Version 92.1 by Bei Jinggeng on 2022/08/24 15:31

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44
45
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54
55 == 1.2  Specifications ==
56
57 (((
58
59
60 **Hardware System:**
61 )))
62
63 * (((
64 STM32L072CZT6 MCU
65 )))
66 * (((
67 SX1276/78 Wireless Chip 
68 )))
69 * (((
70 (((
71 Power Consumption:
72 )))
73
74 * (((
75 Idle: 4mA@12v
76 )))
77 * (((
78 20dB Transmit: 34mA@12v
79 )))
80 )))
81
82 (((
83
84
85 **Interface for Model: LT22222-L:**
86 )))
87
88 * (((
89 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
90 )))
91 * (((
92 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
93 )))
94 * (((
95 2 x Relay Output (5A@250VAC / 30VDC)
96 )))
97 * (((
98 2 x 0~~20mA Analog Input (res:0.01mA)
99 )))
100 * (((
101 2 x 0~~30V Analog Input (res:0.01v)
102 )))
103 * (((
104 Power Input 7~~ 24V DC. 
105 )))
106
107 (((
108
109
110 **LoRa Spec:**
111 )))
112
113 * (((
114 (((
115 Frequency Range:
116 )))
117
118 * (((
119 Band 1 (HF): 862 ~~ 1020 Mhz
120 )))
121 * (((
122 Band 2 (LF): 410 ~~ 528 Mhz
123 )))
124 )))
125 * (((
126 168 dB maximum link budget.
127 )))
128 * (((
129 +20 dBm - 100 mW constant RF output vs.
130 )))
131 * (((
132 +14 dBm high efficiency PA.
133 )))
134 * (((
135 Programmable bit rate up to 300 kbps.
136 )))
137 * (((
138 High sensitivity: down to -148 dBm.
139 )))
140 * (((
141 Bullet-proof front end: IIP3 = -12.5 dBm.
142 )))
143 * (((
144 Excellent blocking immunity.
145 )))
146 * (((
147 Low RX current of 10.3 mA, 200 nA register retention.
148 )))
149 * (((
150 Fully integrated synthesizer with a resolution of 61 Hz.
151 )))
152 * (((
153 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
154 )))
155 * (((
156 Built-in bit synchronizer for clock recovery.
157 )))
158 * (((
159 Preamble detection.
160 )))
161 * (((
162 127 dB Dynamic Range RSSI.
163 )))
164 * (((
165 Automatic RF Sense and CAD with ultra-fast AFC.
166 )))
167 * (((
168 Packet engine up to 256 bytes with CRC.
169
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186
187
188 == 1.4  Applications ==
189
190
191 * Smart Buildings & Home Automation
192 * Logistics and Supply Chain Management
193 * Smart Metering
194 * Smart Agriculture
195 * Smart Cities
196 * Smart Factory
197
198
199
200 == 1.5 Hardware Variants ==
201
202
203 (% border="1" style="background-color:#f7faff; width:500px" %)
204 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
205 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
206 * 2 x Digital Input (Bi-direction)
207 * 2 x Digital Output
208 * 2 x Relay Output (5A@250VAC / 30VDC)
209 * 2 x 0~~20mA Analog Input (res:0.01mA)
210 * 2 x 0~~30V Analog Input (res:0.01v)
211 * 1 x Counting Port
212 )))
213
214
215 = 2. Power ON Device =
216
217
218 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
219
220 (((
221 PWR will on when device is properly powered.
222 )))
223
224 [[image:1653297104069-180.png]]
225
226
227
228 = 3. Operation Mode =
229
230 == 3.1 How it works? ==
231
232
233 (((
234 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
235 )))
236
237 (((
238 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
239 )))
240
241
242
243 == 3.2 Example to join LoRaWAN network ==
244
245
246 (((
247 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
248
249
250 )))
251
252 [[image:image-20220523172350-1.png||height="266" width="864"]]
253
254
255 (((
256 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
257
258
259 )))
260
261 (((
262 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
263 )))
264
265 (((
266 Each LT is shipped with a sticker with the default device EUI as below:
267 )))
268
269 [[image:1653297924498-393.png]]
270
271
272 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
273
274 Add APP EUI in the application.
275
276 [[image:1653297955910-247.png||height="321" width="716"]]
277
278
279 Add APP KEY and DEV EUI
280
281 [[image:1653298023685-319.png]]
282
283
284
285 (((
286 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
287 )))
288
289 [[image:1653298044601-602.png||height="405" width="709"]]
290
291
292
293 == 3.3 Uplink Payload ==
294
295
296 There are five working modes + one interrupt mode on LT for different type application:
297
298 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
299 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
300 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
301 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
302 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
303 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
304
305
306
307 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
308
309
310 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
311
312 [[image:image-20220523174024-3.png]]
313
314 (((
315
316
317 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
318 )))
319
320 [[image:image-20220523174254-4.png]]
321
322 * RO is for relay. ROx=1 : close,ROx=0 always open.
