Version 83.7 by Xiaoling on 2022/06/29 17:28

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
24 )))
25
26 (((
27 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 )))
29
30 (((
31 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 )))
33
34 (((
35 The use environment includes:
36 )))
37
38 (((
39 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
40 )))
41
42 (((
43 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
44 )))
45
46 (((
47 [[image:1653295757274-912.png]]
48
49
50 )))
51
52
53 == 1.2  Specifications ==
54
55 (((
56
57
58 **Hardware System:**
59 )))
60
61 * (((
62 STM32L072CZT6 MCU
63 )))
64 * (((
65 SX1276/78 Wireless Chip 
66 )))
67 * (((
68 (((
69 Power Consumption:
70 )))
71
72 * (((
73 Idle: 4mA@12v
74 )))
75 * (((
76 20dB Transmit: 34mA@12v
77 )))
78 )))
79
80 (((
81
82
83 **Interface for Model: LT22222-L:**
84 )))
85
86 * (((
87 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
88 )))
89 * (((
90 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
91 )))
92 * (((
93 2 x Relay Output (5A@250VAC / 30VDC)
94 )))
95 * (((
96 2 x 0~~20mA Analog Input (res:0.01mA)
97 )))
98 * (((
99 2 x 0~~30V Analog Input (res:0.01v)
100 )))
101 * (((
102 Power Input 7~~ 24V DC. 
103 )))
104
105 (((
106
107
108 **LoRa Spec:**
109 )))
110
111 * (((
112 (((
113 Frequency Range:
114 )))
115
116 * (((
117 Band 1 (HF): 862 ~~ 1020 Mhz
118 )))
119 * (((
120 Band 2 (LF): 410 ~~ 528 Mhz
121 )))
122 )))
123 * (((
124 168 dB maximum link budget.
125 )))
126 * (((
127 +20 dBm - 100 mW constant RF output vs.
128 )))
129 * (((
130 +14 dBm high efficiency PA.
131 )))
132 * (((
133 Programmable bit rate up to 300 kbps.
134 )))
135 * (((
136 High sensitivity: down to -148 dBm.
137 )))
138 * (((
139 Bullet-proof front end: IIP3 = -12.5 dBm.
140 )))
141 * (((
142 Excellent blocking immunity.
143 )))
144 * (((
145 Low RX current of 10.3 mA, 200 nA register retention.
146 )))
147 * (((
148 Fully integrated synthesizer with a resolution of 61 Hz.
149 )))
150 * (((
151 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
152 )))
153 * (((
154 Built-in bit synchronizer for clock recovery.
155 )))
156 * (((
157 Preamble detection.
158 )))
159 * (((
160 127 dB Dynamic Range RSSI.
161 )))
162 * (((
163 Automatic RF Sense and CAD with ultra-fast AFC.
164 )))
165 * (((
166 Packet engine up to 256 bytes with CRC.
167
168
169
170 )))
171
172 == 1.3 Features ==
173
174 * LoRaWAN Class A & Class C protocol
175 * Optional Customized LoRa Protocol
176 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
177 * AT Commands to change parameters
178 * Remote configure parameters via LoRa Downlink
179 * Firmware upgradable via program port
180 * Counting
181
182 == 1.4  Applications ==
183
184 * Smart Buildings & Home Automation
185 * Logistics and Supply Chain Management
186 * Smart Metering
187 * Smart Agriculture
188 * Smart Cities
189 * Smart Factory
190
191 == 1.5 Hardware Variants ==
192
193 (% border="1" style="background-color:#f7faff; width:500px" %)
194 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
195 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
196 * 2 x Digital Input (Bi-direction)
197 * 2 x Digital Output
198 * 2 x Relay Output (5A@250VAC / 30VDC)
199 * 2 x 0~~20mA Analog Input (res:0.01mA)
200 * 2 x 0~~30V Analog Input (res:0.01v)
201 * 1 x Counting Port
202 )))
