUI**
291 291  
292 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
293 293  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
294 294  
295 295  
296 -(((
297 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
252 +==== Joining ====
298 298  
299 -
300 -)))
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
301 301  
302 302  [[image:1653298044601-602.png||height="405" width="709"]]
303 303  
304 304  
305 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
306 306  
307 307  
308 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
309 309  
310 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
265 +
311 311  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267 +
312 312  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269 +
313 313  * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271 +
314 314  * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273 +
315 315  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316 316  
317 317  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
... ... @@ -318,32 +318,44 @@
318 318  
319 319  
320 320  (((
321 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
281 +
282 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
284 +|Value|(((
285 +AVI1 voltage
286 +)))|(((
287 +AVI2 voltage
288 +)))|(((
289 +ACI1 Current
290 +)))|(((
291 +ACI2 Current
292 +)))|DIDORO*|(((
293 +Reserve
294 +)))|MOD
322 322  )))
323 323  
324 -[[image:image-20220523174024-3.png]]
325 -
326 326  (((
327 -
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
328 328  
329 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
300 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
330 330  )))
331 331  
332 -[[image:image-20220523174254-4.png]]
305 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
333 333  
334 -* RO is for relay. ROx=1 : close,ROx=0 always open.
335 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
336 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
337 337  
338 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
339 339  
340 -For example if payload is: [[image:image-20220523175847-2.png]]
341 341  
314 +**The interface values can be calculated as follows:  **
342 342  
343 -**The value for the interface is **
316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
344 344  
345 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
346 -
347 347  AVI2 channel voltage is 0x04AC/1000=1.196V
348 348  
349 349  ACI1 channel current is 0x1310/1000=4.880mA
... ... @@ -350,96 +350,92 @@
350 350  
351 351  ACI2 channel current is 0x1300/1000=4.864mA
352 352  
353 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= **10101010**(b) means,
354 354  
355 -* [1] RO1 relay channel is close and the RO1 LED is ON.
356 -* [0] RO2 relay channel is open and RO2 LED is OFF;
326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 - not used for LT-22222-L.
335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 +* [0] DO1 channel output state:
337 +** DO1 is FLOATING when there is no load between DO1 and V+.
338 +** DO1 is HIGH when there is a load between DO1 and V+.
339 +** DO1 LED is OFF in both cases.
357 357  
358 -**LT22222-L:**
359 -
360 -* [1] DI2 channel is high input and DI2 LED is ON;
361 -* [0] DI1 channel is low input;
362 -
363 -* [0] DO3 channel output state
364 -** DO3 is float in case no load between DO3 and V+.;
365 -** DO3 is high in case there is load between DO3 and V+.
366 -** DO3 LED is off in both case
367 -* [1] DO2 channel output is low and DO2 LED is ON.
368 -* [0] DO1 channel output state
369 -** DO1 is float in case no load between DO1 and V+.;
370 -** DO1 is high in case there is load between DO1 and V+.
371 -** DO1 LED is off in both case
372 -
373 373  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
374 374  
375 375  
376 376  (((
377 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
378 378  )))
379 379  
380 380  (((
381 -Total : 11 bytes payload
349 +The uplink payload is 11 bytes long.
350 +
351 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
352 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
353 +|Value|COUNT1|COUNT2 |DIDORO*|(((
354 +Reserve
355 +)))|MOD
382 382  )))
383 383  
384 -[[image:image-20220523180452-3.png]]
358 +(((
359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
385 385  
361 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
386 386  
387 -(((
388 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
365 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
389 389  )))
390 390  
391 -[[image:image-20220523180506-4.png]]
368 +* FIRST: Indicates that this is the first packet after joining the network.
369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
392 392  
393 -* RO is for relay. ROx=1 : close,ROx=0 always open.
394 -* FIRST: Indicate this is the first packet after join network.
395 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
396 -
397 397  (((
398 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
399 -)))
372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
400 400  
401 -(((
402 402  
375 +)))
403 403  
404 -**To use counting mode, please run:**
377 +(((
378 +**To activate this mode, run the following AT commands:**
405 405  )))
406 406  
381 +(((
407 407  (% class="box infomessage" %)
408 408  (((
409 -(((
410 -(((
411 411  **AT+MOD=2**
412 -)))
413 413  
414 -(((
415 415  **ATZ**
416 416  )))
417 417  )))
418 -)))
419 419  
420 420  (((
421 421  
422 422  
423 423  (% style="color:#4f81bd" %)**AT Commands for counting:**
424 -
425 -
426 426  )))
427 427  
428 428  (((
429 429  **For LT22222-L:**
430 430  
399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
431 431  
432 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
433 433  
434 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
435 435  
436 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
437 437  
438 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
439 439  
440 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
441 -
442 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
443 443  )))
444 444  
445 445  
... ... @@ -446,46 +446,50 @@
446 446  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
447 447  
448 448  
449 -**LT22222-L**: This mode the DI1 is used as a counting pin.