323 * DI is for digital input. DIx=1: high or float, DIx=0: low.
324 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
325
326 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
327
328 For example if payload is: [[image:image-20220523175847-2.png]]
329
330
331 **The value for the interface is:  **
332
333 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
334
335 AVI2 channel voltage is 0x04AC/1000=1.196V
336
337 ACI1 channel current is 0x1310/1000=4.880mA
338
339 ACI2 channel current is 0x1300/1000=4.864mA
340
341 The last byte 0xAA= 10101010(B) means
342
343 * [1] RO1 relay channel is close and the RO1 LED is ON.
344 * [0] RO2 relay channel is open and RO2 LED is OFF;
345
346 **LT22222-L:**
347
348 * [1] DI2 channel is high input and DI2 LED is ON;
349 * [0] DI1 channel is low input;
350
351 * [0] DO3 channel output state
352 ** DO3 is float in case no load between DO3 and V+.;
353 ** DO3 is high in case there is load between DO3 and V+.
354 ** DO3 LED is off in both case
355 * [1] DO2 channel output is low and DO2 LED is ON.
356 * [0] DO1 channel output state
357 ** DO1 is float in case no load between DO1 and V+.;
358 ** DO1 is high in case there is load between DO1 and V+.
359 ** DO1 LED is off in both case
360
361
362
363 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
364
365
366 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
367
368 (((
369 Total : 11 bytes payload
370 )))
371
372 [[image:image-20220523180452-3.png]]
373
374
375 (((
376 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
377 )))
378
379 [[image:image-20220523180506-4.png]]
380
381 * RO is for relay. ROx=1 : close,ROx=0 always open.
382 * FIRST: Indicate this is the first packet after join network.
383 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
384
385 (((
386 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
387 )))
388
389 (((
390
391
392 **To use counting mode, please run:**
393 )))
394
395 (% class="box infomessage" %)
396 (((
397 (((
398 **AT+MOD=2**
399
400 **ATZ**
401 )))
402 )))
403
404 (((
405
406
407 (% style="color:#4f81bd" %)**AT Commands for counting:**
408 )))
409
410 (((
411 **For LT22222-L:**
412
413
414 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
415
416 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
417
418 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
419
420 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
421
422 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
423
424 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
425 )))
426
427
428
429 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
430
431
432 **LT22222-L**: This mode the DI1 is used as a counting pin.
433
434 [[image:image-20220523181246-5.png]]
435
436 (((
437
438
439 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
440 )))
441
442 [[image:image-20220523181301-6.png]]
443
444 * RO is for relay. ROx=1 : close,ROx=0 always open.
445 * FIRST: Indicate this is the first packet after join network.
446 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
447
448 (((
449 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
450 )))
451
452
453 (((
454 **To use counting mode, please run:**
455 )))
456
457 (% class="box infomessage" %)
458 (((
459 (((
460 **AT+MOD=3**
461
462 **ATZ**
463 )))
464 )))
465
466 (((
467 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
468 )))
469
470
471
472 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
473
474
475 **LT22222-L**: This mode the DI1 is used as a counting pin.
476
477 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
478
479 [[image:image-20220523181903-8.png]]
480
481
482 (((
483 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
484 )))
485
486 [[image:image-20220523181727-7.png]]
487
488 * RO is for relay. ROx=1 : close,ROx=0 always open.
489 * FIRST: Indicate this is the first packet after join network.
490 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
491
492 (((
493 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
494 )))
495
496 (((
497
498
499 **To use this mode, please run:**
500 )))
501
502 (% class="box infomessage" %)
503 (((
504 (((
505 **AT+MOD=4**
506
507 **ATZ**
508 )))
509 )))
510
511
512
513 (((
514 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
515 )))
516
517 (((
518
519
520 **Plus below command for AVI1 Counting:**
521
522
523 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
524
525 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
526
527 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
528
529 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
530 )))
531
532
533
534 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
535
536
537 **LT22222-L**: This mode the DI1 is used as a counting pin.
538
539 [[image:image-20220523182334-9.png]]
540
541 (((
542
543
544 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
545 )))
546
547 * RO is for relay. ROx=1 : close,ROx=0 always open.