203
204 = 2. Power ON Device =
205
206 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
207
208 (((
209 PWR will on when device is properly powered.
210 )))
211
212 [[image:1653297104069-180.png]]
213
214
215
216 = 3. Operation Mode =
217
218 == 3.1 How it works? ==
219
220 (((
221 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
222 )))
223
224 (((
225 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
226 )))
227
228
229 == 3.2 Example to join LoRaWAN network ==
230
231 (((
232 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
233 )))
234
235 [[image:image-20220523172350-1.png||height="266" width="864"]]
236
237
238 (((
239 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
240 )))
241
242 (((
243 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
244 )))
245
246 (((
247 Each LT is shipped with a sticker with the default device EUI as below:
248 )))
249
250 [[image:1653297924498-393.png]]
251
252
253 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
254
255 Add APP EUI in the application.
256
257 [[image:1653297955910-247.png||height="321" width="716"]]
258
259
260 Add APP KEY and DEV EUI
261
262 [[image:1653298023685-319.png]]
263
264
265 (((
266 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
267 )))
268
269 [[image:1653298044601-602.png||height="405" width="709"]]
270
271
272
273 == 3.3 Uplink Payload ==
274
275 There are five working modes + one interrupt mode on LT for different type application:
276
277 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
278 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
279 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
280 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
281 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
282 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
283
284
285
286 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
287
288 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
289
290 [[image:image-20220523174024-3.png]]
291
292 (((
293
294
295 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
296 )))
297
298 [[image:image-20220523174254-4.png]]
299
300 * RO is for relay. ROx=1 : close,ROx=0 always open.
301 * DI is for digital input. DIx=1: high or float, DIx=0: low.
302 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
303
304 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
305
306 For example if payload is: [[image:image-20220523175847-2.png]]
307
308
309 **The value for the interface is:  **
310
311 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
312
313 AVI2 channel voltage is 0x04AC/1000=1.196V
314
315 ACI1 channel current is 0x1310/1000=4.880mA
316
317 ACI2 channel current is 0x1300/1000=4.864mA
318
319 The last byte 0xAA= 10101010(B) means
320
321 * [1] RO1 relay channel is close and the RO1 LED is ON.
322 * [0] RO2 relay channel is open and RO2 LED is OFF;
323
324
325
326 **LT22222-L:**
327
328 * [1] DI2 channel is high input and DI2 LED is ON;
329 * [0] DI1 channel is low input;
330
331 * [0] DO3 channel output state
332 ** DO3 is float in case no load between DO3 and V+.;
333 ** DO3 is high in case there is load between DO3 and V+.
334 ** DO3 LED is off in both case
335 * [1] DO2 channel output is low and DO2 LED is ON.
336 * [0] DO1 channel output state
337 ** DO1 is float in case no load between DO1 and V+.;
338 ** DO1 is high in case there is load between DO1 and V+.
339 ** DO1 LED is off in both case
340
341
342
343 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
344
345
346 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
347
348 (((
349 Total : 11 bytes payload
350 )))
351
352 [[image:image-20220523180452-3.png]]
353
354
355 (((
356 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
357 )))
358
359 [[image:image-20220523180506-4.png]]
360
361 * RO is for relay. ROx=1 : close,ROx=0 always open.
362 * FIRST: Indicate this is the first packet after join network.
363 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
364
365 (((
366 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
367 )))
368
369 (((
370
371
372 **To use counting mode, please run:**
373 )))
374
375 (% class="box infomessage" %)
376 (((
377 (((
378 **AT+MOD=2**
379
380 **ATZ**
381 )))
382 )))
383
384 (((
385
386
387 (% style="color:#4f81bd" %)**AT Commands for counting:**
388 )))
389
390 (((
391 **For LT22222-L:**
392
393
394 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
395
396 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
397
398 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
399
400 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
401
402 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
403
404 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
405 )))
406
407
408
409 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
410
411 **LT22222-L**: This mode the DI1 is used as a counting pin.
412
413 [[image:image-20220523181246-5.png]]
414
415 (((
416
417
418 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
419 )))
420
421 [[image:image-20220523181301-6.png]]
422
423 * RO is for relay. ROx=1 : close,ROx=0 always open.
424 * FIRST: Indicate this is the first packet after join network.
425 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
426
427 (((
428 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
429 )))
430
431
432 (((
433 **To use counting mode, please run:**
434 )))
435
436 (% class="box infomessage" %)
437 (((
438 (((
439 **AT+MOD=3**
440
441 **ATZ**
442 )))
443 )))
444
445 (((
446 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
447 )))
448
449
450
451 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
452
453
454 **LT22222-L**: This mode the DI1 is used as a counting pin.
