Version 90.7 by Xiaoling on 2022/08/18 13:38

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44
45
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54
55 == 1.2  Specifications ==
56
57 (((
58
59
60 **Hardware System:**
61 )))
62
63 * (((
64 STM32L072CZT6 MCU
65 )))
66 * (((
67 SX1276/78 Wireless Chip 
68 )))
69 * (((
70 (((
71 Power Consumption:
72 )))
73
74 * (((
75 Idle: 4mA@12v
76 )))
77 * (((
78 20dB Transmit: 34mA@12v
79 )))
80 )))
81
82 (((
83
84
85 **Interface for Model: LT22222-L:**
86 )))
87
88 * (((
89 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
90 )))
91 * (((
92 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
93 )))
94 * (((
95 2 x Relay Output (5A@250VAC / 30VDC)
96 )))
97 * (((
98 2 x 0~~20mA Analog Input (res:0.01mA)
99 )))
100 * (((
101 2 x 0~~30V Analog Input (res:0.01v)
102 )))
103 * (((
104 Power Input 7~~ 24V DC. 
105 )))
106
107 (((
108
109
110 **LoRa Spec:**
111 )))
112
113 * (((
114 (((
115 Frequency Range:
116 )))
117
118 * (((
119 Band 1 (HF): 862 ~~ 1020 Mhz
120 )))
121 * (((
122 Band 2 (LF): 410 ~~ 528 Mhz
123 )))
124 )))
125 * (((
126 168 dB maximum link budget.
127 )))
128 * (((
129 +20 dBm - 100 mW constant RF output vs.
130 )))
131 * (((
132 +14 dBm high efficiency PA.
133 )))
134 * (((
135 Programmable bit rate up to 300 kbps.
136 )))
137 * (((
138 High sensitivity: down to -148 dBm.
139 )))
140 * (((
141 Bullet-proof front end: IIP3 = -12.5 dBm.
142 )))
143 * (((
144 Excellent blocking immunity.
145 )))
146 * (((
147 Low RX current of 10.3 mA, 200 nA register retention.
148 )))
149 * (((
150 Fully integrated synthesizer with a resolution of 61 Hz.
151 )))
152 * (((
153 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
154 )))
155 * (((
156 Built-in bit synchronizer for clock recovery.
157 )))
158 * (((
159 Preamble detection.
160 )))
161 * (((
162 127 dB Dynamic Range RSSI.
163 )))
164 * (((
165 Automatic RF Sense and CAD with ultra-fast AFC.
166 )))
167 * (((
168 Packet engine up to 256 bytes with CRC.
169
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179 * Optional Customized LoRa Protocol
180 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
181 * AT Commands to change parameters
182 * Remote configure parameters via LoRa Downlink
183 * Firmware upgradable via program port
184 * Counting
185
186
187
188 == 1.4  Applications ==
189
190
191 * Smart Buildings & Home Automation
192 * Logistics and Supply Chain Management
193 * Smart Metering
194 * Smart Agriculture
195 * Smart Cities
196 * Smart Factory
197
198
199
200 == 1.5 Hardware Variants ==
201
202
203 (% border="1" style="background-color:#f7faff; width:500px" %)
204 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
205 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
206 * 2 x Digital Input (Bi-direction)
207 * 2 x Digital Output
208 * 2 x Relay Output (5A@250VAC / 30VDC)
209 * 2 x 0~~20mA Analog Input (res:0.01mA)
210 * 2 x 0~~30V Analog Input (res:0.01v)
211 * 1 x Counting Port
212 )))
213
214
215 = 2. Power ON Device =
216
217
218 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
219
220 (((
221 PWR will on when device is properly powered.
222 )))
223
224 [[image:1653297104069-180.png]]
225
226
227
228 = 3. Operation Mode =
229
230 == 3.1 How it works? ==
231
232
233 (((
234 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
235 )))
236
237 (((
238 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
239 )))
240
241
242
243 == 3.2 Example to join LoRaWAN network ==
244
245
246 (((
247 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
248
249
250 )))
251
252 [[image:image-20220523172350-1.png||height="266" width="864"]]
253
254
255 (((
256 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
257
258
259 )))
260
261 (((
262 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
263 )))
264
265 (((
266 Each LT is shipped with a sticker with the default device EUI as below:
267 )))
268
269 [[image:1653297924498-393.png]]