548 * FIRST: Indicate this is the first packet after join network.
549 * (((
550 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
551 )))
552
553 (((
554 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
555 )))
556
557 (((
558
559
560 **To use this mode, please run:**
561 )))
562
563 (% class="box infomessage" %)
564 (((
565 (((
566 **AT+MOD=5**
567
568 **ATZ**
569 )))
570 )))
571
572 (((
573 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
574 )))
575
576
577
578 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
579
580
581 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
582
583 For example, if user has configured below commands:
584
585 * **AT+MOD=1 ** **~-~->**  The normal working mode
586 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
587
588 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
589
590 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
591 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
592
593 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
594
595
596 (% style="color:#4f81bd" %)**Trigger base on voltage**:
597
598 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
599
600 **Example:**
601
602 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
603
604 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
605
606
607
608 (% style="color:#4f81bd" %)**Trigger base on current**:
609
610 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
611
612 **Example:**
613
614 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
615
616
617
618 (% style="color:#4f81bd" %)**Trigger base on DI status**:
619
620 DI status trigger Flag.
621
622 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
623
624
625 **Example:**
626
627 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
628
629
630 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
631
632 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
633
634 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
635
636 AA: Code for this downlink Command:
637
638 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
639
640 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
641
642 yy2 yy2: AC1 or AV1 high limit.
643
644 yy3 yy3: AC2 or AV2 low limit.
645
646 Yy4 yy4: AC2 or AV2 high limit.
647
648
649 **Example1**: AA 00 13 88 00 00 00 00 00 00
650
651 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
652
653
654 **Example2**: AA 02 01 00
655
656 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
657
658
659
660 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
661
662 MOD6 Payload : total 11 bytes payload
663
664 [[image:image-20220524085923-1.png]]
665
666
667 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
668
669 [[image:image-20220524090106-2.png]]
670
671 * Each bits shows if the corresponding trigger has been configured.
672
673 **Example:**
674
675 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
676
677
678 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
679
680 [[image:image-20220524090249-3.png]]
681
682 * Each bits shows which status has been trigger on this uplink.
683
684 **Example:**
685
686 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
687
688
689 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
690
691 [[image:image-20220524090456-4.png]]
692
693 * Each bits shows which status has been trigger on this uplink.
694
695 **Example:**
696
697 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
698
699 00000101: Means both DI1 and DI2 trigger are enabled.
700
701
702 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
703
704 Downlink command to poll MOD6 status:
705
706 **AB 06**
707
708 When device got this command, it will send the MOD6 payload.
709
710
711
712 === 3.3.7 Payload Decoder ===
713
714 (((
715
716
717 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
718 )))
719
720
721
722 == 3.4 ​Configure LT via AT or Downlink ==
723
724
725 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
726
727 (((
728 There are two kinds of Commands:
729 )))
730
731 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
732
733 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
734
735
736 === 3.4.1 Common Commands ===
737
738
739 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
740
741
742
743 === 3.4.2 Sensor related commands ===
744
745
746 ==== 3.4.2.1 Set Transmit Interval ====
747
748
749 Set device uplink interval.
750
751 * (% style="color:#037691" %)**AT Command:**
752
753 **AT+TDC=N **
754
755
756 **Example: **AT+TDC=30000. Means set interval to 30 seconds
757
758
759 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
760
761 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
762
763
764
765
766 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
767
768
769 Set work mode.
770
771 * (% style="color:#037691" %)**AT Command:**
772
773 **AT+MOD=N  **
774
775
776 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
777
778
779 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
780
781 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
782
783
784
785
786 ==== 3.4.2.3 Poll an uplink ====
787
788
789 * (% style="color:#037691" %)**AT Command:**
790
791 There is no AT Command to poll uplink
792
793
794 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
795
796 **0x08 FF     **~/~/ Poll an uplink
797
798 **Example**: 0x08FF, ask device to send an Uplink
799
800
801
802
803 ==== 3.4.2.4 Enable Trigger Mode ====
804
805
806 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
807
808 * (% style="color:#037691" %)**AT Command:**
809
810 **AT+ADDMOD6=1 or 0**
811
812 1: Enable Trigger Mode
813
814 0: Disable Trigger Mode
815
816
817 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
818
819 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
820
821
822
823
824 ==== 3.4.2.5 Poll trigger settings ====
825
826
827 Poll trigger settings,
828
829 * (% style="color:#037691" %)**AT Command:**
830
831 There is no AT Command for this feature.
832
833
834 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
835
836 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
837
838
839
840
841 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
842
843
844 Enable Disable DI1/DI2/DI2 as trigger,
845
846 * (% style="color:#037691" %)**AT Command:**
847
848 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
849
850
851 **Example:**
852
853 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
854
855 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
856
857 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
858
859
860
861
862 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
863
864
865 Set DI1 or DI3(for LT-33222-L) trigger.
866
867 * (% style="color:#037691" %)**AT Command:**
868
869 **AT+TRIG1=a,b**
870
871 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
872
873 b : delay timing.