455
456 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
457
458 [[image:image-20220523181903-8.png]]
459
460
461 (((
462 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
463 )))
464
465 [[image:image-20220523181727-7.png]]
466
467 * RO is for relay. ROx=1 : close,ROx=0 always open.
468 * FIRST: Indicate this is the first packet after join network.
469 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
470
471 (((
472 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
473 )))
474
475 (((
476
477
478 **To use this mode, please run:**
479 )))
480
481 (% class="box infomessage" %)
482 (((
483 (((
484 **AT+MOD=4**
485
486 **ATZ**
487 )))
488 )))
489
490
491
492 (((
493 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
494 )))
495
496 (((
497
498
499 **Plus below command for AVI1 Counting:**
500
501
502 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
503
504 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
505
506 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
507
508 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
509 )))
510
511
512
513 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
514
515
516 **LT22222-L**: This mode the DI1 is used as a counting pin.
517
518 [[image:image-20220523182334-9.png]]
519
520 (((
521
522
523 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
524 )))
525
526 * RO is for relay. ROx=1 : close,ROx=0 always open.
527 * FIRST: Indicate this is the first packet after join network.
528 * (((
529 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
530 )))
531
532 (((
533 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
534 )))
535
536 (((
537
538
539 **To use this mode, please run:**
540 )))
541
542 (% class="box infomessage" %)
543 (((
544 (((
545 **AT+MOD=5**
546
547 **ATZ**
548 )))
549 )))
550
551 (((
552 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
553 )))
554
555
556
557 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
558
559
560 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
561
562 For example, if user has configured below commands:
563
564 * **AT+MOD=1 ** **~-~->**  The normal working mode
565 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
566
567 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
568
569 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
570 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
571
572 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
573
574 (% style="color:#4f81bd" %)**Trigger base on voltage**:
575
576 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
577
578 **Example:**
579
580 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
581
582 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
583
584
585
586 (% style="color:#4f81bd" %)**Trigger base on current**:
587
588 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
589
590 **Example:**
591
592 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
593
594
595
596 (% style="color:#4f81bd" %)**Trigger base on DI status**:
597
598 DI status trigger Flag.
599
600 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
601
602
603 **Example:**
604
605 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
606
607
608 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
609
610 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
611
612 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
613
614 AA: Code for this downlink Command:
615
616 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
617
618 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
619
620 yy2 yy2: AC1 or AV1 high limit.
621
622 yy3 yy3: AC2 or AV2 low limit.
623
624 Yy4 yy4: AC2 or AV2 high limit.
625
626
627 **Example1**: AA 00 13 88 00 00 00 00 00 00
628
629 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
630
631
632 **Example2**: AA 02 01 00
633
634 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
635
636
637
638 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
639
640 MOD6 Payload : total 11 bytes payload
641
642 [[image:image-20220524085923-1.png]]
643
644
645 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
646
647 [[image:image-20220524090106-2.png]]
648
649 * Each bits shows if the corresponding trigger has been configured.
650
651 **Example:**
652
653 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
654
655
656 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
657
658 [[image:image-20220524090249-3.png]]
659
660 * Each bits shows which status has been trigger on this uplink.
661
662 **Example:**
663
664 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
665
666
667 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
668
669 [[image:image-20220524090456-4.png]]
670
671 * Each bits shows which status has been trigger on this uplink.
672
673 **Example:**
674
675 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
676
677 00000101: Means both DI1 and DI2 trigger are enabled.
678
679
680 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
681
682 Downlink command to poll MOD6 status:
683
684 **AB 06**
685
686 When device got this command, it will send the MOD6 payload.
687
688
689
690 === 3.3.7 Payload Decoder ===
691
692 (((
693
694
695 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
696
697
698 )))
699
700
701 == 3.4 ​Configure LT via AT or Downlink ==
702
703 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
704
705 (((
706 There are two kinds of Commands:
707 )))