416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
450 450  
451 -[[image:image-20220523181246-5.png]]
418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
420 +|Value|COUNT1|(((
421 +ACI1 Current
422 +)))|(((
423 +ACI2 Current
424 +)))|DIDORO*|Reserve|MOD
452 452  
453 453  (((
454 -
427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
455 455  
456 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
429 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
457 457  )))
458 458  
459 -[[image:image-20220523181301-6.png]]
434 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 +* FIRST: Indicates that this is the first packet after joining the network.
436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
460 460  
461 -* RO is for relay. ROx=1 : close,ROx=0 always open.
462 -* FIRST: Indicate this is the first packet after join network.
463 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
464 -
465 465  (((
466 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
467 467  )))
468 468  
469 469  
470 470  (((
471 -**To use counting mode, please run:**
444 +**To activate this mode, run the following AT commands:**
472 472  )))
473 473  
447 +(((
474 474  (% class="box infomessage" %)
475 475  (((
476 -(((
477 -(((
478 478  **AT+MOD=3**
479 -)))
480 480  
481 -(((
482 482  **ATZ**
483 483  )))
484 484  )))
485 -)))
486 486  
487 487  (((
488 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
457 +AT Commands for counting:
458 +
459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
489 489  )))
490 490  
491 491  
... ... @@ -493,67 +493,64 @@
493 493  
494 494  
495 495  (((
496 -**LT22222-L**: This mode the DI1 is used as a counting pin.
467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
497 497  )))
498 498  
499 499  (((
500 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
472 +
473 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
475 +|Value|COUNT1|AVI1 Counting|DIDORO*|(((
476 +Reserve
477 +)))|MOD
501 501  )))
502 502  
503 -[[image:image-20220523181903-8.png]]
504 -
505 -
506 506  (((
507 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
482 +
483 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
508 508  )))
509 509  
510 -[[image:image-20220523181727-7.png]]
488 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 +* FIRST: Indicates that this is the first packet after joining the network.
490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
511 511  
512 -* RO is for relay. ROx=1 : close,ROx=0 always open.
513 -* FIRST: Indicate this is the first packet after join network.
514 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
515 -
516 516  (((
517 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
518 -)))
493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
519 519  
520 -(((
521 521  
496 +)))
522 522  
523 -**To use this mode, please run:**
498 +(((
499 +**To activate this mode, run the following AT commands:**
524 524  )))
525 525  
502 +(((
526 526  (% class="box infomessage" %)
527 527  (((
528 -(((
529 -(((
530 530  **AT+MOD=4**
531 -)))
532 532  
533 -(((
534 534  **ATZ**
535 535  )))
536 536  )))
537 -)))
538 538  
539 -
540 540  (((
541 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
542 542  )))
543 543  
544 544  (((
545 -
516 +**In addition to that, below are the commands for AVI1 Counting:**
546 546  
547 -**Plus below command for AVI1 Counting:**
518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
548 548  
549 -
550 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
551 -
552 552  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
553 553  
554 554  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
555 555  
556 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
557 557  )))
558 558  
559 559  
... ... @@ -560,47 +560,53 @@
560 560  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
561 561  
562 562  
563 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
564 564  
565 -[[image:image-20220523182334-9.png]]
533 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
534 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
535 +|Value|(((
536 +AVI1 voltage
537 +)))|(((
538 +AVI2 voltage
539 +)))|(((
540 +ACI1 Current
541 +)))|COUNT1|DIDORO*|(((
542 +Reserve
543 +)))|MOD
566 566  
567 567  (((
568 -
546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
569 569  
570 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
550 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
571 571  )))
572 572  
573 -* RO is for relay. ROx=1 : closeROx=0 always open.
574 -* FIRST: Indicate this is the first packet after join network.
553 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 +* FIRST: Indicates that this is the first packet after joining the network.
575 575  * (((
576 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
577 577  )))
578 578  
579 579  (((
580 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
581 581  )))
582 582  
583 583  (((
584 -
585 -
586 -**To use this mode, please run:**
564 +**To activate this mode, run the following AT commands:**
587 587  )))
588 588  
567 +(((
589 589  (% class="box infomessage" %)
590 590  (((
591 -(((
592 -(((
593 593  **AT+MOD=5**
594 -)))
595 595  
596 -(((
597 597  **ATZ**
598 598  )))
599 599  )))
600 -)))
601 601  
602 602  (((
603 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
604 604  )))
605 605  
606 606  
... ... @@ -607,49 +607,46 @@
607 607  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
608 608  
609 609  
610 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
611 611  
612 -For example, if user has configured below commands:
586 +For example, if you configured the following commands:
613 613  
614 614  * **AT+MOD=1 ** **~-~->**  The normal working mode
615 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
616 616  
617 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
618 618  
619 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
620 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
621 621  
622 622  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
623 623  
598 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
624 624  
625 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
626 -
627 627  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
628 628  
629 629  
630 630  **Example:**
631 631  
632 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
605 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
633 633  
634 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
607 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
635 635  
636 636  
610 +(% style="color:#4f81bd" %)**Trigger based on current**:
637 637  
638 -(% style="color:#4f81bd" %)**Trigger base on current**:
639 -
640 640  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
641 641  
642 642  
643 643  **Example:**
644 644  
645 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
617 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
646 646  
647 647  
620 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
648 648  
649 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
622 +DI status triggers Flag.