874
875
876 **Example:**
877
878 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
879
880
881 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
882 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
883
884
885
886 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
887
888
889 Set DI2 trigger.
890
891 * (% style="color:#037691" %)**AT Command:**
892
893 **AT+TRIG2=a,b**
894
895
896 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
897
898 b : delay timing.
899
900
901 **Example:**
902
903 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
904
905
906 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
907
908 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
909
910
911
912
913 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
914
915
916 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
917
918 * (% style="color:#037691" %)**AT Command**
919
920 **AT+ACLIM**
921
922
923 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
924
925 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
926
927
928
929
930 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
931
932
933 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
934
935 * (% style="color:#037691" %)**AT Command**
936
937 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
938
939
940 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
941
942 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
943
944
945
946
947 ==== 3.4.2.11 Trigger – Set minimum interval ====
948
949
950 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
951
952 * (% style="color:#037691" %)**AT Command**
953
954 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
955
956
957 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
958
959 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
960
961 (((
962
963
964 (% style="color:red" %)Note: ATDC setting must be more than 5min
965 )))
966
967
968
969
970 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
971
972
973 * (% style="color:#037691" %)**AT Command**
974
975 There is no AT Command to control Digital Output
976
977
978 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
979 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
980
981 (((
982 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
983 )))
984
985 (((
986 01: Low,  00: High ,  11: No action
987 )))
988
989 [[image:image-20220524092754-5.png]]
990
991 (((
992 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
993 )))
994
995 (((
996 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
997 )))
998
999
1000
1001
1002 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1003
1004
1005 * (% style="color:#037691" %)**AT Command**
1006
1007 There is no AT Command to control Digital Output
1008
1009
1010 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1011
1012 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1013
1014
1015 This is to control the digital output time of DO pin. Include four bytes:
1016
1017 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1018
1019 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1020
1021 01: DO pins will change back to original state after timeout.
1022
1023 00: DO pins will change to an inverter state after timeout 
1024
1025
1026 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1027
1028 [[image:image-20220524093238-6.png]]
1029
1030
1031 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1032
1033 [[image:image-20220524093328-7.png]]
1034
1035
1036 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1037
1038 [[image:image-20220524093351-8.png]]
1039
1040
1041 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1042
1043 Latching time. Unit: ms
1044
1045 Device will upload a packet if downlink code executes successfully.
1046
1047
1048 **Example payload:**
1049
1050 **~1. A9 01 01 01 01 07 D0**
1051
1052 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1053
1054 **2. A9 01 00 01 11 07 D0**
1055
1056 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1057
1058 **3. A9 00 00 00 00 07 D0**
1059
1060 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1061
1062 **4. A9 00 11 01 00 07 D0**
1063
1064 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1065
1066
1067
1068
1069 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1070
1071
1072 * (% style="color:#037691" %)**AT Command:**
1073
1074 There is no AT Command to control Relay Output
1075
1076
1077 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1078
1079 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1080
1081
1082 (((
1083 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1084 )))
1085
1086 (((
1087 01: Close ,  00: Open , 11: No action
1088 )))
1089
1090 (((
1091 [[image:image-20220524093724-9.png]]
1092 )))
1093
1094 Device will upload a packet if downlink code executes successfully.
1095
1096
1097
1098
1099 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1100
1101
1102 * (% style="color:#037691" %)**AT Command:**
1103
1104 There is no AT Command to control Relay Output
1105
1106
1107 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1108
1109 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1110
1111
1112 This is to control the relay output time of relay. Include four bytes:
1113
1114 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1115
1116 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1117
1118 01: Relays will change back to original state after timeout.