708
709 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
710
711 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
712
713 === 3.4.1 Common Commands ===
714
715 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
716
717
718
719 === 3.4.2 Sensor related commands ===
720
721 ==== 3.4.2.1 Set Transmit Interval ====
722
723 Set device uplink interval.
724
725 * (% style="color:#037691" %)**AT Command:**
726
727 **AT+TDC=N **
728
729
730 **Example: **AT+TDC=30000. Means set interval to 30 seconds
731
732
733 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
734
735 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
736
737
738
739
740 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
741
742 Set work mode.
743
744 * (% style="color:#037691" %)**AT Command:**
745
746 **AT+MOD=N  **
747
748
749 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
750
751
752 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
753
754 **0x0A aa    ** ~/~/ Same as AT+MOD=aa
755
756
757
758
759 ==== 3.4.2.3 Poll an uplink ====
760
761 * (% style="color:#037691" %)**AT Command:**
762
763 There is no AT Command to poll uplink
764
765
766 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
767
768 **0x08 FF     **~/~/ Poll an uplink
769
770 **Example**: 0x08FF, ask device to send an Uplink
771
772
773
774 ==== 3.4.2.4 Enable Trigger Mode ====
775
776 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
777
778 * (% style="color:#037691" %)**AT Command:**
779
780 **AT+ADDMOD6=1 or 0**
781
782 1: Enable Trigger Mode
783
784 0: Disable Trigger Mode
785
786
787 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
788
789 **0x0A 06 aa    ** ~/~/ Same as AT+ADDMOD6=aa
790
791
792
793
794 ==== 3.4.2.5 Poll trigger settings ====
795
796 Poll trigger settings,
797
798 * (% style="color:#037691" %)**AT Command:**
799
800 There is no AT Command for this feature.
801
802
803 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
804
805 **0xAB 06         **~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
806
807
808
809
810 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
811
812 Enable Disable DI1/DI2/DI2 as trigger,
813
814 * (% style="color:#037691" %)**AT Command:**
815
816 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
817
818
819 **Example:**
820
821 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
822
823 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
824
825 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
826
827
828
829
830 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
831
832 Set DI1 or DI3(for LT-33222-L) trigger.
833
834 * (% style="color:#037691" %)**AT Command:**
835
836 **AT+TRIG1=a,b**
837
838 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
839
840 b : delay timing.
841
842
843 **Example:**
844
845 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
846
847
848 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
849 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
850
851 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
852
853 Set DI2 trigger.
854
855 * (% style="color:#037691" %)**AT Command:**
856
857 **AT+TRIG2=a,b**
858
859
860 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
861
862 b : delay timing.
863
864
865 **Example:**
866
867 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
868
869
870 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
871
872 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
873
874
875
876
877 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
878
879 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
880
881 * (% style="color:#037691" %)**AT Command**
882
883 **AT+ACLIM**
884
885
886 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
887
888 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
889
890
891
892
893 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
894
895 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
896
897 * (% style="color:#037691" %)**AT Command**
898
899 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
900
901
902 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
903
904 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
905
906
907
908
909 ==== 3.4.2.11 Trigger – Set minimum interval ====
910
911 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
912
913 * (% style="color:#037691" %)**AT Command**
914
915 **AT+ATDC=5        ** Device won't response the second trigger within 5 minute after the first trigger.
916
917
918 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
919
920 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
921
922 (((
923
924
925 (% style="color:red" %)Note: ATDC setting must be more than 5min
926 )))
927
928
929
930 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
931
932 * (% style="color:#037691" %)**AT Command**
933
934 There is no AT Command to control Digital Output
935
936
937 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
938 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
939
940 (((
941 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
942 )))
943
944 (((
945 01: Low,  00: High ,  11: No action
946 )))
947
948 [[image:image-20220524092754-5.png]]
949
950 (((
951 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
952 )))
953
954 (((
955 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
956 )))
957
958
959
960
961 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
962
963 * (% style="color:#037691" %)**AT Command**
964
965 There is no AT Command to control Digital Output
966
967
968 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
969
970 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
971
972
973 This is to control the digital output time of DO pin. Include four bytes:
974
975 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
976
977 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
978
979 01: DO pins will change back to original state after timeout.