650 650  
651 -DI status trigger Flag.
652 -
653 653  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
654 654  
655 655  
... ... @@ -658,71 +658,116 @@
658 658  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
659 659  
660 660  
661 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
632 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
662 662  
663 663  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
664 664  
665 665  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
666 666  
667 - AA: Code for this downlink Command:
638 + AA: Type Code for this downlink Command:
668 668  
669 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
640 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
670 670  
671 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
642 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
672 672  
673 - yy2 yy2: AC1 or AV1 high limit.
644 + yy2 yy2: AC1 or AV1 HIGH limit.
674 674  
675 - yy3 yy3: AC2 or AV2 low limit.
646 + yy3 yy3: AC2 or AV2 LOW limit.
676 676  
677 - Yy4 yy4: AC2 or AV2 high limit.
648 + Yy4 yy4: AC2 or AV2 HIGH limit.
678 678  
679 679  
680 -**Example1**: AA 00 13 88 00 00 00 00 00 00
651 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
681 681  
682 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
653 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
683 683  
684 684  
685 -**Example2**: AA 02 01 00
656 +**Example 2**: AA 02 01 00
686 686  
687 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
658 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
688 688  
689 689  
690 -
691 691  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
692 692  
693 -MOD6 Payload : total 11 bytes payload
663 +MOD6 Payload: total of 11 bytes
694 694  
695 -[[image:image-20220524085923-1.png]]
665 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
666 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
667 +|Value|(((
668 +TRI_A FLAG
669 +)))|(((
670 +TRI_A Status
671 +)))|(((
672 +TRI_DI FLAG+STA
673 +)))|Reserve|Enable/Disable MOD6|(((
674 +MOD(6)
675 +)))
696 696  
677 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
697 697  
698 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
679 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
680 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
681 +|(((
682 +AV1_LOW
683 +)))|(((
684 +AV1_HIGH
685 +)))|(((
686 +AV2_LOW
687 +)))|(((
688 +AV2_HIGH
689 +)))|(((
690 +AC1_LOW
691 +)))|(((
692 +AC1_HIGH
693 +)))|(((
694 +AC2_LOW
695 +)))|(((
696 +AC2_HIGH
697 +)))
699 699  
700 -[[image:image-20220524090106-2.png]]
699 +* Each bit shows if the corresponding trigger has been configured.
701 701  
702 -* Each bits shows if the corresponding trigger has been configured.
703 -
704 704  **Example:**
705 705  
706 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
703 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
707 707  
708 708  
706 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
709 709  
710 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
708 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
710 +|(((
711 +AV1_LOW
712 +)))|(((
713 +AV1_HIGH
714 +)))|(((
715 +AV2_LOW
716 +)))|(((
717 +AV2_HIGH
718 +)))|(((
719 +AC1_LOW
720 +)))|(((
721 +AC1_HIGH
722 +)))|(((
723 +AC2_LOW
724 +)))|(((
725 +AC2_HIGH
726 +)))
711 711  
712 -[[image:image-20220524090249-3.png]]
728 +* Each bit shows which status has been triggered on this uplink.
713 713  
714 -* Each bits shows which status has been trigger on this uplink.
715 -
716 716  **Example:**
717 717  
718 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
732 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
719 719  
720 720  
721 721  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
722 722  
723 -[[image:image-20220524090456-4.png]]
737 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
738 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
739 +|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
724 724  
725 -* Each bits shows which status has been trigger on this uplink.
741 +* Each bits shows which status has been triggered on this uplink.
726 726  
727 727  **Example:**
728 728  
... ... @@ -776,41 +776,40 @@
776 776  
777 777  === 3.4.2 Sensor related commands ===
778 778  
779 -
780 780  ==== 3.4.2.1 Set Transmit Interval ====
781 781  
782 782  
783 -Set device uplink interval.
798 +Sets the uplink interval of the device.
784 784  
785 -* (% style="color:#037691" %)**AT Command:**
800 +* (% style="color:#037691" %)**AT command:**
786 786  
787 -(% style="color:blue" %)**AT+TDC=N **
802 +(% style="color:blue" %)**AT+TDC=N**
788 788  
804 +where N is the time in milliseconds.
789 789  
790 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
806 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
791 791  
792 792  
793 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
809 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
794 794  
795 795  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
796 796  
797 797  
798 798  
799 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
815 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
800 800  
801 801  
802 -Set work mode.
818 +Sets the work mode.
803 803  
804 -* (% style="color:#037691" %)**AT Command:**
820 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
805 805  
806 -(% style="color:blue" %)**AT+MOD=N  **
822 +Where N is the work mode.
