Last modified by Mengting Qiu on 2025/06/04 18:42

From version 101.1
edited by Bei Jinggeng
on 2022/10/08 09:59
Change comment: There is no comment for this version
To version 166.1
edited by Dilisi S
on 2024/11/07 05:43
Change comment: more edits

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,37 +13,32 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
18 18  
19 -== 1.1 What is LT Series I/O Controller ==
20 -
21 21  (((
22 -
25 +(((
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
23 23  
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
25 25  )))
26 -
27 -(((
28 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 29  )))
30 30  
31 31  (((
32 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
33 33  )))
34 34  
35 -(((
36 -The use environment includes:
37 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
38 38  
39 39  (((
40 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 -)))
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42 42  
43 -(((
44 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
45 45  
46 -
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
47 47  )))
48 48  
49 49  (((
... ... @@ -52,142 +52,59 @@
52 52  
53 53  )))
54 54  
54 +== 1.2 Specifications ==
55 55  
56 -== 1.2  Specifications ==
57 -
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072CZT6 MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -
174 -)))
175 -
176 176  == 1.3 Features ==
177 177  
178 -
179 179  * LoRaWAN Class A & Class C protocol
180 180  * Optional Customized LoRa Protocol
181 181  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
182 182  * AT Commands to change parameters
183 -* Remote configure parameters via LoRa Downlink
101 +* Remotely configure parameters via LoRaWAN Downlink
184 184  * Firmware upgradable via program port
185 185  * Counting
186 186  
105 +== 1.4 Applications ==
187 187  
188 -== 1.4  Applications ==
189 -
190 -
191 191  * Smart Buildings & Home Automation
192 192  * Logistics and Supply Chain Management
193 193  * Smart Metering
... ... @@ -195,13 +195,15 @@
195 195  * Smart Cities
196 196  * Smart Factory
197 197  
198 -
199 199  == 1.5 Hardware Variants ==
200 200  
201 201  
202 -(% border="1" style="background-color:#f7faff; width:500px" %)
203 -|(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
204 -|(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
117 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 +|(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 +(% style="text-align:center" %)
121 +[[image:image-20230424115112-1.png||height="106" width="58"]]
122 +)))|(% style="width:334px" %)(((
205 205  * 2 x Digital Input (Bi-direction)
206 206  * 2 x Digital Output
207 207  * 2 x Relay Output (5A@250VAC / 30VDC)
... ... @@ -210,129 +210,192 @@
210 210  * 1 x Counting Port
211 211  )))
212 212  
131 += 2. Assembling the Device =
213 213  
214 -= 2. Power ON Device =
133 +== 2.1 What is included in the package? ==
215 215  
135 +The package includes the following items:
216 216  
217 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
218 218  
219 -(((
220 -PWR will on when device is properly powered.
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
221 221  
222 -
223 -)))
144 +== 2.2 Terminals ==
224 224  
225 -[[image:1653297104069-180.png]]
146 +Upper screw terminal block (from left to right):
226 226  
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
227 227  
157 +Lower screw terminal block (from left to right):
228 228  
229 -= 3. Operation Mode =
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
230 230  
172 +== 2.3 Powering the LT-22222-L ==
231 231  
232 -== 3.1 How it works? ==
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power sourceConnect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
233 233  
234 234  
235 -(((
236 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
237 -)))
177 +[[image:1653297104069-180.png]]
238 238  
239 -(((
240 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
241 -)))
242 242  
180 += 3. Operation Mode =
243 243  
182 +== 3.1 How does it work? ==
244 244  
245 -== 3.2 Example to join LoRaWAN network ==
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
246 246  
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
247 247  
248 -(((
249 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
250 250  
251 -
252 -)))
190 +== 3.2 Registering with a LoRaWAN network server ==
253 253  
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
193 +
254 254  [[image:image-20220523172350-1.png||height="266" width="864"]]
255 255  
196 +=== 3.2.1 Prerequisites ===
256 256  
257 -(((
258 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
259 259  
260 -
261 -)))
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
262 262  
263 -(((
264 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
265 -)))
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
266 266  
267 -(((
268 -Each LT is shipped with a sticker with the default device EUI as below:
269 -)))
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
270 270  
271 -[[image:1653297924498-393.png]]
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
272 272  
210 +==== Using the LoRaWAN Device Repository: ====
273 273  
274 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
275 275  
276 -Add APP EUI in the application.
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
277 277  
278 -[[image:1653297955910-247.png||height="321" width="716"]]
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
279 279  
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
280 280  
281 -Add APP KEY and DEV EUI
229 +==== Entering device information manually: ====
282 282  
283 -[[image:1653298023685-319.png]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
284 284  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
285 285  
286 286  
287 -(((
288 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
289 -)))
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
290 290  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250 +
251 +
252 +==== Joining ====
253 +
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
291 291  [[image:1653298044601-602.png||height="405" width="709"]]
292 292  
293 293  
259 +== 3.3 Work Modes and their Uplink Payload formats ==
294 294  
295 -== 3.3 Uplink Payload ==
296 296  
262 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
297 297  
298 -There are five working modes + one interrupt mode on LT for different type application:
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
299 299  
300 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
301 301  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267 +
302 302  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269 +
303 303  * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271 +
304 304  * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273 +
305 305  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
306 306  
307 -
308 308  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
309 309  
278 +(((
279 +The uplink payload is 11 bytes long. Uplink messages are sent over LoRaWAN FPort 2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
310 310  
311 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
281 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
282 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
283 +|Value|(((
284 +AVI1 voltage
285 +)))|(((
286 +AVI2 voltage
287 +)))|(((
288 +ACI1 Current
289 +)))|(((
290 +ACI2 Current
291 +)))|**DIDORO***|(((
292 +Reserve
293 +)))|MOD
294 +)))
312 312  
313 -[[image:image-20220523174024-3.png]]
314 -
315 315  (((
316 -
297 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
317 317  
318 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
299 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
300 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
301 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
319 319  )))
320 320  
321 -[[image:image-20220523174254-4.png]]
304 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
305 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
306 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
322 322  
323 -* RO is for relay. ROx=1 : close,ROx=0 always open.
324 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
325 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
308 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
326 326  
327 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
310 +For example, if the payload is: [[image:image-20220523175847-2.png]]
328 328  
329 -For example if payload is: [[image:image-20220523175847-2.png]]
330 330  
313 +**The interface values can be calculated as follows:  **
331 331  
332 -**The value for the interface is **
315 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
333 333  
334 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
335 -
336 336  AVI2 channel voltage is 0x04AC/1000=1.196V
337 337  
338 338  ACI1 channel current is 0x1310/1000=4.880mA
... ... @@ -339,63 +339,66 @@
339 339  
340 340  ACI2 channel current is 0x1300/1000=4.864mA
341 341  
342 -The last byte 0xAA= 10101010(B) means
323 +The last byte 0xAA= **10101010**(b) means,
343 343  
344 -* [1] RO1 relay channel is close and the RO1 LED is ON.
345 -* [0] RO2 relay channel is open and RO2 LED is OFF;
325 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
326 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
327 +* [1] DI3 - not used for LT-22222-L.
328 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
329 +* [1] DI1 channel input state:
330 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
331 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
332 +** DI1 LED is ON in both cases.
333 +* [0] DO3 - not used for LT-22222-L.
334 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
335 +* [0] DO1 channel output state:
336 +** DO1 is FLOATING when there is no load between DO1 and V+.