270
271
272 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
273
274 Add APP EUI in the application.
275
276 [[image:1653297955910-247.png||height="321" width="716"]]
277
278
279 Add APP KEY and DEV EUI
280
281 [[image:1653298023685-319.png]]
282
283
284
285 (((
286 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
287 )))
288
289 [[image:1653298044601-602.png||height="405" width="709"]]
290
291
292
293 == 3.3 Uplink Payload ==
294
295
296 There are five working modes + one interrupt mode on LT for different type application:
297
298 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
299 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
300 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
301 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
302 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
303 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
304
305
306
307 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
308
309
310 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
311
312 [[image:image-20220523174024-3.png]]
313
314 (((
315
316
317 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
318 )))
319
320 [[image:image-20220523174254-4.png]]
321
322 * RO is for relay. ROx=1 : close,ROx=0 always open.
323 * DI is for digital input. DIx=1: high or float, DIx=0: low.
324 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
325
326 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
327
328 For example if payload is: [[image:image-20220523175847-2.png]]
329
330
331 **The value for the interface is:  **
332
333 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
334
335 AVI2 channel voltage is 0x04AC/1000=1.196V
336
337 ACI1 channel current is 0x1310/1000=4.880mA
338
339 ACI2 channel current is 0x1300/1000=4.864mA
340
341 The last byte 0xAA= 10101010(B) means
342
343 * [1] RO1 relay channel is close and the RO1 LED is ON.
344 * [0] RO2 relay channel is open and RO2 LED is OFF;
345
346 **LT22222-L:**
347
348 * [1] DI2 channel is high input and DI2 LED is ON;
349 * [0] DI1 channel is low input;
350
351 * [0] DO3 channel output state
352 ** DO3 is float in case no load between DO3 and V+.;
353 ** DO3 is high in case there is load between DO3 and V+.
354 ** DO3 LED is off in both case
355 * [1] DO2 channel output is low and DO2 LED is ON.
356 * [0] DO1 channel output state
357 ** DO1 is float in case no load between DO1 and V+.;
358 ** DO1 is high in case there is load between DO1 and V+.
359 ** DO1 LED is off in both case
360
361
362
363 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
364
365
366 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
367
368 (((
369 Total : 11 bytes payload
370 )))
371
372 [[image:image-20220523180452-3.png]]
373
374
375 (((
376 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
377 )))
378
379 [[image:image-20220523180506-4.png]]
380
381 * RO is for relay. ROx=1 : close,ROx=0 always open.
382 * FIRST: Indicate this is the first packet after join network.
383 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
384
385 (((
386 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
387 )))
388
389 (((
390
391
392 **To use counting mode, please run:**
393 )))
394
395 (% class="box infomessage" %)
396 (((
397 (((
398 **AT+MOD=2**
399
400 **ATZ**
401 )))
402 )))
403
404 (((
405
406
407 (% style="color:#4f81bd" %)**AT Commands for counting:**
408 )))
409
410 (((
411 **For LT22222-L:**
412
413
414 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
415
416 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
417
418 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
419
420 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
421
422 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
423
424 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
425 )))
426
427
428
429 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
430
431
432 **LT22222-L**: This mode the DI1 is used as a counting pin.
433
434 [[image:image-20220523181246-5.png]]
435
436 (((
437
438
439 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
440 )))
441
442 [[image:image-20220523181301-6.png]]
443
444 * RO is for relay. ROx=1 : close,ROx=0 always open.
445 * FIRST: Indicate this is the first packet after join network.
446 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
447
448 (((
449 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
450 )))
451
452
453 (((
454 **To use counting mode, please run:**
455 )))
456
457 (% class="box infomessage" %)
458 (((
459 (((
460 **AT+MOD=3**
461
462 **ATZ**
463 )))
464 )))
465
466 (((
467 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
468 )))
469
470
471
472 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
473
474
475 **LT22222-L**: This mode the DI1 is used as a counting pin.
476
477 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
478
479 [[image:image-20220523181903-8.png]]
480
481
482 (((
483 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
484 )))
485
486 [[image:image-20220523181727-7.png]]
487
488 * RO is for relay. ROx=1 : close,ROx=0 always open.
489 * FIRST: Indicate this is the first packet after join network.