807 807  
824 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
808 808  
809 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
810 810  
827 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
811 811  
812 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
813 -
814 814  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
815 815  
816 816  
... ... @@ -818,34 +818,30 @@
818 818  ==== 3.4.2.3 Poll an uplink ====
819 819  
820 820  
821 -* (% style="color:#037691" %)**AT Command:**
836 +Asks the device to send an uplink.
822 822  
823 -There is no AT Command to poll uplink
838 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
824 824  
840 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
825 825  
826 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
827 -
828 828  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
829 829  
830 -
831 831  **Example**: 0x08FF, ask device to send an Uplink
832 832  
833 833  
834 834  
835 -==== 3.4.2.4 Enable Trigger Mode ====
848 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
836 836  
837 837  
838 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
851 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
839 839  
840 -* (% style="color:#037691" %)**AT Command:**
853 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
841 841  
842 -(% style="color:blue" %)**AT+ADDMOD6=1 or 0**
855 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
843 843  
844 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
857 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
845 845  
846 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
847 847  
848 -
849 849  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
850 850  
851 851  (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
... ... @@ -855,16 +855,15 @@
855 855  ==== 3.4.2.5 Poll trigger settings ====
856 856  
857 857  
858 -Poll trigger settings,
869 +Polls the trigger settings
859 859  
860 860  * (% style="color:#037691" %)**AT Command:**
861 861  
862 862  There is no AT Command for this feature.
863 863  
864 -
865 865  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
866 866  
867 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
877 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
868 868  
869 869  
870 870  
... ... @@ -871,17 +871,13 @@
871 871  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
872 872  
873 873  
874 -Enable Disable DI1/DI2/DI2 as trigger,
884 +Enable or Disable DI1/DI2/DI2 as trigger,
875 875  
876 -* (% style="color:#037691" %)**AT Command:**
886 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
877 877  
878 -(% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
888 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
879 879  
880 880  
881 -**Example:**
882 -
883 -AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
884 -
885 885  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
886 886  
887 887  (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
... ... @@ -893,20 +893,15 @@
893 893  
894 894  Set DI1 or DI3(for LT-33222-L) trigger.
895 895  
896 -* (% style="color:#037691" %)**AT Command:**
902 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
897 897  
898 -(% style="color:blue" %)**AT+TRIG1=a,b**
899 -
900 900  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
901 901  
902 902  (% style="color:red" %)**b :** (%%)delay timing.
903 903  
908 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
904 904  
905 -**Example:**
906 906  
907 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
908 -
909 -
910 910  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
911 911  
912 912  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
... ... @@ -916,22 +916,17 @@
916 916  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
917 917  
918 918  
919 -Set DI2 trigger.
920 +Sets DI2 trigger.
920 920  
921 -* (% style="color:#037691" %)**AT Command:**
922 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
922 922  
923 -(% style="color:blue" %)**AT+TRIG2=a,b**
924 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
924 924  
925 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
926 -
927 927  (% style="color:red" %)**b :** (%%)delay timing.
928 928  
928 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
929 929  
930 -**Example:**
931 931  
932 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
933 -
934 -
935 935  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
936 936  
937 937  (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
... ... @@ -943,11 +943,8 @@
943 943  
944 944  Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
945 945  
946 -* (% style="color:#037691" %)**AT Command**
942 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
947 947  
948 -(% style="color:blue" %)**AT+ACLIM**
949 -
950 -
951 951  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
952 952  
953 953  (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -959,11 +959,8 @@
959 959  
960 960  Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
961 961  
962 -* (% style="color:#037691" %)**AT Command**
955 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
963 963  
964 -(% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
965 -
966 -
967 967  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
968 968  
969 969  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -973,20 +973,15 @@
973 973  ==== 3.4.2.11 Trigger – Set minimum interval ====
974 974  
975 975  
976 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
966 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
977 977  
978 -* (% style="color:#037691" %)**AT Command**
968 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
979 979  
980 -(% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
981 -
982 -
983 983  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
984 984  
985 985  (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
986 986  
987 987  (((
988 -
989 -
990 990  (% style="color:red" %)**Note: ATDC setting must be more than 5min**
991 991  )))
992 992  
... ... @@ -1001,8 +1001,9 @@
1001 1001  
1002 1002  
1003 1003  * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1004 -* (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1005 1005  
990 +(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
991 +
1006 1006  (((
1007 1007  If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1008 1008  )))
... ... @@ -1009,10 +1009,14 @@
1009 1009  
1010 1010  (((
1011 1011  01: Low,  00: High ,  11: No action
998 +
999 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1000 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1001 +|02  01  00  11|Low|High|No Action
1002 +|02  00  11  01|High|No Action|Low