337 +** DO1 is HIGH when there is a load between DO1 and V+.
338 +** DO1 LED is OFF in both cases.
346 346  
347 -**LT22222-L:**
348 -
349 -* [1] DI2 channel is high input and DI2 LED is ON;
350 -* [0] DI1 channel is low input;
351 -
352 -* [0] DO3 channel output state
353 -** DO3 is float in case no load between DO3 and V+.;
354 -** DO3 is high in case there is load between DO3 and V+.
355 -** DO3 LED is off in both case
356 -* [1] DO2 channel output is low and DO2 LED is ON.
357 -* [0] DO1 channel output state
358 -** DO1 is float in case no load between DO1 and V+.;
359 -** DO1 is high in case there is load between DO1 and V+.
360 -** DO1 LED is off in both case
361 -
362 -
363 -
364 364  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
365 365  
366 366  
367 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
368 -
369 369  (((
370 -Total : 11 bytes payload
344 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
371 371  )))
372 372  
373 -[[image:image-20220523180452-3.png]]
347 +(((
348 +The uplink payload is 11 bytes long.
374 374  
350 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
351 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
352 +|Value|COUNT1|COUNT2 |DIDORO*|(((
353 +Reserve
354 +)))|MOD
355 +)))
375 375  
376 376  (((
377 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
378 -)))
358 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
379 379  
380 -[[image:image-20220523180506-4.png]]
360 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
361 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
362 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
381 381  
382 -* RO is for relay. ROx=1 : close,ROx=0 always open.
383 -* FIRST: Indicate this is the first packet after join network.
384 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
385 -
386 -(((
387 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
364 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
388 388  )))
389 389  
367 +* FIRST: Indicates that this is the first packet after joining the network.
368 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
369 +
390 390  (((
371 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
372 +
391 391  
374 +)))
392 392  
393 -**To use counting mode, please run:**
376 +(((
377 +**To activate this mode, run the following AT commands:**
394 394  )))
395 395  
380 +(((
396 396  (% class="box infomessage" %)
397 397  (((
398 -(((
399 399  **AT+MOD=2**
400 400  
401 401  **ATZ**
... ... @@ -406,60 +406,62 @@
406 406  
407 407  
408 408  (% style="color:#4f81bd" %)**AT Commands for counting:**
409 -
410 -
411 411  )))
412 412  
413 413  (((
414 414  **For LT22222-L:**
415 415  
398 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
416 416  
417 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
400 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
418 418  
419 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
402 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
420 420  
421 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
404 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
422 422  
423 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
406 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
424 424  
425 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
426 -
427 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
408 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
428 428  )))
429 429  
430 430  
431 -
432 432  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
433 433  
434 434  
435 -**LT22222-L**: This mode the DI1 is used as a counting pin.
415 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
436 436  
437 -[[image:image-20220523181246-5.png]]
417 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
418 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
419 +|Value|COUNT1|(((
420 +ACI1 Current
421 +)))|(((
422 +ACI2 Current
423 +)))|DIDORO*|Reserve|MOD
438 438  
439 439  (((
440 -
426 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
441 441  
442 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
428 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
429 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
430 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
443 443  )))
444 444  
445 -[[image:image-20220523181301-6.png]]
433 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
434 +* FIRST: Indicates that this is the first packet after joining the network.
435 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
446 446  
447 -* RO is for relay. ROx=1 : close,ROx=0 always open.
448 -* FIRST: Indicate this is the first packet after join network.
449 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
450 -
451 451  (((
452 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
438 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
453 453  )))
454 454  
455 455  
456 456  (((
457 -**To use counting mode, please run:**
443 +**To activate this mode, run the following AT commands:**
458 458  )))
459 459  
446 +(((
460 460  (% class="box infomessage" %)
461 461  (((
462 -(((
463 463  **AT+MOD=3**
464 464  
465 465  **ATZ**
... ... @@ -467,44 +467,54 @@
467 467  )))
468 468  
469 469  (((
470 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
456 +AT Commands for counting:
457 +
458 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
471 471  )))
472 472  
473 473  
474 -
475 475  === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
476 476  
477 477  
478 -**LT22222-L**: This mode the DI1 is used as a counting pin.
479 -
480 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
481 -
482 -[[image:image-20220523181903-8.png]]
483 -
484 -
485 485  (((
486 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
466 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
487 487  )))
488 488  
489 -[[image:image-20220523181727-7.png]]
469 +(((
470 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
490 490  
491 -* RO is for relay. ROx=1 : close,ROx=0 always open.
492 -* FIRST: Indicate this is the first packet after join network.
493 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
472 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
473 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
474 +|Value|COUNT1|AVI1 Counting|DIDORO*|(((
475 +Reserve
476 +)))|MOD
477 +)))
494 494  
495 495  (((
496 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
480 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
481 +
482 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
483 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
484 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
497 497  )))
498 498  
487 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
488 +* FIRST: Indicates that this is the first packet after joining the network.
489 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
490 +
499 499  (((
492 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
493 +
500 500  
495 +)))
501 501  
502 -**To use this mode, please run:**
497 +(((
498 +**To activate this mode, run the following AT commands:**
503 503  )))
504 504  
501 +(((
505 505  (% class="box infomessage" %)
506 506  (((
507 -(((
508 508  **AT+MOD=4**
509 509  
510 510  **ATZ**
... ... @@ -511,61 +511,65 @@
511 511  )))
512 512  )))
513 513  
514 -
515 -
516 516  (((
517 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
511 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
518 518  )))
519 519  
520 520  (((
521 -
515 +**In addition to that, below are the commands for AVI1 Counting:**
522 522  
523 -**Plus below command for AVI1 Counting:**
517 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
524 524  
525 -
526 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
527 -
528 528  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
529 529  
530 530  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
531 531  
532 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
523 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
533 533  )))
534 534  
535 535  
536 -
537 537  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
538 538  
539 539  
540 -**LT22222-L**: This mode the DI1 is used as a counting pin.
530 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
541 541  
542 -[[image:image-20220523182334-9.png]]
532 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
533 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
534 +|Value|(((
535 +AVI1 voltage
536 +)))|(((
537 +AVI2 voltage
538 +)))|(((
539 +ACI1 Current
540 +)))|COUNT1|DIDORO*|(((
541 +Reserve
542 +)))|MOD
543 543  
544 544  (((
545 -
545 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
546 546  
547 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
547 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
548 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
549 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
548 548  )))
549 549  
550 -* RO is for relay. ROx=1 : closeROx=0 always open.
551 -* FIRST: Indicate this is the first packet after join network.
552 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
553 +* FIRST: Indicates that this is the first packet after joining the network.