490 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
491
492 (((
493 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
494 )))
495
496 (((
497
498
499 **To use this mode, please run:**
500 )))
501
502 (% class="box infomessage" %)
503 (((
504 (((
505 **AT+MOD=4**
506
507 **ATZ**
508 )))
509 )))
510
511
512
513 (((
514 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
515 )))
516
517 (((
518
519
520 **Plus below command for AVI1 Counting:**
521
522
523 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
524
525 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
526
527 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
528
529 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
530 )))
531
532
533
534 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
535
536
537 **LT22222-L**: This mode the DI1 is used as a counting pin.
538
539 [[image:image-20220523182334-9.png]]
540
541 (((
542
543
544 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
545 )))
546
547 * RO is for relay. ROx=1 : close,ROx=0 always open.
548 * FIRST: Indicate this is the first packet after join network.
549 * (((
550 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
551 )))
552
553 (((
554 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
555 )))
556
557 (((
558
559
560 **To use this mode, please run:**
561 )))
562
563 (% class="box infomessage" %)
564 (((
565 (((
566 **AT+MOD=5**
567
568 **ATZ**
569 )))
570 )))
571
572 (((
573 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
574 )))
575
576
577
578 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
579
580
581 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
582
583 For example, if user has configured below commands:
584
585 * **AT+MOD=1 ** **~-~->**  The normal working mode
586 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
587
588 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
589
590 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
591 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
592
593 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
594
595
596 (% style="color:#4f81bd" %)**Trigger base on voltage**:
597
598 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
599
600 **Example:**
601
602 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
603
604 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
605
606
607
608 (% style="color:#4f81bd" %)**Trigger base on current**:
609
610 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
611
612 **Example:**
613
614 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
615
616
617
618 (% style="color:#4f81bd" %)**Trigger base on DI status**:
619
620 DI status trigger Flag.
621
622 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
623
624
625 **Example:**
626
627 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
628
629
630 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
631
632 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
633
634 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
635
636 AA: Code for this downlink Command:
637
638 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
639
640 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
641
642 yy2 yy2: AC1 or AV1 high limit.
643
644 yy3 yy3: AC2 or AV2 low limit.
645
646 Yy4 yy4: AC2 or AV2 high limit.
647
648
649 **Example1**: AA 00 13 88 00 00 00 00 00 00
650
651 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
652
653
654 **Example2**: AA 02 01 00
655
656 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
657
658
659
660 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
661
662 MOD6 Payload : total 11 bytes payload
663
664 [[image:image-20220524085923-1.png]]
665
666
667 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
668
669 [[image:image-20220524090106-2.png]]
670
671 * Each bits shows if the corresponding trigger has been configured.
672
673 **Example:**
674
675 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
676
677
678 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
679
680 [[image:image-20220524090249-3.png]]
681
682 * Each bits shows which status has been trigger on this uplink.
683
684 **Example:**
685
686 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
687
688
689 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
690
691 [[image:image-20220524090456-4.png]]
692
693 * Each bits shows which status has been trigger on this uplink.
694
695 **Example:**
696
697 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
698
699 00000101: Means both DI1 and DI2 trigger are enabled.
700
701
702 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
703
704 Downlink command to poll MOD6 status:
705
706 **AB 06**
707
708 When device got this command, it will send the MOD6 payload.
709
710
711
712 === 3.3.7 Payload Decoder ===
713
714 (((
715
716
717 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0>>https://www.dropbox.com/sh/wtrzu7avdtkmn3z/AACK5NwOMkU9jnvf1uCMuqrVa?dl=0]]
718 )))
719
720
721
722 == 3.4 ​Configure LT via AT or Downlink ==
723
724
725 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
726
727 (((
728 There are two kinds of Commands:
729 )))