1003 +|02  11  01  00|No Action|Low|High
1012 1012  )))
1013 1013  
1014 -[[image:image-20220524092754-5.png]]
1015 -
1016 1016  (((
1017 1017  (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1018 1018  )))
... ... @@ -1049,24 +1049,31 @@
1049 1049  
1050 1050  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1051 1051  
1052 -[[image:image-20220524093238-6.png]]
1042 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1043 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1044 +|0x01|DO1 set to low
1045 +|0x00|DO1 set to high
1046 +|0x11|DO1 NO Action
1053 1053  
1054 -
1055 1055  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1056 1056  
1057 -[[image:image-20220524093328-7.png]]
1050 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1051 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1052 +|0x01|DO2 set to low
1053 +|0x00|DO2 set to high
1054 +|0x11|DO2 NO Action
1058 1058  
1059 -
1060 1060  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1061 1061  
1062 -[[image:image-20220524093351-8.png]]
1058 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1059 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1060 +|0x01|DO3 set to low
1061 +|0x00|DO3 set to high
1062 +|0x11|DO3 NO Action
1063 1063  
1064 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1064 1064  
1065 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1066 1066  
1067 - Latching time. Unit: ms
1068 -
1069 -
1070 1070  (% style="color:red" %)**Note: **
1071 1071  
1072 1072   Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
... ... @@ -1073,7 +1073,6 @@
1073 1073  
1074 1074   Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1075 1075  
1076 -
1077 1077  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1078 1078  
1079 1079  
... ... @@ -1097,7 +1097,7 @@
1097 1097  
1098 1098  
1099 1099  
1100 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1096 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1101 1101  
1102 1102  
1103 1103  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1115,11 +1115,18 @@
1115 1115  )))
1116 1116  
1117 1117  (((
1118 -01: Close ,  00: Open , 11: No action
1119 -)))
1114 +00: Closed ,  01: Open , 11: No action
1120 1120  
1121 -(((
1122 -[[image:image-20220524093724-9.png]]
1116 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1117 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1118 +|03  00  11|Open|No Action
1119 +|03  01  11|Close|No Action
1120 +|03  11  00|No Action|Open
1121 +|03  11  01|No Action|Close
1122 +|03  00  00|Open|Open
1123 +|03  01  01|Close|Close
1124 +|03  01  00|Close|Open
1125 +|03  00  01|Open|Close
1123 1123  )))
1124 1124  
1125 1125  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
... ... @@ -1193,11 +1193,8 @@
1193 1193  
1194 1194  When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1195 1195  
1196 -* (% style="color:#037691" %)**AT Command:**
1199 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1197 1197  
1198 -(% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1199 -
1200 -
1201 1201  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1202 1202  
1203 1203  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
... ... @@ -1207,10 +1207,8 @@
1207 1207  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1208 1208  
1209 1209  
1210 -* (% style="color:#037691" %)**AT Command:**
1210 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1211 1211  
1212 -(% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1213 -
1214 1214  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1215 1215  
1216 1216  (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
... ... @@ -1227,11 +1227,8 @@
1227 1227  
1228 1228  Clear counting for counting mode
1229 1229  
1230 -* (% style="color:#037691" %)**AT Command:**
1228 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1231 1231  
1232 -(% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1233 -
1234 -
1235 1235  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1236 1236  
1237 1237  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
... ... @@ -1238,7 +1238,7 @@
1238 1238  
1239 1239  
1240 1240  
1241 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1236 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1242 1242  
1243 1243  
1244 1244  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1359,75 +1359,91 @@
1359 1359  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1360 1360  
1361 1361  
1362 -== 3.5 Integrate with Mydevice ==
1357 +== 3.5 Integrating with ThingsEye.io ==
1363 1363  
1359 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1364 1364  
1365 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1361 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1366 1366  
1367 -(((
1368 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1369 -)))
1363 +* Go to your Application and select MQTT under Integrations.
1364 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1365 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1370 1370  
1371 -(((
1372 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1367 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1373 1373  
1374 -
1375 -)))
1369 +=== 3.5.2 Configuring ThingsEye.io ===
1376 1376  
1377 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1371 +* Login to your thingsEye.io account.
1372 +* Under the Integrations center, click Integrations.
1373 +* Click the Add integration button (the button with the + symbol).
1378 1378  
1375 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1379 1379  
1380 1380  
1381 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1378 +On the Add integration page configure the following:
1382 1382  
1380 +Basic settings:
1383 1383  
1384 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1382 +* Select The Things Stack Community from the Integration type list.
1383 +* Enter a suitable name for your integration in the Name box or keep the default name.
1384 +* Click the Next button.
1385 1385  
1386 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1386 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1387 1387  
1388 -Search under The things network
1388 +Uplink Data converter:
1389 1389  
1390 -[[image:1653356838789-523.png||height="337" width="740"]]
1390 +* Click the Create New button if it is not selected by default.
1391 +* Click the JavaScript button.
1392 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1393 +* Click the Next button.
1391 1391  
1395 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1392 1392  
1397 +Downlink Data converter (this is an optional step):
1393 1393  
1394 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1399 +* Click the Create new button if it is not selected by default.
1400 +* Click the JavaScript button.