552 552  * (((
553 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
555 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
554 554  )))
555 555  
556 556  (((
557 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
559 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
558 558  )))
559 559  
560 560  (((
561 -
562 -
563 -**To use this mode, please run:**
563 +**To activate this mode, run the following AT commands:**
564 564  )))
565 565  
566 +(((
566 566  (% class="box infomessage" %)
567 567  (((
568 -(((
569 569  **AT+MOD=5**
570 570  
571 571  **ATZ**
... ... @@ -573,58 +573,53 @@
573 573  )))
574 574  
575 575  (((
576 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
576 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
577 577  )))
578 578  
579 579  
580 -
581 581  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
582 582  
583 583  
584 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
583 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
585 585  
586 -For example, if user has configured below commands:
585 +For example, if you configured the following commands:
587 587  
588 588  * **AT+MOD=1 ** **~-~->**  The normal working mode
589 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
588 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
590 590  
591 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
590 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
592 592  
593 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
594 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
592 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
593 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
595 595  
596 -
597 597  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
598 598  
597 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
599 599  
600 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
601 -
602 602  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
603 603  
604 604  
605 605  **Example:**
606 606  
607 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
604 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
608 608  
609 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
606 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
610 610  
611 611  
609 +(% style="color:#4f81bd" %)**Trigger based on current**:
612 612  
613 -(% style="color:#4f81bd" %)**Trigger base on current**:
614 -
615 615  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
616 616  
617 617  
618 618  **Example:**
619 619  
620 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
616 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
621 621  
622 622  
619 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
623 623  
624 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
621 +DI status triggers Flag.
625 625  
626 -DI status trigger Flag.
627 -
628 628  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
629 629  
630 630  
... ... @@ -633,73 +633,116 @@
633 633  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
634 634  
635 635  
631 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
636 636  
637 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
638 -
639 639  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
640 640  
641 641  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
642 642  
643 - AA: Code for this downlink Command:
637 + AA: Type Code for this downlink Command:
644 644  
645 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
639 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
646 646  
647 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
641 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
648 648  
649 - yy2 yy2: AC1 or AV1 high limit.
643 + yy2 yy2: AC1 or AV1 HIGH limit.
650 650  
651 - yy3 yy3: AC2 or AV2 low limit.
645 + yy3 yy3: AC2 or AV2 LOW limit.
652 652  
653 - Yy4 yy4: AC2 or AV2 high limit.
647 + Yy4 yy4: AC2 or AV2 HIGH limit.
654 654  
655 655  
656 -**Example1**: AA 00 13 88 00 00 00 00 00 00
650 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
657 657  
658 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
652 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
659 659  
660 660  
661 -**Example2**: AA 02 01 00
655 +**Example 2**: AA 02 01 00
662 662  
663 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
657 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
664 664  
665 665  
666 -
667 667  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
668 668  
669 -MOD6 Payload : total 11 bytes payload
662 +MOD6 Payload: total of 11 bytes
670 670  
671 -[[image:image-20220524085923-1.png]]
664 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
665 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
666 +|Value|(((
667 +TRI_A FLAG
668 +)))|(((
669 +TRI_A Status
670 +)))|(((
671 +TRI_DI FLAG+STA
672 +)))|Reserve|Enable/Disable MOD6|(((
673 +MOD(6)
674 +)))
672 672  
676 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
673 673  
674 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
678 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
679 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
680 +|(((
681 +AV1_LOW
682 +)))|(((
683 +AV1_HIGH
684 +)))|(((
685 +AV2_LOW
686 +)))|(((
687 +AV2_HIGH
688 +)))|(((
689 +AC1_LOW
690 +)))|(((
691 +AC1_HIGH
692 +)))|(((
693 +AC2_LOW
694 +)))|(((
695 +AC2_HIGH
696 +)))
675 675  
676 -[[image:image-20220524090106-2.png]]
698 +* Each bit shows if the corresponding trigger has been configured.
677 677  
678 -* Each bits shows if the corresponding trigger has been configured.
679 -
680 680  **Example:**
681 681  
682 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
702 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
683 683  
684 684  
705 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
685 685  
686 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
707 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
708 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
709 +|(((
710 +AV1_LOW
711 +)))|(((
712 +AV1_HIGH
713 +)))|(((
714 +AV2_LOW
715 +)))|(((
716 +AV2_HIGH
717 +)))|(((
718 +AC1_LOW
719 +)))|(((
720 +AC1_HIGH
721 +)))|(((
722 +AC2_LOW
723 +)))|(((
724 +AC2_HIGH
725 +)))
687 687  
688 -[[image:image-20220524090249-3.png]]
727 +* Each bit shows which status has been triggered on this uplink.
689 689  
690 -* Each bits shows which status has been trigger on this uplink.
691 -
692 692  **Example:**
693 693  
694 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
731 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
695 695  
696 696  
697 -
698 698  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
699 699  
700 -[[image:image-20220524090456-4.png]]
736 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
737 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
738 +|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
701 701  
702 -* Each bits shows which status has been trigger on this uplink.
740 +* Each bits shows which status has been triggered on this uplink.
703 703  
704 704  **Example:**
705 705  
... ... @@ -708,7 +708,6 @@
708 708  00000101: Means both DI1 and DI2 trigger are enabled.
709 709  
710 710  
711 -
712 712  (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
713 713  
714 714  Downlink command to poll MOD6 status:
... ... @@ -718,266 +718,227 @@
718 718  When device got this command, it will send the MOD6 payload.
719 719  
720 720  
721 -
722 -
723 723  === 3.3.7 Payload Decoder ===
724 724  
725 725  (((
726 726  
727 727  
728 -**Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
763 +**Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
729 729  )))
730 730  
731 731  
767 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
732 732  
733 -== 3.4 ​Configure LT via AT or Downlink ==
734 734  
770 +(((
771 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
772 +)))
735 735  
736 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
737 -
738 738  (((
775 +(((
739 739  There are two kinds of Commands:
740 740  )))
778 +)))
741 741  
742 -* (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
780 +* (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
743 743  
744 -* (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
782 +* (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
745 745  
746 -
747 747  === 3.4.1 Common Commands ===
748 748  
749 749  
787 +(((
750 750  They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
789 +)))
751 751  
752 752  
753 -
754 754  === 3.4.2 Sensor related commands ===
755 755  
756 -
757 757  ==== 3.4.2.1 Set Transmit Interval ====
758 758  
759 759  
760 -Set device uplink interval.
797 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
761 761  
762 -* (% style="color:#037691" %)**AT Command:**
799 +* (% style="color:#037691" %)**AT command:**
763 763  
764 -**AT+TDC=N **
801 +(% style="color:blue" %)**AT+TDC=N**
765 765  
803 +where N is the time in milliseconds.
766 766  
767 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
805 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
768 768  
769 769  
770 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
808 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
771 771  
772 -**0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
810 +(% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
773 773  
774 774  
775 775  
814 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
776 776  
777 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
778 778  
817 +Sets the work mode.
779 779  
780 -Set work mode.
819 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
781 781  
782 -* (% style="color:#037691" %)**AT Command:**
821 +Where N is the work mode.
783 783  
784 -**AT+MOD= **
823 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
785 785  
786 786  
787 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
826 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
788 788  
828 +(% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
789 789  
790 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
791 791  
792 -**0x0A aa    ** ~/~/ Same as AT+MOD=aa
793 793  
794 -
795 -
796 -
797 797  ==== 3.4.2.3 Poll an uplink ====
798 798  
799 799  
800 -* (% style="color:#037691" %)**AT Command:**
835 +Asks the device to send an uplink.