730
731 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
732
733 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
734
735
736
737
738 === 3.4.1 Common Commands ===
739
740
741 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
742
743
744
745 === 3.4.2 Sensor related commands ===
746
747
748 ==== 3.4.2.1 Set Transmit Interval ====
749
750
751 Set device uplink interval.
752
753 * (% style="color:#037691" %)**AT Command:**
754
755 **AT+TDC=N **
756
757
758 **Example: **AT+TDC=30000. Means set interval to 30 seconds
759
760
761 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
762
763 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
764
765
766
767
768 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
769
770
771 Set work mode.
772
773 * (% style="color:#037691" %)**AT Command:**
774
775 **AT+MOD=N  **
776
777
778 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
779
780
781 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
782
783 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
784
785
786
787
788 ==== 3.4.2.3 Poll an uplink ====
789
790
791 * (% style="color:#037691" %)**AT Command:**
792
793 There is no AT Command to poll uplink
794
795
796 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
797
798 **0x08 FF     **~/~/ Poll an uplink
799
800 **Example**: 0x08FF, ask device to send an Uplink
801
802
803
804
805 ==== 3.4.2.4 Enable Trigger Mode ====
806
807
808 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
809
810 * (% style="color:#037691" %)**AT Command:**
811
812 **AT+ADDMOD6=1 or 0**
813
814 1: Enable Trigger Mode
815
816 0: Disable Trigger Mode
817
818
819 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
820
821 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
822
823
824
825
826 ==== 3.4.2.5 Poll trigger settings ====
827
828
829 Poll trigger settings,
830
831 * (% style="color:#037691" %)**AT Command:**
832
833 There is no AT Command for this feature.
834
835
836 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
837
838 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
839
840
841
842
843 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
844
845
846 Enable Disable DI1/DI2/DI2 as trigger,
847
848 * (% style="color:#037691" %)**AT Command:**
849
850 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
851
852
853 **Example:**
854
855 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
856
857 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
858
859 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
860
861
862
863
864 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
865
866
867 Set DI1 or DI3(for LT-33222-L) trigger.
868
869 * (% style="color:#037691" %)**AT Command:**
870
871 **AT+TRIG1=a,b**
872
873 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
874
875 b : delay timing.
876
877
878 **Example:**
879
880 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
881
882
883 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
884 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
885
886
887
888 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
889
890
891 Set DI2 trigger.
892
893 * (% style="color:#037691" %)**AT Command:**
894
895 **AT+TRIG2=a,b**
896
897
898 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
899
900 b : delay timing.
901
902
903 **Example:**
904
905 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
906
907
908 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
909
910 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
911
912
913
914
915 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
916
917
918 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
919
920 * (% style="color:#037691" %)**AT Command**
921
922 **AT+ACLIM**
923
924
925 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
926
927 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
928
929
930
931
932 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
933
934
935 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
936
937 * (% style="color:#037691" %)**AT Command**
938
939 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
940
941
942 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
943
944 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
945
946
947
948
949 ==== 3.4.2.11 Trigger – Set minimum interval ====
950
951
952 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
953
954 * (% style="color:#037691" %)**AT Command**
955
956 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
957
958
959 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
960
961 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
962
963 (((
964
965
966 (% style="color:red" %)Note: ATDC setting must be more than 5min
967 )))
968
969
970
971
972 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
973
974
975 * (% style="color:#037691" %)**AT Command**
976
977 There is no AT Command to control Digital Output
978
979
980 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
981 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
982
983 (((
984 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
985 )))
986
987 (((
988 01: Low,  00: High ,  11: No action
989 )))
990
991 [[image:image-20220524092754-5.png]]
992
993 (((
994 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
995 )))
996
997 (((
998 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
999 )))
1000
1001
1002
1003
1004 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1005
1006
1007 * (% style="color:#037691" %)**AT Command**
1008
1009 There is no AT Command to control Digital Output
1010
1011
1012 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1013
1014 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
1015
1016
1017 This is to control the digital output time of DO pin. Include four bytes:
1018
1019 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1020
1021 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1022
1023 01: DO pins will change back to original state after timeout.
1024
1025 00: DO pins will change to an inverter state after timeout 
1026
1027
1028 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1029
1030 [[image:image-20220524093238-6.png]]
1031
1032
1033 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1034
1035 [[image:image-20220524093328-7.png]]
1036
1037
1038 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1039
1040 [[image:image-20220524093351-8.png]]