980
981 00: DO pins will change to an inverter state after timeout 
982
983
984 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
985
986 [[image:image-20220524093238-6.png]]
987
988
989 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
990
991 [[image:image-20220524093328-7.png]]
992
993
994 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
995
996 [[image:image-20220524093351-8.png]]
997
998
999 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1000
1001 Latching time. Unit: ms
1002
1003 Device will upload a packet if downlink code executes successfully.
1004
1005
1006 **Example payload:**
1007
1008 **~1. A9 01 01 01 01 07 D0**
1009
1010 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1011
1012 **2. A9 01 00 01 11 07 D0**
1013
1014 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1015
1016 **3. A9 00 00 00 00 07 D0**
1017
1018 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1019
1020 **4. A9 00 11 01 00 07 D0**
1021
1022 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1023
1024
1025
1026
1027 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1028
1029 * (% style="color:#037691" %)**AT Command:**
1030
1031 There is no AT Command to control Relay Output
1032
1033
1034 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1035
1036 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1037
1038
1039 (((
1040 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1041 )))
1042
1043 (((
1044 01: Close ,  00: Open , 11: No action
1045 )))
1046
1047 (((
1048 [[image:image-20220524093724-9.png]]
1049 )))
1050
1051 Device will upload a packet if downlink code executes successfully.
1052
1053
1054
1055
1056 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1057
1058 * (% style="color:#037691" %)**AT Command:**
1059
1060 There is no AT Command to control Relay Output
1061
1062
1063 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1064
1065 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1066
1067
1068 This is to control the relay output time of relay. Include four bytes:
1069
1070 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1071
1072 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1073
1074 01: Relays will change back to original state after timeout.
1075
1076 00: Relays will change to an inverter state after timeout
1077
1078
1079 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1080
1081 [[image:image-20220524093831-10.png]]
1082
1083
1084 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1085
1086 Device will upload a packet if downlink code executes successfully.
1087
1088
1089 **Example payload:**
1090
1091 **~1. 05 01 11 07 D0**
1092
1093 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1094
1095 **2. 05 01 10 07 D0**
1096
1097 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1098
1099 **3. 05 00 01 07 D0**
1100
1101 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1102
1103 **4. 05 00 00 07 D0**
1104
1105 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1106
1107
1108
1109
1110 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1111
1112 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1113
1114 * (% style="color:#037691" %)**AT Command:**
1115
1116 **AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1117
1118
1119 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1120
1121 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1122
1123
1124
1125
1126 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1127
1128 * (% style="color:#037691" %)**AT Command:**
1129
1130 **AT+SETCNT=aa,(bb cc dd ee) **
1131
1132 aa: 1: Set count1,
1133
1134 2: Set count2,
1135
1136 3: Set AV1 count
1137
1138 Bb cc dd ee: number to be set
1139
1140
1141 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1142
1143 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1144
1145
1146
1147
1148 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1149
1150 Clear counting for counting mode
1151
1152 * (% style="color:#037691" %)**AT Command:**
1153
1154 **AT+CLRCOUNT ** ~/~/ clear all counting
1155
1156
1157 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1158
1159 **0x A6 01    ** ~/~/ clear all counting
1160
1161
1162
1163
1164 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1165
1166 * (% style="color:#037691" %)**AT Command:**
1167
1168 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1169
1170
1171 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1172
1173 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1174
1175 (((
1176 range: aa bb cc:0 to 16777215,  (unit:second)
1177
1178
1179 )))
1180
1181
1182
1183 == 3.5 Integrate with Mydevice ==
1184
1185 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1186
1187 (((
1188 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1189 )))
1190
1191 (((
1192 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1193 )))
1194
1195 [[image:1653356737703-362.png||height="232" width="732"]]
1196
1197 [[image:image-20220524094641-11.png||height="390" width="723"]]
1198
1199
1200 [[image:image-20220524094641-12.png||height="402" width="718"]]
1201
1202
1203 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1204
1205 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1206
1207 Search under The things network
1208
1209 [[image:1653356838789-523.png||height="337" width="740"]]
1210
1211
1212
1213 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1214
1215 [[image:image-20220524094909-1.png||height="335" width="729"]]
1216
1217
1218 [[image:image-20220524094909-2.png||height="337" width="729"]]
1219
1220
1221 [[image:image-20220524094909-3.png||height="338" width="727"]]
1222
1223
1224 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1225
1226
1227 [[image:image-20220524094909-5.png||height="341" width="734"]]
1228
1229
1230
1231 == 3.6 Interface Detail ==
1232
1233 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1234
1235 Support NPN Type sensor
1236
1237 [[image:1653356991268-289.png]]