801 801  
802 -There is no AT Command to poll uplink
837 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
803 803  
839 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
804 804  
805 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
841 +(% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
806 806  
807 -**0x08 FF     **~/~/ Poll an uplink
808 -
809 -
810 810  **Example**: 0x08FF, ask device to send an Uplink
811 811  
812 812  
813 813  
847 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
814 814  
815 -==== 3.4.2.4 Enable Trigger Mode ====
816 816  
850 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
817 817  
818 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
852 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
819 819  
820 -* (% style="color:#037691" %)**AT Command:**
854 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
821 821  
822 -**AT+ADDMOD6=1 or 0**
856 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
823 823  
824 -1: Enable Trigger Mode
825 825  
826 -0: Disable Trigger Mode
827 -
828 -
829 829  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
830 830  
831 -**0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
861 +(% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
832 832  
833 833  
834 834  
835 -
836 836  ==== 3.4.2.5 Poll trigger settings ====
837 837  
838 838  
839 -Poll trigger settings,
868 +Polls the trigger settings
840 840  
841 841  * (% style="color:#037691" %)**AT Command:**
842 842  
843 843  There is no AT Command for this feature.
844 844  
845 -
846 846  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
847 847  
848 -**0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
876 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
849 849  
850 850  
851 851  
852 -
853 853  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
854 854  
855 855  
856 -Enable Disable DI1/DI2/DI2 as trigger,
883 +Enable or Disable DI1/DI2/DI2 as trigger,
857 857  
858 -* (% style="color:#037691" %)**AT Command:**
885 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
859 859  
860 -**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
887 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
861 861  
862 862  
863 -**Example:**
864 -
865 -AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
866 -
867 867  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
868 868  
869 -**0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
892 +(% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
870 870  
871 871  
872 872  
873 -
874 874  ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
875 875  
876 876  
877 877  Set DI1 or DI3(for LT-33222-L) trigger.
878 878  
879 -* (% style="color:#037691" %)**AT Command:**
901 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
880 880  
881 -**AT+TRIG1=a,b**
903 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
882 882  
883 -a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
905 +(% style="color:red" %)**b :** (%%)delay timing.
884 884  
885 -b : delay timing.
907 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
886 886  
887 887  
888 -**Example:**
910 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
889 889  
890 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
912 +(% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
891 891  
892 892  
893 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
894 -* **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
895 895  
896 -
897 897  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
898 898  
899 899  
900 -Set DI2 trigger.
919 +Sets DI2 trigger.
901 901  
902 -* (% style="color:#037691" %)**AT Command:**
921 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
903 903  
904 -**AT+TRIG2=a,b**
923 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
905 905  
925 +(% style="color:red" %)**b :** (%%)delay timing.
906 906  
907 -a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
927 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
908 908  
909 -b : delay timing.
910 910  
911 -
912 -**Example:**
913 -
914 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
915 -
916 -
917 917  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
918 918  
919 -**0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
932 +(% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
920 920  
921 921  
922 922  
923 -
924 924  ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
925 925  
926 926  
927 927  Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
928 928  
929 -* (% style="color:#037691" %)**AT Command**
941 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
930 930  
931 -**AT+ACLIM**
932 -
933 -
934 934  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
935 935  
936 -**0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
945 +(% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
937 937  
938 938  
939 939  
940 -
941 941  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
942 942  
943 943  
944 944  Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
945 945  
946 -* (% style="color:#037691" %)**AT Command**
954 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
947 947  
948 -**AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
949 -
950 -
951 951  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
952 952  
953 -**0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
958 +(% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
954 954  
955 955  
956 956  
957 -
958 958  ==== 3.4.2.11 Trigger – Set minimum interval ====
959 959  
960 960  
961 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
965 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
962 962  
963 -* (% style="color:#037691" %)**AT Command**
967 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
964 964  
965 -**AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
966 -
967 -
968 968  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
969 969  
970 -**0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
971 +(% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
971 971  
972 972  (((
973 -
974 -
975 975  (% style="color:red" %)**Note: ATDC setting must be more than 5min**
976 976  )))
977 977  
978 978  
979 979  
980 -
981 981  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
982 982  
983 983  
... ... @@ -987,8 +987,9 @@
987 987  
988 988  
989 989  * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
990 -* **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
991 991  
989 +(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
990 +
992 992  (((
993 993  If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
994 994  )))
... ... @@ -995,10 +995,14 @@
995 995  
996 996  (((
997 997  01: Low,  00: High ,  11: No action
997 +
998 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
999 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1000 +|02  01  00  11|Low|High|No Action
1001 +|02  00  11  01|High|No Action|Low
1002 +|02  11  01  00|No Action|Low|High
998 998  )))
999 999  
1000 -[[image:image-20220524092754-5.png]]
1001 -
1002 1002  (((
1003 1003  (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1004 1004  )))
... ... @@ -1009,7 +1009,6 @@
1009 1009  
1010 1010  
1011 1011  
1012 -
1013 1013  ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1014 1014  
1015 1015  
... ... @@ -1020,7 +1020,7 @@
1020 1020  
1021 1021  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1022 1022  
1023 -**0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1025 +(% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1024 1024  
1025 1025  
1026 1026  This is to control the digital output time of DO pin. Include four bytes:
... ... @@ -1036,23 +1036,37 @@
1036 1036  
1037 1037  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1038 1038  
1039 -[[image:image-20220524093238-6.png]]
1041 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1042 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1043 +|0x01|DO1 set to low
1044 +|0x00|DO1 set to high
1045 +|0x11|DO1 NO Action
1040 1040  
1041 -
1042 1042  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1043 1043  
1044 -[[image:image-20220524093328-7.png]]
1049 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1050 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1051 +|0x01|DO2 set to low
1052 +|0x00|DO2 set to high
1053 +|0x11|DO2 NO Action
1045 1045  
1046 -
1047 1047  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1048 1048  
1049 -[[image:image-20220524093351-8.png]]
1057 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1058 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1059 +|0x01|DO3 set to low
1060 +|0x00|DO3 set to high
1061 +|0x11|DO3 NO Action
1050 1050  
1063 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1051 1051  
1052 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1053 1053  
1054 - Latching time. Unit: ms
1066 +(% style="color:red" %)**Note: **
1055 1055  
1068 + Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1069 +
1070 + Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1071 +
1056 1056  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1057 1057  
1058 1058  
... ... @@ -1076,7 +1076,6 @@
1076 1076  
1077 1077  
1078 1078  
1079 -
1080 1080  ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1081 1081  
1082 1082  
... ... @@ -1087,7 +1087,7 @@
1087 1087  
1088 1088  * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1089 1089  
1090 -**0x03 aa bb     **~/~/ Set RO1/RO2 output
1105 +(% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1091 1091  
1092 1092  
1093 1093  (((
... ... @@ -1095,11 +1095,18 @@
1095 1095  )))
1096 1096  
1097 1097  (((
1098 -01: Close ,  00: Open , 11: No action
1099 -)))
1113 +00: Closed ,  01: Open , 11: No action
1100 1100  
1101 -(((
1102 -[[image:image-20220524093724-9.png]]
1115 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1116 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1117 +|03  00  11|Open|No Action
1118 +|03  01  11|Close|No Action
1119 +|03  11  00|No Action|Open
1120 +|03  11  01|No Action|Close
1121 +|03  00  00|Open|Open
1122 +|03  01  01|Close|Close
1123 +|03  01  00|Close|Open
1124 +|03  00  01|Open|Close
1103 1103  )))
1104 1104  
1105 1105  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
... ... @@ -1106,7 +1106,6 @@
1106 1106  
1107 1107  
1108 1108  
1109 -
1110 1110  ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1111 1111  
1112 1112  
... ... @@ -1117,7 +1117,7 @@