1041
1042
1043 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1044
1045 Latching time. Unit: ms
1046
1047 Device will upload a packet if downlink code executes successfully.
1048
1049
1050 **Example payload:**
1051
1052 **~1. A9 01 01 01 01 07 D0**
1053
1054 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1055
1056 **2. A9 01 00 01 11 07 D0**
1057
1058 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1059
1060 **3. A9 00 00 00 00 07 D0**
1061
1062 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1063
1064 **4. A9 00 11 01 00 07 D0**
1065
1066 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1067
1068
1069
1070
1071 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1072
1073
1074 * (% style="color:#037691" %)**AT Command:**
1075
1076 There is no AT Command to control Relay Output
1077
1078
1079 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1080
1081 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1082
1083
1084 (((
1085 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1086 )))
1087
1088 (((
1089 01: Close ,  00: Open , 11: No action
1090 )))
1091
1092 (((
1093 [[image:image-20220524093724-9.png]]
1094 )))
1095
1096 Device will upload a packet if downlink code executes successfully.
1097
1098
1099
1100
1101 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1102
1103
1104 * (% style="color:#037691" %)**AT Command:**
1105
1106 There is no AT Command to control Relay Output
1107
1108
1109 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1110
1111 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1112
1113
1114 This is to control the relay output time of relay. Include four bytes:
1115
1116 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1117
1118 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1119
1120 01: Relays will change back to original state after timeout.
1121
1122 00: Relays will change to an inverter state after timeout
1123
1124
1125 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1126
1127 [[image:image-20220714135731-1.png||height="406" width="627"]]
1128
1129
1130 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1131
1132 Device will upload a packet if downlink code executes successfully.
1133
1134
1135 **Example payload:**
1136
1137 **~1. 05 01 11 07 D**
1138
1139 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1140
1141 **2. 05 01 10 07 D0**
1142
1143 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1144
1145 **3. 05 00 01 07 D0**
1146
1147 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1148
1149 **4. 05 00 00 07 D0**
1150
1151 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1152
1153
1154
1155
1156 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1157
1158
1159 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1160
1161 * (% style="color:#037691" %)**AT Command:**
1162
1163 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1164
1165
1166 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1167
1168 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1169
1170
1171
1172
1173 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1174
1175
1176 * (% style="color:#037691" %)**AT Command:**
1177
1178 **AT+SETCNT=aa,(bb cc dd ee) **
1179
1180 aa: 1: Set count1,
1181
1182 2: Set count2,
1183
1184 3: Set AV1 count
1185
1186 Bb cc dd ee: number to be set
1187
1188
1189 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1190
1191 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1192
1193
1194
1195
1196 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1197
1198
1199 Clear counting for counting mode
1200
1201 * (% style="color:#037691" %)**AT Command:**
1202
1203 **AT+CLRCOUNT ** ~/~/ clear all counting
1204
1205
1206 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1207
1208 **0x A6 01    ** ~/~/ clear all counting
1209
1210
1211
1212
1213 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1214
1215
1216 * (% style="color:#037691" %)**AT Command:**
1217
1218 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1219
1220
1221 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1222
1223 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1224
1225 (((
1226 range: aa bb cc:0 to 16777215,  (unit:second)
1227
1228
1229 )))
1230
1231
1232
1233 == 3.5 Integrate with Mydevice ==
1234
1235
1236 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1237
1238 (((
1239 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1240 )))
1241
1242 (((
1243 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1244
1245
1246 )))
1247
1248 [[image:image-20220719105525-1.png||height="377" width="677"]]
1249
1250
1251
1252 [[image:image-20220719110247-2.png||height="388" width="683"]]
1253
1254
1255 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1256
1257 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1258
1259 Search under The things network
1260
1261 [[image:1653356838789-523.png||height="337" width="740"]]
1262
1263
1264
1265 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1266
1267 [[image:image-20220524094909-1.png||height="335" width="729"]]
1268
1269
1270 [[image:image-20220524094909-2.png||height="337" width="729"]]
1271
1272
1273 [[image:image-20220524094909-3.png||height="338" width="727"]]
1274
1275
1276 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1277
1278
1279 [[image:image-20220524094909-5.png||height="341" width="734"]]
1280
1281
1282
1283 == 3.6 Interface Detail ==
1284
1285
1286 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1287
1288
1289 Support NPN Type sensor
1290
1291 [[image:1653356991268-289.png]]
1292
1293
1294
1295 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1296
1297
1298 (((
1299 The DI port of LT-22222-L can support NPN or PNP output sensor.
1300 )))
1301
1302 (((
1303 (((
1304 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1305
1306
1307 )))
1308 )))
1309
1310 [[image:1653357170703-587.png]]
1311
1312 (((
1313 (((
1314 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1315 )))
1316 )))
1317
1318 (((
1319
1320 )))
1321
1322 (((
1323 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1324 )))
