Version 82.23 by Xiaoling on 2022/06/20 11:58

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4 **LT-22222-L LoRa IO Controller User Manual **
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15
16
17 = 1.Introduction =
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26
27 (((
28 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
29 )))
30
31 (((
32 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
33 )))
34
35 (((
36 The use environment includes:
37 )))
38
39 (((
40 1) If user’s area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
41 )))
42
43 (((
44 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
45 )))
46
47 (((
48 [[image:1653295757274-912.png]]
49
50
51 )))
52
53
54 == 1.2  Specifications ==
55
56 (((
57
58
59 **Hardware System:**
60 )))
61
62 * (((
63 STM32L072CZT6 MCU
64 )))
65 * (((
66 SX1276/78 Wireless Chip 
67 )))
68 * (((
69 (((
70 Power Consumption:
71 )))
72
73 * (((
74 Idle: 4mA@12v
75 )))
76 * (((
77 20dB Transmit: 34mA@12v
78 )))
79 )))
80
81 (((
82
83
84 **Interface for Model: LT22222-L:**
85 )))
86
87 * (((
88 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
89 )))
90 * (((
91 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
92 )))
93 * (((
94 2 x Relay Output (5A@250VAC / 30VDC)
95 )))
96 * (((
97 2 x 0~~20mA Analog Input (res:0.01mA)
98 )))
99 * (((
100 2 x 0~~30V Analog Input (res:0.01v)
101 )))
102 * (((
103 Power Input 7~~ 24V DC. 
104 )))
105
106 (((
107
108
109 **LoRa Spec:**
110 )))
111
112 * (((
113 (((
114 Frequency Range:
115 )))
116
117 * (((
118 Band 1 (HF): 862 ~~ 1020 Mhz
119 )))
120 * (((
121 Band 2 (LF): 410 ~~ 528 Mhz
122 )))
123 )))
124 * (((
125 168 dB maximum link budget.
126 )))
127 * (((
128 +20 dBm - 100 mW constant RF output vs.
129 )))
130 * (((
131 +14 dBm high efficiency PA.
132 )))
133 * (((
134 Programmable bit rate up to 300 kbps.
135 )))
136 * (((
137 High sensitivity: down to -148 dBm.
138 )))
139 * (((
140 Bullet-proof front end: IIP3 = -12.5 dBm.
141 )))
142 * (((
143 Excellent blocking immunity.
144 )))
145 * (((
146 Low RX current of 10.3 mA, 200 nA register retention.
147 )))
148 * (((
149 Fully integrated synthesizer with a resolution of 61 Hz.
150 )))
151 * (((
152 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
153 )))
154 * (((
155 Built-in bit synchronizer for clock recovery.
156 )))
157 * (((
158 Preamble detection.
159 )))
160 * (((
161 127 dB Dynamic Range RSSI.
162 )))
163 * (((
164 Automatic RF Sense and CAD with ultra-fast AFC.
165 )))
166 * (((
167 Packet engine up to 256 bytes with CRC.
168
169
170
171
172 )))
173
174 == 1.3 Features ==
175
176 * LoRaWAN Class A & Class C protocol
177 * Optional Customized LoRa Protocol
178 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865
179 * AT Commands to change parameters
180 * Remote configure parameters via LoRa Downlink
181 * Firmware upgradable via program port
182 * Counting
183
184
185 == 1.4  Applications ==
186
187 * Smart Buildings & Home Automation
188 * Logistics and Supply Chain Management
189 * Smart Metering
190 * Smart Agriculture
191 * Smart Cities
192 * Smart Factory
193
194
195 == 1.5 Hardware Variants ==
196
197 (% border="1" style="background-color:#f7faff; width:500px" %)
198 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
199 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
200 * 2 x Digital Input (Bi-direction)
201 * 2 x Digital Output
202 * 2 x Relay Output (5A@250VAC / 30VDC)
203 * 2 x 0~~20mA Analog Input (res:0.01mA)
204 * 2 x 0~~30V Analog Input (res:0.01v)
205 * 1 x Counting Port
206 )))
207
208
209
210
211 = 2. Power ON Device =
212
213 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
214
215 (((
216 PWR will on when device is properly powered.
217 )))
218
219 [[image:1653297104069-180.png]]
220
221
222
223 = 3. Operation Mode =
224
225 == 3.1 How it works? ==
226
227 (((
228 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on **TX LED** will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. **TX LED** will be on for 5 seconds after joined in network. When there is message from server, the **RX LED** will be on for 1 second. 