1117 1117  
1118 1118  * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1119 1119  
1120 -**0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1141 +(% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1121 1121  
1122 1122  
1123 1123  This is to control the relay output time of relay. Include four bytes:
... ... @@ -1138,12 +1138,20 @@
1138 1138  
1139 1139  (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1140 1140  
1162 +
1163 +(% style="color:red" %)**Note:**
1164 +
1165 + Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1166 +
1167 + Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1168 +
1169 +
1141 1141  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1142 1142  
1143 1143  
1144 1144  **Example payload:**
1145 1145  
1146 -**~1. 05 01 11 07 D**
1175 +**~1. 05 01 11 07 D0**
1147 1147  
1148 1148  Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1149 1149  
... ... @@ -1166,163 +1166,142 @@
1166 1166  
1167 1167  When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1168 1168  
1169 -* (% style="color:#037691" %)**AT Command:**
1198 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1170 1170  
1171 -**AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1172 -
1173 -
1174 1174  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1175 1175  
1176 -**0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1202 +(% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1177 1177  
1178 1178  
1179 1179  
1180 -
1181 1181  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1182 1182  
1183 1183  
1184 -* (% style="color:#037691" %)**AT Command:**
1209 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1185 1185  
1186 -**AT+SETCNT=aa,(bb cc dd ee) **
1211 +(% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1187 1187  
1188 -aa: 1: Set count1,
1213 +(% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1189 1189  
1190 -2: Set count2,
1191 1191  
1192 -3: Set AV1 count
1193 -
1194 -Bb cc dd ee: number to be set
1195 -
1196 -
1197 1197  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1198 1198  
1199 -**0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1218 +(% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1200 1200  
1201 1201  
1202 1202  
1203 -
1204 1204  ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1205 1205  
1206 1206  
1207 1207  Clear counting for counting mode
1208 1208  
1209 -* (% style="color:#037691" %)**AT Command:**
1227 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1210 1210  
1211 -**AT+CLRCOUNT ** ~/~/ clear all counting
1212 -
1213 -
1214 1214  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1215 1215  
1216 -**0x A6 01    ** ~/~/ clear all counting
1231 +(% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1217 1217  
1218 1218  
1219 1219  
1235 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1220 1220  
1221 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1222 1222  
1223 -
1224 1224  * (% style="color:#037691" %)**AT Command:**
1225 1225  
1226 -**AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1240 +(% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1227 1227  
1228 1228  
1229 1229  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1230 1230  
1231 -**0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1245 +(% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1232 1232  
1233 1233  (((
1234 1234  range: aa bb cc:0 to 16777215,  (unit:second)
1249 +)))
1235 1235  
1236 1236  
1237 1237  
1238 -
1239 -)))
1253 +==== 3.4.2.20 Reset save RO DO state ====
1240 1240  
1241 -==== 3.4.2.20 Reset save DR DO state ====
1242 1242  
1243 -
1244 1244  * (% style="color:#037691" %)**AT Command:**
1245 1245  
1246 -**AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1258 +(% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1247 1247  
1248 -**AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1260 +(% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1249 1249  
1250 1250  
1251 1251  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1252 1252  
1253 -**0x AD aa      **~/~/ same as AT+RODORET =aa
1265 +(% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1254 1254  
1255 -(((
1256 -
1257 1257  
1258 1258  
1259 -
1260 1260  ==== 3.4.2.21 Encrypted payload ====
1261 1261  
1262 1262  
1263 1263  * (% style="color:#037691" %)**AT Command:**
1264 1264  
1265 -**AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1274 +(% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1266 1266  
1267 -**AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1276 +(% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1268 1268  
1269 1269  
1270 1270  
1271 -
1272 1272  ==== 3.4.2.22 Get sensor value ====
1273 1273  
1274 1274  
1275 1275  * (% style="color:#037691" %)**AT Command:**
1276 1276  
1277 -**AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1285 +(% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1278 1278  
1279 -**AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1287 +(% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1280 1280  
1281 1281  
1282 1282  
1283 -
1284 1284  ==== 3.4.2.23 Resets the downlink packet count ====
1285 1285  
1286 1286  
1287 1287  * (% style="color:#037691" %)**AT Command:**
1288 1288  
1289 -**AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1296 +(% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1290 1290  
1291 -**AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1298 +(% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1292 1292  
1293 1293  
1294 1294  
1295 -
1296 1296  ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1297 1297  
1298 1298  
1299 1299  * (% style="color:#037691" %)**AT Command:**
1300 1300  
1301 - **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1307 +(% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1302 1302  
1303 - **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1309 +(% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1304 1304  
1305 1305  
1306 1306  * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1307 1307  
1308 -**0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1314 +(% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1309 1309  
1310 1310  
1311 1311  
1312 -
1313 1313  ==== 3.4.2.25 Copy downlink to uplink ====
1314 1314  
1315 1315  
1316 1316  * (% style="color:#037691" %)**AT Command**(%%)**:**
1317 1317  
1318 - **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1323 +(% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1319 1319  
1320 1320  Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1321 1321  
1327 +
1322 1322  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1323 1323  
1324 1324  For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1325 1325  
1332 +
1333 +
1326 1326  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1327 1327  
1328 1328  For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
... ... @@ -1335,7 +1335,7 @@
1335 1335  * (((
1336 1336  (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1337 1337  
1338 -**26 01  ** ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1346 +(% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1339 1339  
1340 1340  
1341 1341  )))
... ... @@ -1345,81 +1345,91 @@
1345 1345  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1346 1346  
1347 1347  
1348 -
1349 -)))
1356 +== 3.5 Integrating with ThingsEye.io ==
1350 1350  
1351 -== 3.5 Integrate with Mydevice ==
1358 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1352 1352  
1360 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1353 1353  
1354 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1362 +* Go to your Application and select MQTT under Integrations.
1363 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1364 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1355 1355  
1356 -(((
1357 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1358 -)))
1366 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1359 1359  
1360 -(((
1361 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1368 +=== 3.5.2 Configuring ThingsEye.io ===
1362 1362  
1363 -
1364 -)))
1370 +* Login to your thingsEye.io account.
1371 +* Under the Integrations center, click Integrations.
1372 +* Click the Add integration button (the button with the + symbol).
1365 1365  
1366 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1374 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1367 1367  
1368 1368  
1377 +On the Add integration page configure the following:
1369 1369  
1370 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1379 +Basic settings:
1371 1371  
1381 +* Select The Things Stack Community from the Integration type list.
1382 +* Enter a suitable name for your integration in the Name box or keep the default name.
1383 +* Click the Next button.
1372 1372  
1373 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1385 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1374 1374  
1375 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1387 +Uplink Data converter:
1376 1376  
1377 -Search under The things network
1389 +* Click the Create New button if it is not selected by default.
1390 +* Click the JavaScript button.
1391 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1392 +* Click the Next button.
1378 1378  
1379 -[[image:1653356838789-523.png||height="337" width="740"]]
1394 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1380 1380  
1396 +Downlink Data converter (this is an optional step):
1381 1381  
1398 +* Click the Create new button if it is not selected by default.
1399 +* Click the JavaScript button.
1400 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1401 +* Click the Next button.
1382 1382  
1383 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1403 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1384 1384  
1385 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1405 +Connection:
1386 1386  
1407 +* Choose Region from the Host type.
1408 +* Enter the cluster of your The Things Stack in the Region textbox.
1409 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1410 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1411 +* Click the Add button.
1387 1387  
1388 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1413 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1389 1389  
1390 1390  
1391 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1416 +Your integration is added to the integrations list and it will display on the Integrations page.