1119
1120 00: Relays will change to an inverter state after timeout
1121
1122
1123 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1124
1125 [[image:image-20220714135731-1.png||height="406" width="627"]]
1126
1127
1128 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1129
1130 Device will upload a packet if downlink code executes successfully.
1131
1132
1133 **Example payload:**
1134
1135 **~1. 05 01 11 07 D**
1136
1137 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1138
1139 **2. 05 01 10 07 D0**
1140
1141 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1142
1143 **3. 05 00 01 07 D0**
1144
1145 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1146
1147 **4. 05 00 00 07 D0**
1148
1149 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1150
1151
1152
1153
1154 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1155
1156
1157 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1158
1159 * (% style="color:#037691" %)**AT Command:**
1160
1161 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1162
1163
1164 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1165
1166 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1167
1168
1169
1170
1171 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1172
1173
1174 * (% style="color:#037691" %)**AT Command:**
1175
1176 **AT+SETCNT=aa,(bb cc dd ee) **
1177
1178 aa: 1: Set count1,
1179
1180 2: Set count2,
1181
1182 3: Set AV1 count
1183
1184 Bb cc dd ee: number to be set
1185
1186
1187 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1188
1189 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1190
1191
1192
1193
1194 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1195
1196
1197 Clear counting for counting mode
1198
1199 * (% style="color:#037691" %)**AT Command:**
1200
1201 **AT+CLRCOUNT ** ~/~/ clear all counting
1202
1203
1204 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1205
1206 **0x A6 01    ** ~/~/ clear all counting
1207
1208
1209
1210
1211 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1212
1213
1214 * (% style="color:#037691" %)**AT Command:**
1215
1216 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1217
1218
1219 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1220
1221 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1222
1223 (((
1224 range: aa bb cc:0 to 16777215,  (unit:second)
1225
1226
1227 )))
1228
1229 ==== 3.4.2.20 Reset save DR DO state ====
1230
1231 * (% style="color:#037691" %)**AT Command:**
1232
1233 **AT+RODORET=1  **~/~/ RODO will close when the device joining the network. (default)
1234
1235 **AT+RODORET=0  **~/~/After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1236
1237
1238 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1239
1240 **0x AD aa      **~/~/ same as AT+RODORET =aa
1241
1242 (((
1243
1244
1245 ==== 3.4.2.21 Encrypted payload ====
1246
1247 * (% style="color:#037691" %)**AT Command:**
1248
1249 **AT+DECRYPT=1  **~/~/ The payload is uploaded without encryption
1250
1251 **AT+DECRYPT=0  **~/~/Encrypt when uploading payload (default)
1252
1253
1254 ==== 3.4.2.22 Get sensor value ====
1255
1256 * (% style="color:#037691" %)**AT Command:**
1257
1258 **AT+GETSENSORVALUE=0  **~/~/ The serial port gets the reading of the current sensor
1259
1260 **AT+GETSENSORVALUE=1  **~/~/The serial port gets the current sensor reading and uploads it.
1261
1262
1263 ==== 3.4.2.23 Resets the downlink packet count ====
1264
1265 * (% style="color:#037691" %)**AT Command:**
1266
1267 **AT+DISFCNTCHECK=0  **~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1268
1269 **AT+DISFCNTCHECK=1  **~/~/When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1270
1271
1272 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1273
1274 * (% style="color:#037691" %)**AT Command:**
1275
1276 **AT+DISMACANS=0**  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1277
1278 **AT+DISMACANS=1**      ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1279
1280
1281 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1282
1283 **0x21 00 01 ** ~/~/ Set  the DISMACANS=1
1284
1285 ==== 3.4.2.25 Copy downlink to uplink ====
1286
1287 * (% style="color:#037691" %)**AT Command**(%%)**:**
1288
1289 **AT+RPL=5**  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1290
1291 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1292
1293 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1294
1295 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1296
1297 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1298
1299 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1300
1301
1302
1303 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1304
1305 * (((
1306 (% style="color:#037691" %)**Downlink Payload**(%%)**: 26 01  ** ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1307 )))
1308
1309 Example:
1310
1311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1312
1313
1314
1315 )))
1316
1317 == 3.5 Integrate with Mydevice ==
1318
1319
1320 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1321
1322 (((
1323 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1324 )))
1325
1326 (((
1327 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1328
1329
1330 )))
1331
1332 [[image:image-20220719105525-1.png||height="377" width="677"]]
1333
1334
1335
1336 [[image:image-20220719110247-2.png||height="388" width="683"]]
1337
1338
1339 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1340
1341 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1342
1343 Search under The things network
1344
1345 [[image:1653356838789-523.png||height="337" width="740"]]
1346
1347
1348
1349 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1350
1351 [[image:image-20220524094909-1.png||height="335" width="729"]]
1352
1353
1354 [[image:image-20220524094909-2.png||height="337" width="729"]]
1355
1356
1357 [[image:image-20220524094909-3.png||height="338" width="727"]]
1358
1359
1360 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1361
1362
1363 [[image:image-20220524094909-5.png||height="341" width="734"]]
1364
1365
1366
1367 == 3.6 Interface Detail ==
1368
1369
1370 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1371
1372
1373 Support NPN Type sensor
1374
1375 [[image:1653356991268-289.png]]