1401 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1402 +* Click the Next button.
1395 1395  
1396 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1404 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1397 1397  
1406 +Connection:
1398 1398  
1399 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1408 +* Choose Region from the Host type.
1409 +* Enter the cluster of your The Things Stack in the Region textbox.
1410 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1411 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1412 +* Click the Add button.
1400 1400  
1414 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1401 1401  
1402 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1403 1403  
1417 +Your integration is added to the integrations list and it will display on the Integrations page.
1404 1404  
1405 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1419 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1406 1406  
1407 1407  
1408 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1422 +== 3.6 Interface Details ==
1409 1409  
1410 -
1411 -== 3.6 Interface Detail ==
1412 -
1413 1413  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1414 1414  
1415 1415  
1416 -Support NPN Type sensor
1427 +Support NPN-type sensor
1417 1417  
1418 1418  [[image:1653356991268-289.png]]
1419 1419  
1420 1420  
1421 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1432 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1422 1422  
1423 1423  
1424 1424  (((
1425 -The DI port of LT-22222-L can support NPN or PNP output sensor.
1436 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1426 1426  )))
1427 1427  
1428 1428  (((
1429 1429  (((
1430 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1441 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1431 1431  
1432 1432  
1433 1433  )))
... ... @@ -1437,7 +1437,7 @@
1437 1437  
1438 1438  (((
1439 1439  (((
1440 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1451 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1441 1441  )))
1442 1442  )))
1443 1443  
... ... @@ -1446,22 +1446,22 @@
1446 1446  )))
1447 1447  
1448 1448  (((
1449 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1460 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1450 1450  )))
1451 1451  
1452 1452  (((
1453 -This type of sensor will output a low signal GND when active.
1464 +This type of sensor outputs a low (GND) signal when active.
1454 1454  )))
1455 1455  
1456 1456  * (((
1457 -Connect sensor's output to DI1-
1468 +Connect the sensor's output to DI1-
1458 1458  )))
1459 1459  * (((
1460 -Connect sensor's VCC to DI1+.
1471 +Connect the sensor's VCC to DI1+.
1461 1461  )))
1462 1462  
1463 1463  (((
1464 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1475 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1465 1465  )))
1466 1466  
1467 1467  (((
... ... @@ -1469,7 +1469,7 @@
1469 1469  )))
1470 1470  
1471 1471  (((
1472 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1483 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1473 1473  )))
1474 1474  
1475 1475  (((
... ... @@ -1477,22 +1477,22 @@
1477 1477  )))
1478 1478  
1479 1479  (((
1480 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1491 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1481 1481  )))
1482 1482  
1483 1483  (((
1484 -This type of sensor will output a high signal (example 24v) when active.
1495 +This type of sensor outputs a high signal (e.g., 24V) when active.
1485 1485  )))
1486 1486  
1487 1487  * (((
1488 -Connect sensor's output to DI1+
1499 +Connect the sensor's output to DI1+
1489 1489  )))
1490 1490  * (((
1491 -Connect sensor's GND DI1-.
1502 +Connect the sensor's GND DI1-.
1492 1492  )))
1493 1493  
1494 1494  (((
1495 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1506 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1496 1496  )))
1497 1497  
1498 1498  (((
... ... @@ -1500,7 +1500,7 @@
1500 1500  )))
1501 1501  
1502 1502  (((
1503 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1514 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1504 1504  )))
1505 1505  
1506 1506  (((
... ... @@ -1508,22 +1508,22 @@
1508 1508  )))
1509 1509  
1510 1510  (((
1511 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1522 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1512 1512  )))
1513 1513  
1514 1514  (((
1515 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1526 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1516 1516  )))
1517 1517  
1518 1518  * (((
1519 -Connect sensor's output to DI1+ with a serial 50K resistor
1530 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1520 1520  )))
1521 1521  * (((
1522 -Connect sensor's GND DI1-.
1533 +Connect the sensor's GND DI1-.
1523 1523  )))
1524 1524  
1525 1525  (((
1526 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1537 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1527 1527  )))
1528 1528  
1529 1529  (((
... ... @@ -1531,24 +1531,37 @@
1531 1531  )))
1532 1532  
1533 1533  (((
1534 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1545 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1535 1535  )))
1536 1536  
1537 1537  
1538 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1549 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1539 1539  
1551 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1540 1540  
1541 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1553 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1542 1542  
1543 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1555 +[[image:image-20230616235145-1.png]]
1544 1544  
1557 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1558 +
1559 +[[image:image-20240219115718-1.png]]
1560 +
1561 +
1562 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1563 +
1564 +
1565 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1566 +
1567 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1568 +
1545 1545  [[image:1653357531600-905.png]]
1546 1546  
1547 1547  
1548 -=== 3.6.4 Analog Input Interface ===
1572 +=== 3.6.4 Analog Input Interfaces ===
1549 1549  
1550 1550  
1551 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1575 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1552 1552  
1553 1553  
1554 1554  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1555,20 +1555,19 @@
1555 1555  
1556 1556  [[image:1653357592296-182.png]]
1557 1557  
1558 -Example to connect a 4~~20mA sensor
1582 +Example: Connecting a 4~~20mA sensor
1559 1559  
1560 -We take the wind speed sensor as an example for reference only.