1392 1392  
1418 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1393 1393  
1394 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1395 1395  
1421 +== 3.6 Interface Details ==
1396 1396  
1397 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1398 -
1399 -
1400 -
1401 -== 3.6 Interface Detail ==
1402 -
1403 -
1404 1404  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1405 1405  
1406 1406  
1407 -Support NPN Type sensor
1426 +Support NPN-type sensor
1408 1408  
1409 1409  [[image:1653356991268-289.png]]
1410 1410  
1411 1411  
1431 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1412 1412  
1413 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1414 1414  
1415 -
1416 1416  (((
1417 -The DI port of LT-22222-L can support NPN or PNP output sensor.
1435 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1418 1418  )))
1419 1419  
1420 1420  (((
1421 1421  (((
1422 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1440 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1423 1423  
1424 1424  
1425 1425  )))
... ... @@ -1429,7 +1429,7 @@
1429 1429  
1430 1430  (((
1431 1431  (((
1432 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1450 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1433 1433  )))
1434 1434  )))
1435 1435  
... ... @@ -1438,22 +1438,22 @@
1438 1438  )))
1439 1439  
1440 1440  (((
1441 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1459 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1442 1442  )))
1443 1443  
1444 1444  (((
1445 -This type of sensor will output a low signal GND when active.
1463 +This type of sensor outputs a low (GND) signal when active.
1446 1446  )))
1447 1447  
1448 1448  * (((
1449 -Connect sensor's output to DI1-
1467 +Connect the sensor's output to DI1-
1450 1450  )))
1451 1451  * (((
1452 -Connect sensor's VCC to DI1+.
1470 +Connect the sensor's VCC to DI1+.
1453 1453  )))
1454 1454  
1455 1455  (((
1456 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1474 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1457 1457  )))
1458 1458  
1459 1459  (((
... ... @@ -1461,32 +1461,30 @@
1461 1461  )))
1462 1462  
1463 1463  (((
1464 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1482 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1465 1465  )))
1466 1466  
1467 1467  (((
1468 1468  
1469 -
1470 -
1471 1471  )))
1472 1472  
1473 1473  (((
1474 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1490 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1475 1475  )))
1476 1476  
1477 1477  (((
1478 -This type of sensor will output a high signal (example 24v) when active.
1494 +This type of sensor outputs a high signal (e.g., 24V) when active.
1479 1479  )))
1480 1480  
1481 1481  * (((
1482 -Connect sensor's output to DI1+
1498 +Connect the sensor's output to DI1+
1483 1483  )))
1484 1484  * (((
1485 -Connect sensor's GND DI1-.
1501 +Connect the sensor's GND DI1-.
1486 1486  )))
1487 1487  
1488 1488  (((
1489 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1505 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1490 1490  )))
1491 1491  
1492 1492  (((
... ... @@ -1494,32 +1494,30 @@
1494 1494  )))
1495 1495  
1496 1496  (((
1497 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1513 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1498 1498  )))
1499 1499  
1500 1500  (((
1501 1501  
1502 -
1503 -
1504 1504  )))
1505 1505  
1506 1506  (((
1507 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1521 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1508 1508  )))
1509 1509  
1510 1510  (((
1511 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1525 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1512 1512  )))
1513 1513  
1514 1514  * (((
1515 -Connect sensor's output to DI1+ with a serial 50K resistor
1529 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1516 1516  )))
1517 1517  * (((
1518 -Connect sensor's GND DI1-.
1532 +Connect the sensor's GND DI1-.
1519 1519  )))
1520 1520  
1521 1521  (((
1522 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1536 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1523 1523  )))
1524 1524  
1525 1525  (((
... ... @@ -1527,44 +1527,56 @@
1527 1527  )))
1528 1528  
1529 1529  (((
1530 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1544 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1531 1531  )))
1532 1532  
1533 1533  
1548 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1534 1534  
1535 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1550 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1536 1536  
1552 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1537 1537  
1538 -NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1554 +[[image:image-20230616235145-1.png]]
1539 1539  
1540 -[[image:1653357531600-905.png]]
1556 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1541 1541  
1558 +[[image:image-20240219115718-1.png]]
1542 1542  
1543 1543  
1544 -=== 3.6.4 Analog Input Interface ===
1561 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1545 1545  
1546 1546  
1547 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1564 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1548 1548  
1566 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1549 1549  
1568 +[[image:1653357531600-905.png]]
1569 +
1570 +
1571 +=== 3.6.4 Analog Input Interfaces ===
1572 +
1573 +
1574 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1575 +
1576 +
1550 1550  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1551 1551  
1552 1552  [[image:1653357592296-182.png]]
1553 1553  
1554 -Example to connect a 4~~20mA sensor
1581 +Example: Connecting a 4~~20mA sensor
1555 1555  
1556 -We take the wind speed sensor as an example for reference only.
1583 +We will use the wind speed sensor as an example for reference only.
1557 1557  
1558 1558  
1559 -**Specifications of the wind speed sensor:**
1586 +(% style="color:blue" %)**Specifications of the wind speed sensor:**
1560 1560  
1561 -Red:  12~~24v
1588 +(% style="color:red" %)**Red:  12~~24V**
1562 1562  
1563 -Yellow:  4~~20mA
1590 +(% style="color:#ffc000" %)**Yellow:  4~~20mA**
1564 1564  
1565 -Black:  GND
1592 +**Black:  GND**
1566 1566  
1567 -
1568 1568  **Connection diagram:**
1569 1569  
1570 1570  [[image:1653357640609-758.png]]
... ... @@ -1572,12 +1572,29 @@
1572 1572  [[image:1653357648330-671.png||height="155" width="733"]]
1573 1573  
1574 1574  
1601 +Example: Connecting to a regulated power supply to measure voltage
1575 1575  
1603 +[[image:image-20230608101532-1.png||height="606" width="447"]]
1604 +
1605 +[[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1606 +
1607 +[[image:image-20230608101722-3.png||height="102" width="1139"]]
1608 +
1609 +
1610 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1611 +
1612 +(% style="color:red" %)**Red:  12~~24v**
1613 +
1614 +**Black:  GND**
1615 +
1616 +
1576 1576  === 3.6.5 Relay Output ===
1577 1577  
1578 1578  
1579 1579  (((
1580 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1621 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1622 +
1623 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1581 1581  )))
1582 1582  
1583 1583  [[image:image-20220524100215-9.png]]
... ... @@ -1586,27 +1586,51 @@
1586 1586  [[image:image-20220524100215-10.png||height="382" width="723"]]
1587 1587  
1588 1588  
1589 -
1590 1590  == 3.7 LEDs Indicators ==
1591 1591  
1592 1592  
1593 -[[image:image-20220524100748-11.png]]
1635 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1636 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1637 +|**PWR**|Always on if there is power
1638 +|**TX**|(((
1639 +(((
1640 +Device boot: TX blinks 5 times.
1641 +)))
1594 1594  
1643 +(((
1644 +Successful join network: TX ON for 5 seconds.
1645 +)))
1595 1595  
1647 +(((
1648 +Transmit a LoRa packet: TX blinks once
1649 +)))
1650 +)))
1651 +|**RX**|RX blinks once when receiving a packet.