1376
1377
1378
1379 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1380
1381
1382 (((
1383 The DI port of LT-22222-L can support NPN or PNP output sensor.
1384 )))
1385
1386 (((
1387 (((
1388 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1389
1390
1391 )))
1392 )))
1393
1394 [[image:1653357170703-587.png]]
1395
1396 (((
1397 (((
1398 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1399 )))
1400 )))
1401
1402 (((
1403
1404 )))
1405
1406 (((
1407 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1408 )))
1409
1410 (((
1411 This type of sensor will output a low signal GND when active.
1412 )))
1413
1414 * (((
1415 Connect sensor’s output to DI1-
1416 )))
1417 * (((
1418 Connect sensor’s VCC to DI1+.
1419 )))
1420
1421 (((
1422 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1423 )))
1424
1425 (((
1426 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1427 )))
1428
1429 (((
1430 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1431 )))
1432
1433 (((
1434
1435
1436
1437 )))
1438
1439 (((
1440 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1441 )))
1442
1443 (((
1444 This type of sensor will output a high signal (example 24v) when active.
1445 )))
1446
1447 * (((
1448 Connect sensor’s output to DI1+
1449 )))
1450 * (((
1451 Connect sensor’s GND DI1-.
1452 )))
1453
1454 (((
1455 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1456 )))
1457
1458 (((
1459 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1460 )))
1461
1462 (((
1463 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1464 )))
1465
1466 (((
1467
1468
1469
1470 )))
1471
1472 (((
1473 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1474 )))
1475
1476 (((
1477 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1478 )))
1479
1480 * (((
1481 Connect sensor’s output to DI1+ with a serial 50K resistor
1482 )))
1483 * (((
1484 Connect sensor’s GND DI1-.
1485 )))
1486
1487 (((
1488 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1489 )))
1490
1491 (((
1492 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1493 )))
1494
1495 (((
1496 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1497 )))
1498
1499
1500
1501 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1502
1503
1504 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1505
1506 [[image:1653357531600-905.png]]
1507
1508
1509
1510 === 3.6.4 Analog Input Interface ===
1511
1512
1513 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1514
1515
1516 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1517
1518 [[image:1653357592296-182.png]]
1519
1520 Example to connect a 4~~20mA sensor
1521
1522 We take the wind speed sensor as an example for reference only.
1523
1524
1525 **Specifications of the wind speed sensor:**
1526
1527 Red:  12~~24v
1528
1529 Yellow:  4~~20mA
1530
1531 Black:  GND
1532
1533
1534 **Connection diagram:**
1535
1536 [[image:1653357640609-758.png]]
1537
1538 [[image:1653357648330-671.png||height="155" width="733"]]
1539
1540
1541
1542 === 3.6.5 Relay Output ===
1543
1544
1545 (((
1546 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1547 )))
1548
1549 [[image:image-20220524100215-9.png]]
1550
1551 [[image:image-20220524100215-10.png||height="382" width="723"]]
1552
1553
1554
1555 == 3.7 LEDs Indicators ==
1556
1557
1558 [[image:image-20220524100748-11.png]]
1559
1560
1561
1562 = 4. Use AT Command =
1563
1564
1565 == 4.1 Access AT Command ==
1566
1567
1568 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1569
1570 [[image:1653358238933-385.png]]
1571
1572
1573 (((
1574 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1575 )))
1576
1577 [[image:1653358355238-883.png]]
1578
1579
1580 (((
1581 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1582 )))
1583
1584 (((
1585 AT+<CMD>?        : Help on <CMD>
1586 )))
1587
1588 (((
1589 AT+<CMD>         : Run <CMD>
1590 )))
1591
1592 (((
1593 AT+<CMD>=<value> : Set the value
1594 )))
1595
1596 (((
1597 AT+<CMD>=?       : Get the value
1598 )))
1599
1600 (((
1601 ATZ: Trig a reset of the MCU
1602 )))
1603
1604 (((
1605 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1606 )))
1607
1608 (((
1609 AT+DEUI: Get or Set the Device EUI
1610 )))
1611
1612 (((
1613 AT+DADDR: Get or Set the Device Address
1614 )))
1615
1616 (((
1617 AT+APPKEY: Get or Set the Application Key
1618 )))
1619
1620 (((
1621 AT+NWKSKEY: Get or Set the Network Session Key
1622 )))
1623
1624 (((
1625 AT+APPSKEY: Get or Set the Application Session Key
1626 )))
1627
1628 (((
1629 AT+APPEUI: Get or Set the Application EUI
1630 )))
1631
1632 (((
1633 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1634 )))
1635
1636 (((
1637 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1638 )))
1639
1640 (((
1641 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1642 )))
1643
1644 (((
1645 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1646 )))
1647
1648 (((
1649 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1650 )))