1584 +We will use the wind speed sensor as an example for reference only.
1561 1561  
1562 1562  
1563 1563  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1564 1564  
1565 -(% style="color:red" %)**Red:  12~~24v**
1589 +(% style="color:red" %)**Red:  12~~24V**
1566 1566  
1567 1567  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1568 1568  
1569 1569  **Black:  GND**
1570 1570  
1571 -
1572 1572  **Connection diagram:**
1573 1573  
1574 1574  [[image:1653357640609-758.png]]
... ... @@ -1576,13 +1576,29 @@
1576 1576  [[image:1653357648330-671.png||height="155" width="733"]]
1577 1577  
1578 1578  
1602 +Example: Connecting to a regulated power supply to measure voltage
1603 +
1604 +[[image:image-20230608101532-1.png||height="606" width="447"]]
1605 +
1606 +[[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1607 +
1608 +[[image:image-20230608101722-3.png||height="102" width="1139"]]
1609 +
1610 +
1611 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1612 +
1613 +(% style="color:red" %)**Red:  12~~24v**
1614 +
1615 +**Black:  GND**
1616 +
1617 +
1579 1579  === 3.6.5 Relay Output ===
1580 1580  
1581 1581  
1582 1582  (((
1583 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1622 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1584 1584  
1585 -**Note**: RO pins go to Open(NO) when device is power off.
1624 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1586 1586  )))
1587 1587  
1588 1588  [[image:image-20220524100215-9.png]]
... ... @@ -1594,20 +1594,41 @@
1594 1594  == 3.7 LEDs Indicators ==
1595 1595  
1596 1596  
1597 -[[image:image-20220524100748-11.png]]
1636 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1637 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1638 +|**PWR**|Always on if there is power
1639 +|**TX**|(((
1640 +(((
1641 +Device boot: TX blinks 5 times.
1642 +)))
1598 1598  
1644 +(((
1645 +Successful join network: TX ON for 5 seconds.
1646 +)))
1599 1599  
1600 -= 4. Use AT Command =
1648 +(((
1649 +Transmit a LoRa packet: TX blinks once
1650 +)))
1651 +)))
1652 +|**RX**|RX blinks once when receiving a packet.
1653 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1654 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1655 +|**DI1**|(((
1656 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1657 +)))
1658 +|**DI2**|(((
1659 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1660 +)))
1661 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1662 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1601 1601  
1602 -== 4.1 Access AT Command ==
1664 += 4. Using AT Command =
1603 1603  
1666 +== 4.1 Connecting the LT-22222-L to a computer ==
1604 1604  
1605 -(((
1606 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1607 -)))
1608 1608  
1609 1609  (((
1610 -
1670 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1611 1611  )))
1612 1612  
1613 1613  [[image:1653358238933-385.png]]
... ... @@ -1614,7 +1614,7 @@
1614 1614  
1615 1615  
1616 1616  (((
1617 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1677 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1618 1618  )))
1619 1619  
1620 1620  [[image:1653358355238-883.png]]
... ... @@ -1621,10 +1621,12 @@
1621 1621  
1622 1622  
1623 1623  (((
1624 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1684 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1625 1625  )))
1626 1626  
1627 1627  (((
1688 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1689 +
1628 1628  AT+<CMD>?        : Help on <CMD>
1629 1629  )))
1630 1630  
... ... @@ -1928,8 +1928,6 @@
1928 1928  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1929 1929  
1930 1930  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1931 -
1932 -
1933 1933  )))
1934 1934  
1935 1935  (((
... ... @@ -1936,9 +1936,6 @@
1936 1936  [[image:1653359097980-169.png||height="188" width="729"]]
1937 1937  )))
1938 1938  
1939 -(((
1940 -
1941 -)))
1942 1942  
1943 1943  === 4.2.3 Change to Class A ===
1944 1944  
... ... @@ -1946,17 +1946,18 @@
1946 1946  (((
1947 1947  (% style="color:blue" %)**If sensor JOINED:**
1948 1948  
1949 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
1950 -ATZ**
2006 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2007 +
2008 +(% style="background-color:#dcdcdc" %)**ATZ**
1951 1951  )))
1952 1952  
1953 1953  
1954 1954  = 5. Case Study =
1955 1955  
1956 -== 5.1 Counting how many objects pass in Flow Line ==
2014 +== 5.1 Counting how many objects pass through the flow Line ==
1957 1957  
1958 1958  
1959 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2017 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1960 1960  
1961 1961  
1962 1962  = 6. FAQ =
... ... @@ -1964,26 +1964,26 @@
1964 1964  == 6.1 How to upgrade the image? ==
1965 1965  
1966 1966  
1967 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2025 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
1968 1968  
1969 -* Support new features
1970 -* For bug fix
2027 +* Support new features.