1325
1326 (((
1327 This type of sensor will output a low signal GND when active.
1328 )))
1329
1330 * (((
1331 Connect sensor’s output to DI1-
1332 )))
1333 * (((
1334 Connect sensor’s VCC to DI1+.
1335 )))
1336
1337 (((
1338 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1339 )))
1340
1341 (((
1342 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1343 )))
1344
1345 (((
1346 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1347 )))
1348
1349 (((
1350
1351
1352
1353 )))
1354
1355 (((
1356 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1357 )))
1358
1359 (((
1360 This type of sensor will output a high signal (example 24v) when active.
1361 )))
1362
1363 * (((
1364 Connect sensor’s output to DI1+
1365 )))
1366 * (((
1367 Connect sensor’s GND DI1-.
1368 )))
1369
1370 (((
1371 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1372 )))
1373
1374 (((
1375 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1376 )))
1377
1378 (((
1379 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1380 )))
1381
1382 (((
1383
1384
1385
1386 )))
1387
1388 (((
1389 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1390 )))
1391
1392 (((
1393 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1394 )))
1395
1396 * (((
1397 Connect sensor’s output to DI1+ with a serial 50K resistor
1398 )))
1399 * (((
1400 Connect sensor’s GND DI1-.
1401 )))
1402
1403 (((
1404 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1405 )))
1406
1407 (((
1408 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1409 )))
1410
1411 (((
1412 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1413 )))
1414
1415
1416
1417 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1418
1419
1420 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1421
1422 [[image:1653357531600-905.png]]
1423
1424
1425
1426 === 3.6.4 Analog Input Interface ===
1427
1428
1429 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1430
1431
1432 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1433
1434 [[image:1653357592296-182.png]]
1435
1436 Example to connect a 4~~20mA sensor
1437
1438 We take the wind speed sensor as an example for reference only.
1439
1440
1441 **Specifications of the wind speed sensor:**
1442
1443 Red:  12~~24v
1444
1445 Yellow:  4~~20mA
1446
1447 Black:  GND
1448
1449
1450 **Connection diagram:**
1451
1452 [[image:1653357640609-758.png]]
1453
1454 [[image:1653357648330-671.png||height="155" width="733"]]
1455
1456
1457
1458 === 3.6.5 Relay Output ===
1459
1460
1461 (((
1462 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1463 )))
1464
1465 [[image:image-20220524100215-9.png]]
1466
1467 [[image:image-20220524100215-10.png||height="382" width="723"]]
1468
1469
1470
1471 == 3.7 LEDs Indicators ==
1472
1473
1474 [[image:image-20220524100748-11.png]]
1475
1476
1477
1478 = 4. Use AT Command =
1479
1480
1481 == 4.1 Access AT Command ==
1482
1483
1484 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1485
1486 [[image:1653358238933-385.png]]
1487
1488
1489 (((
1490 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1491 )))
1492
1493 [[image:1653358355238-883.png]]
1494
1495
1496 (((
1497 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1498 )))
1499
1500 (((
1501 AT+<CMD>?        : Help on <CMD>
1502 )))
1503
1504 (((
1505 AT+<CMD>         : Run <CMD>
1506 )))
1507
1508 (((
1509 AT+<CMD>=<value> : Set the value
1510 )))
1511
1512 (((
1513 AT+<CMD>=?       : Get the value
1514 )))
1515
1516 (((
1517 ATZ: Trig a reset of the MCU
1518 )))
1519
1520 (((
1521 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1522 )))
1523
1524 (((
1525 AT+DEUI: Get or Set the Device EUI
1526 )))
1527
1528 (((
1529 AT+DADDR: Get or Set the Device Address
1530 )))
1531
1532 (((
1533 AT+APPKEY: Get or Set the Application Key
1534 )))
1535
1536 (((
1537 AT+NWKSKEY: Get or Set the Network Session Key
1538 )))
1539
1540 (((
1541 AT+APPSKEY: Get or Set the Application Session Key
1542 )))
1543
1544 (((
1545 AT+APPEUI: Get or Set the Application EUI
1546 )))
1547
1548 (((
1549 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1550 )))
1551
1552 (((
1553 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1554 )))
1555
1556 (((
1557 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1558 )))
1559
1560 (((
1561 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1562 )))
1563
1564 (((
1565 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1566 )))
1567
1568 (((
1569 AT+RX2FQ: Get or Set the Rx2 window frequency
1570 )))
1571
1572 (((
1573 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1574 )))
1575
1576 (((
1577 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1578 )))
1579
1580 (((