1651
1652 (((
1653 AT+RX2FQ: Get or Set the Rx2 window frequency
1654 )))
1655
1656 (((
1657 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1658 )))
1659
1660 (((
1661 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1662 )))
1663
1664 (((
1665 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1666 )))
1667
1668 (((
1669 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1670 )))
1671
1672 (((
1673 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1674 )))
1675
1676 (((
1677 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1678 )))
1679
1680 (((
1681 AT+NWKID: Get or Set the Network ID
1682 )))
1683
1684 (((
1685 AT+FCU: Get or Set the Frame Counter Uplink
1686 )))
1687
1688 (((
1689 AT+FCD: Get or Set the Frame Counter Downlink
1690 )))
1691
1692 (((
1693 AT+CLASS: Get or Set the Device Class
1694 )))
1695
1696 (((
1697 AT+JOIN: Join network
1698 )))
1699
1700 (((
1701 AT+NJS: Get OTAA Join Status
1702 )))
1703
1704 (((
1705 AT+SENDB: Send hexadecimal data along with the application port
1706 )))
1707
1708 (((
1709 AT+SEND: Send text data along with the application port
1710 )))
1711
1712 (((
1713 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1714 )))
1715
1716 (((
1717 AT+RECV: Print last received data in raw format
1718 )))
1719
1720 (((
1721 AT+VER: Get current image version and Frequency Band
1722 )))
1723
1724 (((
1725 AT+CFM: Get or Set the confirmation mode (0-1)
1726 )))
1727
1728 (((
1729 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1730 )))
1731
1732 (((
1733 AT+SNR: Get the SNR of the last received packet
1734 )))
1735
1736 (((
1737 AT+RSSI: Get the RSSI of the last received packet
1738 )))
1739
1740 (((
1741 AT+TDC: Get or set the application data transmission interval in ms
1742 )))
1743
1744 (((
1745 AT+PORT: Get or set the application port
1746 )))
1747
1748 (((
1749 AT+DISAT: Disable AT commands
1750 )))
1751
1752 (((
1753 AT+PWORD: Set password, max 9 digits
1754 )))
1755
1756 (((
1757 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1758 )))
1759
1760 (((
1761 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1762 )))
1763
1764 (((
1765 AT+CFG: Print all settings
1766 )))
1767
1768
1769
1770 == 4.2 Common AT Command Sequence ==
1771
1772
1773 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1774
1775 (((
1776
1777
1778 **If device has not joined network yet:**
1779 )))
1780
1781 (((
1782 (% style="background-color:#dcdcdc" %)123456
1783 )))
1784
1785 (((
1786 (% style="background-color:#dcdcdc" %)AT+FDR
1787 )))
1788
1789 (((
1790 (% style="background-color:#dcdcdc" %)123456
1791 )))
1792
1793 (((
1794 (% style="background-color:#dcdcdc" %)AT+NJM=0
1795 )))
1796
1797 (((
1798 (% style="background-color:#dcdcdc" %)ATZ
1799 )))
1800
1801
1802 (((
1803 **If device already joined network:**
1804 )))
1805
1806 (((
1807 (% style="background-color:#dcdcdc" %)AT+NJM=0
1808 )))
1809
1810 (((
1811 (% style="background-color:#dcdcdc" %)ATZ
1812 )))
1813
1814
1815
1816 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1817
1818 (((
1819
1820
1821 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1822 )))
1823
1824 (((
1825 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1826 )))
1827
1828 (((
1829 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1830 )))
1831
1832 (((
1833 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1834 )))
1835
1836 (((
1837 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1838 )))
1839
1840 (((
1841 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1842 )))
1843
1844 (((
1845 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1846 )))
1847
1848 (((
1849 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1850 )))
1851
1852 (((
1853 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1854 )))
1855
1856 (((
1857 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1858 )))
1859
1860 (((
1861 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1862 )))
1863
1864 (((
1865 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1866 )))
1867
1868 (((
1869 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1870
1871
1872 )))
1873
1874 (((
1875 (% style="color:red" %)**Note:**
1876 )))
1877
1878 (((
1879 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1880 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1881 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1882 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1883
1884
1885 )))
1886
1887 (((
1888 [[image:1653359097980-169.png||height="188" width="729"]]
1889 )))
1890
1891 (((
1892
1893 )))
1894
1895
1896 === 4.2.3 Change to Class A ===
1897
1898
1899 If sensor JOINED
1900 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1901 ATZ
1902
1903
1904
1905 = 5. FAQ =
1906
1907
1908 == 5.1 How to upgrade the image? ==
1909
1910
1911 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1912
1913 * Support new features
1914 * For bug fix
1915 * Change LoRaWAN bands.