1238
1239
1240
1241 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1242
1243 (((
1244 The DI port of LT-22222-L can support NPN or PNP output sensor.
1245 )))
1246
1247 (((
1248 (((
1249 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1250 )))
1251 )))
1252
1253 [[image:1653357170703-587.png]]
1254
1255 (((
1256 (((
1257 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1258 )))
1259 )))
1260
1261 (((
1262
1263 )))
1264
1265 (((
1266 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1267 )))
1268
1269 (((
1270 This type of sensor will output a low signal GND when active.
1271 )))
1272
1273 * (((
1274 Connect sensor’s output to DI1-
1275 )))
1276 * (((
1277 Connect sensor’s VCC to DI1+.
1278 )))
1279
1280 (((
1281 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1282 )))
1283
1284 (((
1285 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1286 )))
1287
1288 (((
1289 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1290 )))
1291
1292 (((
1293
1294 )))
1295
1296 (((
1297 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1298 )))
1299
1300 (((
1301 This type of sensor will output a high signal (example 24v) when active.
1302 )))
1303
1304 * (((
1305 Connect sensor’s output to DI1+
1306 )))
1307 * (((
1308 Connect sensor’s GND DI1-.
1309 )))
1310
1311 (((
1312 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1313 )))
1314
1315 (((
1316 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1317 )))
1318
1319 (((
1320 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1321 )))
1322
1323 (((
1324
1325 )))
1326
1327 (((
1328 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1329 )))
1330
1331 (((
1332 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1333 )))
1334
1335 * (((
1336 Connect sensor’s output to DI1+ with a serial 50K resistor
1337 )))
1338 * (((
1339 Connect sensor’s GND DI1-.
1340 )))
1341
1342 (((
1343 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1344 )))
1345
1346 (((
1347 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1348 )))
1349
1350 (((
1351 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1352 )))
1353
1354
1355
1356 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1357
1358 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1359
1360 [[image:1653357531600-905.png]]
1361
1362
1363
1364 === 3.6.4 Analog Input Interface ===
1365
1366 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1367
1368
1369 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1370
1371 [[image:1653357592296-182.png]]
1372
1373 Example to connect a 4~~20mA sensor
1374
1375 We take the wind speed sensor as an example for reference only.
1376
1377
1378 **Specifications of the wind speed sensor:**
1379
1380 Red:  12~~24v
1381
1382 Yellow:  4~~20mA
1383
1384 Black:  GND
1385
1386
1387 **Connection diagram:**
1388
1389 [[image:1653357640609-758.png]]
1390
1391 [[image:1653357648330-671.png||height="155" width="733"]]
1392
1393
1394
1395 === 3.6.5 Relay Output ===
1396
1397 (((
1398 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1399 )))
1400
1401 [[image:image-20220524100215-9.png]]
1402
1403 [[image:image-20220524100215-10.png||height="382" width="723"]]
1404
1405
1406
1407 == 3.7 LEDs Indicators ==
1408
1409 [[image:image-20220524100748-11.png]]
1410
1411
1412
1413 = 4. Use AT Command =
1414
1415 == 4.1 Access AT Command ==
1416
1417 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1418
1419 [[image:1653358238933-385.png]]
1420
1421
1422 (((
1423 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1424 )))
1425
1426 [[image:1653358355238-883.png]]
1427
1428
1429 (((
1430 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1431 )))
1432
1433 (((
1434 AT+<CMD>?        : Help on <CMD>
1435 )))
1436
1437 (((
1438 AT+<CMD>         : Run <CMD>
1439 )))
1440
1441 (((
1442 AT+<CMD>=<value> : Set the value
1443 )))
1444
1445 (((
1446 AT+<CMD>=?       : Get the value
1447 )))
1448
1449 (((
1450 ATZ: Trig a reset of the MCU
1451 )))
1452
1453 (((
1454 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1455 )))
1456
1457 (((
1458 AT+DEUI: Get or Set the Device EUI
1459 )))
1460
1461 (((
1462 AT+DADDR: Get or Set the Device Address
1463 )))
1464
1465 (((
1466 AT+APPKEY: Get or Set the Application Key
1467 )))
1468
1469 (((
1470 AT+NWKSKEY: Get or Set the Network Session Key
1471 )))
1472
1473 (((
1474 AT+APPSKEY: Get or Set the Application Session Key
1475 )))
1476
1477 (((
1478 AT+APPEUI: Get or Set the Application EUI
1479 )))
1480
1481 (((
1482 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1483 )))
1484
1485 (((
1486 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1487 )))
1488
1489 (((
1490 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1491 )))
1492
1493 (((
1494 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1495 )))
1496
1497 (((
1498 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1499 )))
1500
1501 (((