1581 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1582 )))
1583
1584 (((
1585 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1586 )))
1587
1588 (((
1589 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1590 )))
1591
1592 (((
1593 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1594 )))
1595
1596 (((
1597 AT+NWKID: Get or Set the Network ID
1598 )))
1599
1600 (((
1601 AT+FCU: Get or Set the Frame Counter Uplink
1602 )))
1603
1604 (((
1605 AT+FCD: Get or Set the Frame Counter Downlink
1606 )))
1607
1608 (((
1609 AT+CLASS: Get or Set the Device Class
1610 )))
1611
1612 (((
1613 AT+JOIN: Join network
1614 )))
1615
1616 (((
1617 AT+NJS: Get OTAA Join Status
1618 )))
1619
1620 (((
1621 AT+SENDB: Send hexadecimal data along with the application port
1622 )))
1623
1624 (((
1625 AT+SEND: Send text data along with the application port
1626 )))
1627
1628 (((
1629 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1630 )))
1631
1632 (((
1633 AT+RECV: Print last received data in raw format
1634 )))
1635
1636 (((
1637 AT+VER: Get current image version and Frequency Band
1638 )))
1639
1640 (((
1641 AT+CFM: Get or Set the confirmation mode (0-1)
1642 )))
1643
1644 (((
1645 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1646 )))
1647
1648 (((
1649 AT+SNR: Get the SNR of the last received packet
1650 )))
1651
1652 (((
1653 AT+RSSI: Get the RSSI of the last received packet
1654 )))
1655
1656 (((
1657 AT+TDC: Get or set the application data transmission interval in ms
1658 )))
1659
1660 (((
1661 AT+PORT: Get or set the application port
1662 )))
1663
1664 (((
1665 AT+DISAT: Disable AT commands
1666 )))
1667
1668 (((
1669 AT+PWORD: Set password, max 9 digits
1670 )))
1671
1672 (((
1673 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1674 )))
1675
1676 (((
1677 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1678 )))
1679
1680 (((
1681 AT+CFG: Print all settings
1682 )))
1683
1684
1685
1686 == 4.2 Common AT Command Sequence ==
1687
1688
1689 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1690
1691 (((
1692
1693
1694 **If device has not joined network yet:**
1695 )))
1696
1697 (((
1698 (% style="background-color:#dcdcdc" %)123456
1699 )))
1700
1701 (((
1702 (% style="background-color:#dcdcdc" %)AT+FDR
1703 )))
1704
1705 (((
1706 (% style="background-color:#dcdcdc" %)123456
1707 )))
1708
1709 (((
1710 (% style="background-color:#dcdcdc" %)AT+NJM=0
1711 )))
1712
1713 (((
1714 (% style="background-color:#dcdcdc" %)ATZ
1715 )))
1716
1717
1718 (((
1719 **If device already joined network:**
1720 )))
1721
1722 (((
1723 (% style="background-color:#dcdcdc" %)AT+NJM=0
1724 )))
1725
1726 (((
1727 (% style="background-color:#dcdcdc" %)ATZ
1728 )))
1729
1730
1731
1732 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1733
1734 (((
1735
1736
1737 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1738 )))
1739
1740 (((
1741 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1742 )))
1743
1744 (((
1745 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1746 )))
1747
1748 (((
1749 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1750 )))
1751
1752 (((
1753 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1754 )))
1755
1756 (((
1757 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1758 )))
1759
1760 (((
1761 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1762 )))
1763
1764 (((
1765 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1766 )))
1767
1768 (((
1769 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1770 )))
1771
1772 (((
1773 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1774 )))
1775
1776 (((
1777 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1778 )))
1779
1780 (((
1781 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1782 )))
1783
1784 (((
1785 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1786
1787
1788 )))
1789
1790 (((
1791 (% style="color:red" %)**Note:**
1792 )))
1793
1794 (((
1795 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1796 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1797 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1798 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1799 )))
1800
1801 (((
1802 [[image:1653359097980-169.png||height="188" width="729"]]
1803 )))
1804
1805 (((
1806
1807 )))
1808
1809
1810 === 4.2.3 Change to Class A ===
1811
1812
1813 If sensor JOINED
1814 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1815 ATZ
1816
1817
1818
1819 = 5. FAQ =
1820
1821
1822 == 5.1 How to upgrade the image? ==
1823
1824
1825 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1826
1827 * Support new features
1828 * For bug fix
1829 * Change LoRaWAN bands.