1652 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1653 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1654 +|**DI1**|(((
1655 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1656 +)))
1657 +|**DI2**|(((
1658 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1659 +)))
1660 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1661 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1596 1596  
1597 -= 4. Use AT Command =
1663 += 4. Using AT Command =
1598 1598  
1665 +== 4.1 Connecting the LT-22222-L to a computer ==
1599 1599  
1600 -== 4.1 Access AT Command ==
1601 1601  
1668 +(((
1669 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1670 +)))
1602 1602  
1603 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1604 -
1605 1605  [[image:1653358238933-385.png]]
1606 1606  
1607 1607  
1608 1608  (((
1609 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1676 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1610 1610  )))
1611 1611  
1612 1612  [[image:1653358355238-883.png]]
... ... @@ -1613,10 +1613,12 @@
1613 1613  
1614 1614  
1615 1615  (((
1616 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1683 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1617 1617  )))
1618 1618  
1619 1619  (((
1687 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1688 +
1620 1620  AT+<CMD>?        : Help on <CMD>
1621 1621  )))
1622 1622  
... ... @@ -1629,7 +1629,7 @@
1629 1629  )))
1630 1630  
1631 1631  (((
1632 -AT+<CMD>=?       : Get the value
1701 +AT+<CMD>=?       :  Get the value
1633 1633  )))
1634 1634  
1635 1635  (((
... ... @@ -1657,11 +1657,11 @@
1657 1657  )))
1658 1658  
1659 1659  (((
1660 -AT+APPSKEY: Get or Set the Application Session Key
1729 +AT+APPSKEY:  Get or Set the Application Session Key
1661 1661  )))
1662 1662  
1663 1663  (((
1664 -AT+APPEUI: Get or Set the Application EUI
1733 +AT+APPEUI:  Get or Set the Application EUI
1665 1665  )))
1666 1666  
1667 1667  (((
... ... @@ -1673,7 +1673,7 @@
1673 1673  )))
1674 1674  
1675 1675  (((
1676 -AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1745 +AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1677 1677  )))
1678 1678  
1679 1679  (((
... ... @@ -1709,7 +1709,7 @@
1709 1709  )))
1710 1710  
1711 1711  (((
1712 -AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1781 +AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1713 1713  )))
1714 1714  
1715 1715  (((
... ... @@ -1753,7 +1753,7 @@
1753 1753  )))
1754 1754  
1755 1755  (((
1756 -AT+VER: Get current image version and Frequency Band
1825 +AT+VER:  Get current image version and Frequency Band
1757 1757  )))
1758 1758  
1759 1759  (((
... ... @@ -1761,7 +1761,7 @@
1761 1761  )))
1762 1762  
1763 1763  (((
1764 -AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1833 +AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1765 1765  )))
1766 1766  
1767 1767  (((
... ... @@ -1801,107 +1801,108 @@
1801 1801  )))
1802 1802  
1803 1803  
1804 -
1805 1805  == 4.2 Common AT Command Sequence ==
1806 1806  
1807 -
1808 1808  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1809 1809  
1810 1810  (((
1811 1811  
1812 1812  
1813 -**If device has not joined network yet:**
1880 +(((
1881 +(% style="color:blue" %)**If device has not joined network yet:**
1814 1814  )))
1883 +)))
1815 1815  
1816 1816  (((
1817 -(% style="background-color:#dcdcdc" %)123456
1886 +(% style="background-color:#dcdcdc" %)**123456**
1818 1818  )))
1819 1819  
1820 1820  (((
1821 -(% style="background-color:#dcdcdc" %)AT+FDR
1890 +(% style="background-color:#dcdcdc" %)**AT+FDR**
1822 1822  )))
1823 1823  
1824 1824  (((
1825 -(% style="background-color:#dcdcdc" %)123456
1894 +(% style="background-color:#dcdcdc" %)**123456**
1826 1826  )))
1827 1827  
1828 1828  (((
1829 -(% style="background-color:#dcdcdc" %)AT+NJM=0
1898 +(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1830 1830  )))
1831 1831  
1832 1832  (((
1833 -(% style="background-color:#dcdcdc" %)ATZ
1902 +(% style="background-color:#dcdcdc" %)**ATZ**
1834 1834  )))
1835 1835  
1836 1836  
1837 1837  (((
1838 -**If device already joined network:**
1907 +(% style="color:blue" %)**If device already joined network:**
1839 1839  )))
1840 1840  
1841 1841  (((
1842 -(% style="background-color:#dcdcdc" %)AT+NJM=0
1911 +(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1843 1843  )))
1844 1844  
1845 1845  (((
1846 -(% style="background-color:#dcdcdc" %)ATZ
1915 +(% style="background-color:#dcdcdc" %)**ATZ**
1847 1847  )))
1848 1848  
1849 1849  
1850 -
1851 1851  === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1852 1852  
1853 1853  (((
1854 1854  
1855 1855  
1856 -(% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1924 +(((
1925 +(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1857 1857  )))
1927 +)))
1858 1858  
1859 1859  (((
1860 -(% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1930 +(% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1861 1861  )))
1862 1862  
1863 1863  (((
1864 -(% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1934 +(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1865 1865  )))
1866 1866  
1867 1867  (((
1868 -(% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1938 +(% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1869 1869  )))
1870 1870  
1871 1871  (((
1872 -(% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1942 +(% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1873 1873  )))
1874 1874  
1875 1875  (((
1876 -(% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1946 +(% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1877 1877  )))
1878 1878  
1879 1879  (((
1880 -(% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1950 +(% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1881 1881  )))
1882 1882  
1883 1883  (((
1884 -(% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1954 +(% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1885 1885  )))
1886 1886  
1887 1887  (((
1888 -(% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1958 +(% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1889 1889  )))
1890 1890  
1891 1891  (((
1892 -(% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1962 +(% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1893 1893  )))
1894 1894  
1895 1895  (((
1896 -(% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1966 +(% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1897 1897  )))
1898 1898  
1899 1899  (((
1900 -(% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1970 +(% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1901 1901  )))
1902 1902  
1903 1903  (((
1904 -(% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1974 +(% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1905 1905  
1906 1906  
1907 1907  )))
... ... @@ -1911,12 +1911,14 @@
1911 1911  )))
1912 1912  
1913 1913  (((
1914 -(% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1915 -2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1916 -3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1917 -4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1984 +**~1. Make sure the device is set to ABP mode in the IoT Server.**
1918 1918  
1919 -
1986 +**2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1987 +
1988 +**3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1989 +dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1990 +
1991 +**4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1920 1920  )))
1921 1921  
1922 1922  (((
... ... @@ -1923,45 +1923,53 @@
1923 1923  [[image:1653359097980-169.png||height="188" width="729"]]
1924 1924  )))
1925 1925  
1998 +
1999 +=== 4.2.3 Change to Class A ===
2000 +
2001 +
1926 1926  (((
1927 -
1928 -)))
2003 +(% style="color:blue" %)**If sensor JOINED:**
1929 1929  
2005 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1930 1930  
1931 -=== 4.2.3 Change to Class A ===
2007 +(% style="background-color:#dcdcdc" %)**ATZ**
2008 +)))
1932 1932  
1933 1933  
1934 -If sensor JOINED
1935 -(% style="background-color:#dcdcdc" %)AT+CLASS=A
1936 -ATZ
2011 += 5. Case Study =
1937 1937  
2013 +== 5.1 Counting how many objects pass through the flow Line ==
1938 1938  
1939 1939  
1940 -= 5. FAQ =
2016 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1941 1941  
1942 1942  
1943 -== 5.1 How to upgrade the image? ==
2019 += 6. FAQ =
1944 1944  
2021 +== 6.1 How to upgrade the image? ==
1945 1945  
1946 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1947 1947  
1948 -* Support new features
1949 -* For bug fix
2024 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2025 +
2026 +* Support new features.