1502 AT+RX2FQ: Get or Set the Rx2 window frequency
1503 )))
1504
1505 (((
1506 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1507 )))
1508
1509 (((
1510 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1511 )))
1512
1513 (((
1514 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1515 )))
1516
1517 (((
1518 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1519 )))
1520
1521 (((
1522 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1523 )))
1524
1525 (((
1526 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1527 )))
1528
1529 (((
1530 AT+NWKID: Get or Set the Network ID
1531 )))
1532
1533 (((
1534 AT+FCU: Get or Set the Frame Counter Uplink
1535 )))
1536
1537 (((
1538 AT+FCD: Get or Set the Frame Counter Downlink
1539 )))
1540
1541 (((
1542 AT+CLASS: Get or Set the Device Class
1543 )))
1544
1545 (((
1546 AT+JOIN: Join network
1547 )))
1548
1549 (((
1550 AT+NJS: Get OTAA Join Status
1551 )))
1552
1553 (((
1554 AT+SENDB: Send hexadecimal data along with the application port
1555 )))
1556
1557 (((
1558 AT+SEND: Send text data along with the application port
1559 )))
1560
1561 (((
1562 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1563 )))
1564
1565 (((
1566 AT+RECV: Print last received data in raw format
1567 )))
1568
1569 (((
1570 AT+VER: Get current image version and Frequency Band
1571 )))
1572
1573 (((
1574 AT+CFM: Get or Set the confirmation mode (0-1)
1575 )))
1576
1577 (((
1578 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1579 )))
1580
1581 (((
1582 AT+SNR: Get the SNR of the last received packet
1583 )))
1584
1585 (((
1586 AT+RSSI: Get the RSSI of the last received packet
1587 )))
1588
1589 (((
1590 AT+TDC: Get or set the application data transmission interval in ms
1591 )))
1592
1593 (((
1594 AT+PORT: Get or set the application port
1595 )))
1596
1597 (((
1598 AT+DISAT: Disable AT commands
1599 )))
1600
1601 (((
1602 AT+PWORD: Set password, max 9 digits
1603 )))
1604
1605 (((
1606 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1607 )))
1608
1609 (((
1610 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1611 )))
1612
1613 (((
1614 AT+CFG: Print all settings
1615 )))
1616
1617
1618
1619 == 4.2 Common AT Command Sequence ==
1620
1621 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1622
1623 (((
1624
1625
1626 **If device has not joined network yet:**
1627 )))
1628
1629 (((
1630 (% style="background-color:#dcdcdc" %)123456
1631 )))
1632
1633 (((
1634 (% style="background-color:#dcdcdc" %)AT+FDR
1635 )))
1636
1637 (((
1638 (% style="background-color:#dcdcdc" %)123456
1639 )))
1640
1641 (((
1642 (% style="background-color:#dcdcdc" %)AT+NJM=0
1643 )))
1644
1645 (((
1646 (% style="background-color:#dcdcdc" %)ATZ
1647 )))
1648
1649
1650 (((
1651 **If device already joined network:**
1652 )))
1653
1654 (((
1655 (% style="background-color:#dcdcdc" %)AT+NJM=0
1656 )))
1657
1658 (((
1659 (% style="background-color:#dcdcdc" %)ATZ
1660 )))
1661
1662
1663
1664 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1665
1666 (((
1667
1668
1669 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1670 )))
1671
1672 (((
1673 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1674 )))
1675
1676 (((
1677 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1678 )))
1679
1680 (((
1681 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1682 )))
1683
1684 (((
1685 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1686 )))
1687
1688 (((
1689 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1690 )))
1691
1692 (((
1693 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1694 )))
1695
1696 (((
1697 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1698 )))
1699
1700 (((
1701 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1702 )))
1703
1704 (((
1705 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1706 )))
1707
1708 (((
1709 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1710 )))
1711
1712 (((
1713 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1714 )))
1715
1716 (((
1717 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1718
1719
1720 )))
1721
1722 (((
1723 (% style="color:red" %)**Note:**
1724 )))
1725
1726 (((
1727 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1728 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1729 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1730 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1731 )))
1732
1733 (((
1734 [[image:1653359097980-169.png||height="188" width="729"]]
1735 )))
1736
1737 (((
1738
1739 )))
1740
1741
1742 === 4.2.3 Change to Class A ===
1743
1744 If sensor JOINED
1745 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1746 ATZ
1747
1748
1749 = 5. FAQ =
1750
1751 == 5.1 How to upgrade the image? ==
1752
1753
1754 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1755
1756 * Support new features
1757 * For bug fix
1758 * Change LoRaWAN bands.