1830
1831 Below shows the hardware connection for how to upload an image to the LT:
1832
1833 [[image:1653359603330-121.png]]
1834
1835
1836 (((
1837 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1838 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1839 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1840
1841
1842 (% style="color:blue" %)**For LT-22222-L**(%%):
1843 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
1844
1845
1846 )))
1847
1848 [[image:image-20220524103407-12.png]]
1849
1850 [[image:image-20220524103429-13.png]]
1851
1852 [[image:image-20220524104033-15.png]]
1853
1854
1855 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1856
1857
1858 [[image:1653360054704-518.png||height="186" width="745"]]
1859
1860
1861 (((
1862 (((
1863
1864
1865 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1866
1867
1868 )))
1869 )))
1870
1871 (((
1872 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1873 )))
1874
1875 (((
1876
1877
1878
1879 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1880
1881
1882 )))
1883
1884 (((
1885 (((
1886 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1887 )))
1888 )))
1889
1890 (((
1891 (((
1892 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1893
1894
1895 )))
1896 )))
1897
1898 (((
1899 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1900 )))
1901
1902 (((
1903 [[image:1653360231087-571.png||height="401" width="727"]]
1904 )))
1905
1906 (((
1907 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
1908 )))
1909
1910
1911 (((
1912 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1913 )))
1914
1915 (((
1916 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1917 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1918 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1919 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1920 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1921 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1922 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1923 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1924 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1925 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1926 )))
1927
1928
1929 (((
1930 As shown in below:
1931 )))
1932
1933 [[image:1653360498588-932.png||height="485" width="726"]]
1934
1935
1936
1937 == 5.4 Can I see counting event in Serial? ==
1938
1939
1940 (((
1941 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
1942
1943
1944
1945 == 5.5 Can i use point to point communication for LT-22222-L? ==
1946
1947
1948 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1949
1950
1951
1952 )))
1953
1954 (((
1955 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1956
1957
1958 If the device is not shut down, but directly powered off.
1959
1960 It will default that this is a power-off state.
1961
1962 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1963
1964 After restart, the status before power failure will be read from flash.
1965
1966
1967
1968 = 6. Trouble Shooting =
1969 )))
1970
1971 (((
1972 (((
1973 == 6.1 Downlink doesn't work, how to solve it? ==
1974
1975
1976 )))
1977 )))
1978
1979 (((
1980 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1981 )))
1982
1983 (((
1984
1985
1986
1987 == 6.2 Have trouble to upload image. ==
1988
1989
1990 )))
1991
1992 (((
1993 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1994 )))
1995
1996 (((
1997
1998
1999
2000 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2001
2002
2003 )))
2004
2005 (((
2006 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2007 )))
2008
2009
2010
2011 = 7. Order Info =
2012
2013
2014 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2015
2016 (% style="color:#4f81bd" %)**XXX:**
2017
2018 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2019 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2020 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2021 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2022 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2023 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2024 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2025 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2026 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2027
2028
2029
2030
2031 = 8. Packing Info =
2032
2033
2034 **Package Includes**:
2035
2036 * LT-22222-L I/O Controller x 1
2037 * Stick Antenna for LoRa RF part x 1
2038 * Bracket for controller x1
2039 * Program cable x 1
2040
2041 **Dimension and weight**:
2042
2043 * Device Size: 13.5 x 7 x 3 cm
2044 * Device Weight: 105g
2045 * Package Size / pcs : 14.5 x 8 x 5 cm
2046 * Weight / pcs : 170g
2047
2048
2049
2050
2051 = 9. Support =
2052
2053
2054 * (((
2055 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2056 )))
2057 * (((
2058 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2059
2060
2061
2062
2063
2064 )))
2065
2066 = 10. Reference​​​​​ =
2067
2068
2069 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2070 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2071 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2072
2073