2028 +* Fix bugs.
1971 1971  * Change LoRaWAN bands.
1972 1972  
1973 -Below shows the hardware connection for how to upload an image to the LT:
2031 +Below is the hardware connection setup for uploading an image to the LT:
1974 1974  
1975 1975  [[image:1653359603330-121.png]]
1976 1976  
1977 1977  
1978 1978  (((
1979 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1980 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1981 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2037 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2038 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2039 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
1982 1982  
1983 1983  
1984 1984  (((
1985 1985  (% style="color:blue" %)**For LT-22222-L**(%%):
1986 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2044 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
1987 1987  )))
1988 1988  
1989 1989  
... ... @@ -1998,9 +1998,8 @@
1998 1998  [[image:image-20220524104033-15.png]]
1999 1999  
2000 2000  
2001 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2059 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2002 2002  
2003 -
2004 2004  [[image:1653360054704-518.png||height="186" width="745"]]
2005 2005  
2006 2006  
... ... @@ -2013,13 +2013,13 @@
2013 2013  )))
2014 2014  
2015 2015  (((
2016 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2073 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2017 2017  )))
2018 2018  
2019 2019  (((
2020 2020  
2021 2021  
2022 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2079 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2023 2023  
2024 2024  
2025 2025  )))
... ... @@ -2026,13 +2026,13 @@
2026 2026  
2027 2027  (((
2028 2028  (((
2029 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2086 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2030 2030  )))
2031 2031  )))
2032 2032  
2033 2033  (((
2034 2034  (((
2035 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2092 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2036 2036  
2037 2037  
2038 2038  )))
... ... @@ -2039,7 +2039,7 @@
2039 2039  )))
2040 2040  
2041 2041  (((
2042 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2099 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2043 2043  
2044 2044  
2045 2045  )))
... ... @@ -2064,13 +2064,21 @@
2064 2064  
2065 2065  (((
2066 2066  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2124 +
2067 2067  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2126 +
2068 2068  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2128 +
2069 2069  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2130 +
2070 2070  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2132 +
2071 2071  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2134 +
2072 2072  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2136 +
2073 2073  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2138 +
2074 2074  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2075 2075  )))
2076 2076  
... ... @@ -2082,23 +2082,29 @@
2082 2082  [[image:1653360498588-932.png||height="485" width="726"]]
2083 2083  
2084 2084  
2085 -== 6.4 Can I see counting event in Serial? ==
2150 +== 6.4 How to change the uplink interval? ==
2086 2086  
2087 2087  
2153 +Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2154 +
2155 +
2156 +== 6.5 Can I see the counting event in Serial? ==
2157 +
2158 +
2088 2088  (((
2089 2089  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2090 2090  
2091 2091  
2092 -== 6.5 Can i use point to point communication for LT-22222-L? ==
2163 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2093 2093  
2094 2094  
2095 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2166 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2096 2096  
2097 2097  
2098 2098  )))
2099 2099  
2100 2100  (((
2101 -== 6.Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2172 +== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2102 2102  
2103 2103  
2104 2104  If the device is not shut down, but directly powered off.
... ... @@ -2110,7 +2110,7 @@
2110 2110  After restart, the status before power failure will be read from flash.
2111 2111  
2112 2112  
2113 -== 6.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2184 +== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2114 2114  
2115 2115  
2116 2116  LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
... ... @@ -2119,12 +2119,18 @@
2119 2119  [[image:image-20221006170630-1.png||height="610" width="945"]]
2120 2120  
2121 2121  
2122 -== 6.Can LT22222-L save RO state? ==
2193 +== 6.9 Can LT22222-L save RO state? ==
2123 2123  
2124 2124  
2125 2125  Firmware version needs to be no less than 1.6.0.
2126 2126  
2127 2127  
2199 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2200 +
2201 +
2202 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2203 +
2204 +
2128 2128  = 7. Trouble Shooting =
2129 2129  )))
2130 2130  
... ... @@ -2165,6 +2165,13 @@
2165 2165  )))
2166 2166  
2167 2167  
2245 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2246 +
2247 +
2248 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2249 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2250 +
2251 +
2168 2168  = 8. Order Info =
2169 2169  
2170 2170  
... ... @@ -2206,7 +2206,7 @@
2206 2206  Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2207 2207  )))
2208 2208  * (((
2209 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2293 +Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2210 2210  
2211 2211  
2212 2212  
... ... @@ -2218,5 +2218,3 @@
2218 2218  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2219 2219  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2220 2220  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2221 -
2222 -
image-20230425173351-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +207.8 KB
Content
image-20230425173427-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +150.1 KB
Content
image-20230426161322-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +15.2 KB
Content
image-20230608101532-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +563.0 KB
Content
image-20230608101608-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +287.8 KB
Content
image-20230608101722-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +25.4 KB
Content
image-20230616235145-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content