1916
1917 Below shows the hardware connection for how to upload an image to the LT:
1918
1919 [[image:1653359603330-121.png]]
1920
1921
1922 (((
1923 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1924 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1925 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1926
1927
1928 (% style="color:blue" %)**For LT-22222-L**(%%):
1929 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1930
1931
1932 )))
1933
1934 [[image:image-20220524103407-12.png]]
1935
1936 [[image:image-20220524103429-13.png]]
1937
1938 [[image:image-20220524104033-15.png]]
1939
1940
1941 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1942
1943
1944 [[image:1653360054704-518.png||height="186" width="745"]]
1945
1946
1947 (((
1948 (((
1949
1950
1951 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1952
1953
1954 )))
1955 )))
1956
1957 (((
1958 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1959 )))
1960
1961 (((
1962
1963
1964
1965 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1966
1967
1968 )))
1969
1970 (((
1971 (((
1972 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1973 )))
1974 )))
1975
1976 (((
1977 (((
1978 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1979
1980
1981 )))
1982 )))
1983
1984 (((
1985 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1986 )))
1987
1988 (((
1989 [[image:1653360231087-571.png||height="401" width="727"]]
1990 )))
1991
1992 (((
1993 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
1994 )))
1995
1996
1997 (((
1998 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1999 )))
2000
2001 (((
2002 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2003 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
2004 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
2005 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
2006 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
2007 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
2008 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
2009 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
2010 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
2011 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
2012 )))
2013
2014
2015 (((
2016 As shown in below:
2017 )))
2018
2019 [[image:1653360498588-932.png||height="485" width="726"]]
2020
2021
2022
2023 == 5.4 Can I see counting event in Serial? ==
2024
2025
2026 (((
2027 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2028
2029
2030
2031 == 5.5 Can i use point to point communication for LT-22222-L? ==
2032
2033
2034 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
2035
2036
2037
2038 )))
2039
2040 (((
2041 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2042
2043
2044 If the device is not shut down, but directly powered off.
2045
2046 It will default that this is a power-off state.
2047
2048 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2049
2050 After restart, the status before power failure will be read from flash.
2051
2052
2053
2054 = 6. Trouble Shooting =
2055 )))
2056
2057 (((
2058 (((
2059 == 6.1 Downlink doesn't work, how to solve it? ==
2060
2061
2062 )))
2063 )))
2064
2065 (((
2066 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2067 )))
2068
2069 (((
2070
2071
2072
2073 == 6.2 Have trouble to upload image. ==
2074
2075
2076 )))
2077
2078 (((
2079 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2080 )))
2081
2082 (((
2083
2084
2085
2086 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2087
2088
2089 )))
2090
2091 (((
2092 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2093 )))
2094
2095
2096
2097 = 7. Order Info =
2098
2099
2100 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2101
2102 (% style="color:#4f81bd" %)**XXX:**
2103
2104 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2105 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2106 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2107 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2108 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2109 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2110 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2111 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2112 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2113
2114 = 8. Packing Info =
2115
2116
2117 **Package Includes**:
2118
2119 * LT-22222-L I/O Controller x 1
2120 * Stick Antenna for LoRa RF part x 1
2121 * Bracket for controller x1
2122 * Program cable x 1
2123
2124 **Dimension and weight**:
2125
2126 * Device Size: 13.5 x 7 x 3 cm
2127 * Device Weight: 105g
2128 * Package Size / pcs : 14.5 x 8 x 5 cm
2129 * Weight / pcs : 170g
2130
2131 = 9. Support =
2132
2133
2134 * (((
2135 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2136 )))
2137 * (((
2138 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2139
2140
2141
2142
2143 )))
2144
2145 = 10. Reference​​​​​ =
2146
2147
2148 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2149 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2150 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2151
2152