1759
1760 Below shows the hardware connection for how to upload an image to the LT:
1761
1762 [[image:1653359603330-121.png]]
1763
1764
1765 (((
1766 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1767 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1768 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1769
1770
1771 (% style="color:blue" %)**For LT-22222-L**(%%):
1772 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1773 )))
1774
1775 [[image:image-20220524103407-12.png]]
1776
1777 [[image:image-20220524103429-13.png]]
1778
1779 [[image:image-20220524104033-15.png]]
1780
1781
1782 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1783
1784 [[image:1653360054704-518.png||height="186" width="745"]]
1785
1786
1787 (((
1788 (((
1789
1790
1791 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1792 )))
1793 )))
1794
1795 (((
1796 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1797 )))
1798
1799 (((
1800
1801
1802 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1803 )))
1804
1805 (((
1806 (((
1807 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1808 )))
1809 )))
1810
1811 (((
1812 (((
1813 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1814
1815
1816 )))
1817 )))
1818
1819 (((
1820 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1821 )))
1822
1823 (((
1824 [[image:1653360231087-571.png||height="401" width="727"]]
1825 )))
1826
1827 (((
1828 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1829 )))
1830
1831
1832 (((
1833 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1834 )))
1835
1836 (((
1837 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1838 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1839 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1840 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1841 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1842 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1843 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1844 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1845 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1846 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1847 )))
1848
1849
1850 (((
1851 As shown in below:
1852 )))
1853
1854 [[image:1653360498588-932.png||height="485" width="726"]]
1855
1856
1857 == 5.4 Can I see counting event in Serial? ==
1858
1859 (((
1860 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1861
1862
1863 == 5.5 Can i use point to point communication for LT-22222-L? ==
1864
1865 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1866
1867
1868 )))
1869
1870 (((
1871 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1872
1873 If the device is not shut down, but directly powered off.
1874
1875 It will default that this is a power-off state.
1876
1877 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1878
1879 After restart, the status before power failure will be read from flash.
1880
1881
1882 = 6. Trouble Shooting =
1883 )))
1884
1885 (((
1886 (((
1887 == 6.1 Downlink doesn’t work, how to solve it? ==
1888 )))
1889 )))
1890
1891 (((
1892 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1893 )))
1894
1895 (((
1896
1897
1898 == 6.2 Have trouble to upload image. ==
1899 )))
1900
1901 (((
1902 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1903 )))
1904
1905 (((
1906
1907
1908 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1909 )))
1910
1911 (((
1912 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1913 )))
1914
1915
1916 = 7. Order Info =
1917
1918 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1919
1920
1921 (% style="color:#4f81bd" %)**XXX:**
1922
1923 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1924 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1925 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1926 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1927 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1928 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1929 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1930 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1931 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1932
1933 = 8. Packing Info =
1934
1935
1936 **Package Includes**:
1937
1938 * LT-22222-L I/O Controller x 1
1939 * Stick Antenna for LoRa RF part x 1
1940 * Bracket for controller x1
1941 * Program cable x 1
1942
1943 **Dimension and weight**:
1944
1945 * Device Size: 13.5 x 7 x 3 cm
1946 * Device Weight: 105g
1947 * Package Size / pcs : 14.5 x 8 x 5 cm
1948 * Weight / pcs : 170g
1949
1950 = 9. Support =
1951
1952 * (((
1953 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1954 )))
1955 * (((
1956 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1957
1958
1959
1960
1961 )))
1962
1963 = 10. Reference​​​​​ =
1964
1965 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1966 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1967 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1968 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]