2027 +* Fix bugs.
1950 1950  * Change LoRaWAN bands.
1951 1951  
1952 -Below shows the hardware connection for how to upload an image to the LT:
2030 +Below is the hardware connection setup for uploading an image to the LT:
1953 1953  
1954 1954  [[image:1653359603330-121.png]]
1955 1955  
1956 1956  
1957 1957  (((
1958 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1959 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1960 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2036 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2037 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2038 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
1961 1961  
1962 1962  
2041 +(((
1963 1963  (% style="color:blue" %)**For LT-22222-L**(%%):
1964 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2043 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2044 +)))
1965 1965  
1966 1966  
1967 1967  )))
... ... @@ -1968,57 +1968,54 @@
1968 1968  
1969 1969   [[image:image-20220524103407-12.png]]
1970 1970  
2051 +
1971 1971  [[image:image-20220524103429-13.png]]
1972 1972  
2054 +
1973 1973  [[image:image-20220524104033-15.png]]
1974 1974  
1975 1975  
1976 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2058 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
1977 1977  
1978 -
1979 1979  [[image:1653360054704-518.png||height="186" width="745"]]
1980 1980  
1981 1981  
1982 1982  (((
1983 1983  (((
1984 -
2065 +== 6.2 How to change the LoRa Frequency Bands/Region? ==
1985 1985  
1986 -== 5.2 How to change the LoRa Frequency Bands/Region? ==
1987 -
1988 1988  
1989 1989  )))
1990 1990  )))
1991 1991  
1992 1992  (((
1993 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2072 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
1994 1994  )))
1995 1995  
1996 1996  (((
1997 1997  
1998 1998  
2078 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
1999 1999  
2000 -== 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2001 -
2002 2002  
2003 2003  )))
2004 2004  
2005 2005  (((
2006 2006  (((
2007 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2085 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2008 2008  )))
2009 2009  )))
2010 2010  
2011 2011  (((
2012 2012  (((
2013 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2091 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2014 2014  
2015 -
2016 2016  
2017 2017  )))
2018 2018  )))
2019 2019  
2020 2020  (((
2021 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2098 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2022 2022  
2023 2023  
2024 2024  )))
... ... @@ -2042,16 +2042,23 @@
2042 2042  )))
2043 2043  
2044 2044  (((
2045 -(% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2046 -(% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
2047 -(% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2048 -(% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
2049 -(% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
2050 -(% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
2051 -(% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
2052 -(% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
2053 -(% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
2054 -(% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
2122 +(% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2123 +
2124 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2125 +
2126 +(% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2127 +
2128 +(% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2129 +
2130 +(% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2131 +
2132 +(% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2133 +
2134 +(% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2135 +
2136 +(% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2137 +
2138 +(% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2055 2055  )))
2056 2056  
2057 2057  
... ... @@ -2062,26 +2062,29 @@
2062 2062  [[image:1653360498588-932.png||height="485" width="726"]]
2063 2063  
2064 2064  
2149 +== 6.4 How to change the uplink interval? ==
2065 2065  
2066 -== 5.4 Can I see counting event in Serial? ==
2067 2067  
2152 +Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2068 2068  
2069 -(((
2070 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2071 2071  
2155 +== 6.5 Can I see the counting event in Serial? ==
2072 2072  
2073 2073  
2074 -== 5.5 Can i use point to point communication for LT-22222-L? ==
2158 +(((
2159 +User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2075 2075  
2076 2076  
2077 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
2162 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2078 2078  
2079 2079  
2165 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2166 +
2080 2080  
2081 2081  )))
2082 2082  
2083 2083  (((
2084 -== 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2171 +== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2085 2085  
2086 2086  
2087 2087  If the device is not shut down, but directly powered off.
... ... @@ -2093,23 +2093,33 @@
2093 2093  After restart, the status before power failure will be read from flash.
2094 2094  
2095 2095  
2096 -== 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2183 +== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2097 2097  
2185 +
2098 2098  LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2099 2099  
2188 +
2100 2100  [[image:image-20221006170630-1.png||height="610" width="945"]]
2101 2101  
2102 2102  
2192 +== 6.9 Can LT22222-L save RO state? ==
2103 2103  
2104 2104  
2105 -= 6. Trouble Shooting =
2195 +Firmware version needs to be no less than 1.6.0.
2106 2106  
2107 -
2197 +
2198 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2199 +
2200 +
2201 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2202 +
2203 +
2204 += 7. Trouble Shooting =
2108 2108  )))
2109 2109  
2110 2110  (((
2111 2111  (((
2112 -== 6.1 Downlink doesn't work, how to solve it? ==
2209 +== 7.1 Downlink doesn't work, how to solve it? ==
2113 2113  
2114 2114  
2115 2115  )))
... ... @@ -2122,9 +2122,8 @@
2122 2122  (((
2123 2123  
2124 2124  
2222 +== 7.2 Have trouble to upload image. ==
2125 2125  
2126 -== 6.2 Have trouble to upload image. ==
2127 -
2128 2128  
2129 2129  )))
2130 2130  
... ... @@ -2135,9 +2135,8 @@
2135 2135  (((
2136 2136  
2137 2137  
2234 +== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2138 2138  
2139 -== 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2140 -
2141 2141  
2142 2142  )))
2143 2143  
... ... @@ -2146,10 +2146,16 @@
2146 2146  )))
2147 2147  
2148 2148  
2244 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2149 2149  
2150 -= 7. Order Info =
2151 2151  
2247 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2248 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2152 2152  
2250 +
2251 += 8. Order Info =
2252 +
2253 +
2153 2153  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2154 2154  
2155 2155  (% style="color:#4f81bd" %)**XXX:**
... ... @@ -2164,10 +2164,9 @@
2164 2164  * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2165 2165  * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2166 2166  
2268 += 9. Packing Info =
2167 2167  
2168 -= 8. Packing Info =
2169 2169  
2170 -
2171 2171  **Package Includes**:
2172 2172  
2173 2173  * LT-22222-L I/O Controller x 1
... ... @@ -2182,22 +2182,20 @@
2182 2182  * Package Size / pcs : 14.5 x 8 x 5 cm
2183 2183  * Weight / pcs : 170g
2184 2184  
2285 += 10. Support =
2185 2185  
2186 -= 9. Support =
2187 2187  
2188 -
2189 2189  * (((
2190 2190  Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2191 2191  )))
2192 2192  * (((
2193 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2292 +Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2194 2194  
2195 2195  
2196 -
2197 2197  
2198 2198  )))
2199 2199  
2200 -= 10. Reference​​​​​ =
2298 += 11. Reference​​​​​ =
2201 2201  
2202 2202  
2203 2203  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
image-20221112174847-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.6 KB
Content
image-20230424115112-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.1 KB
Content
image-20230425173351-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +207.8 KB
Content
image-20230425173427-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +150.1 KB
Content
image-20230426161322-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +15.2 KB
Content
image-20230608101532-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +563.0 KB
Content
image-20230608101608-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +287.8 KB
Content
image-20230608101722-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +25.4 KB
Content
image-20230616235145-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content