229 )))
230
231 (((
232 In case user can’t set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
233 )))
234
235
236 == 3.2 Example to join LoRaWAN network ==
237
238 (((
239 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
240 )))
241
242 [[image:image-20220523172350-1.png||height="266" width="864"]]
243
244
245 (((
246 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
247 )))
248
249 (((
250 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
251 )))
252
253 (((
254 Each LT is shipped with a sticker with the default device EUI as below:
255 )))
256
257 [[image:1653297924498-393.png]]
258
259
260 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
261
262 Add APP EUI in the application.
263
264 [[image:1653297955910-247.png||height="321" width="716"]]
265
266
267 Add APP KEY and DEV EUI
268
269 [[image:1653298023685-319.png]]
270
271
272 (((
273 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
274 )))
275
276 [[image:1653298044601-602.png||height="405" width="709"]]
277
278
279
280 == 3.3 Uplink Payload ==
281
282 There are five working modes + one interrupt mode on LT for different type application:
283
284 * **MOD1**: (default setting): 2 x ACI + 2AVI + DI + DO + RO
285 * **MOD2**: Double DI Counting + DO + RO
286 * **MOD3**: Single DI Counting + 2 x ACI + DO + RO
287 * **MOD4**: Single DI Counting + 1 x Voltage Counting + DO + RO
288 * **MOD5**: Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
289 * **ADDMOD6**: Trigger Mode, Optional, used together with MOD1 ~~ MOD5
290
291
292 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
293
294 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
295
296 [[image:image-20220523174024-3.png]]
297
298 (((
299
300
301 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
302 )))
303
304 [[image:image-20220523174254-4.png]]
305
306 * RO is for relay. ROx=1 : close,ROx=0 always open.
307 * DI is for digital input. DIx=1: high or float, DIx=0: low.
308 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
309
310 (% style="color:red" %)Note: DI3 and DO3 bit are not valid for LT-22222-L
311
312 For example if payload is: [[image:image-20220523175847-2.png]]
313
314
315 **The value for the interface is:  **
316
317 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
318
319 AVI2 channel voltage is 0x04AC/1000=1.196V
320
321 ACI1 channel current is 0x1310/1000=4.880mA
322
323 ACI2 channel current is 0x1300/1000=4.864mA
324
325 The last byte 0xAA= 10101010(B) means
326
327 * [1] RO1 relay channel is close and the RO1 LED is ON.
328 * [0] RO2 relay channel is open and RO2 LED is OFF;
329
330 **LT22222-L:**
331
332 * [1] DI2 channel is high input and DI2 LED is ON;
333 * [0] DI1 channel is low input;
334
335 * [0] DO3 channel output state
336 ** DO3 is float in case no load between DO3 and V+.;
337 ** DO3 is high in case there is load between DO3 and V+.
338 ** DO3 LED is off in both case
339 * [1] DO2 channel output is low and DO2 LED is ON.
340 * [0] DO1 channel output state
341 ** DO1 is float in case no load between DO1 and V+.;
342 ** DO1 is high in case there is load between DO1 and V+.
343 ** DO1 LED is off in both case
344
345
346 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
347
348
349 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
350
351 (((
352 Total : 11 bytes payload
353 )))
354
355 [[image:image-20220523180452-3.png]]
356
357
358 (((
359 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
360 )))
361
362 [[image:image-20220523180506-4.png]]
363
364 * RO is for relay. ROx=1 : close,ROx=0 always open.
365 * FIRST: Indicate this is the first packet after join network.
366 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
367
368 (((
369 (% style="color:red" %)Note: DO3 bit is not valid for LT-22222-L.
370 )))
371
372 (((
373
374
375 **To use counting mode, please run:**
376 )))
377
378 (% class="box infomessage" %)
379 (((
380 (((
381 **AT+MOD=2**
382
383 **ATZ**
384 )))
385 )))
386
387 (((
388
389
390 (% style="color:#4f81bd" %)**AT Commands for counting:**
391 )))
392
393 (((
394 **For LT22222-L:**
395 )))
396
397 (% class="box infomessage" %)
398 (((
399 (((
400 **AT+TRIG1=0,100  (set DI1 port to trigger on low level, valid signal is 100ms) **
401
402 **AT+TRIG1=1,100  (set DI1 port to trigger on high level, valid signal is 100ms ) **
403
404 **AT+TRIG2=0,100  (set DI2 port to trigger on low level, valid signal is 100ms) **
405
406 **AT+TRIG2=1,100  (set DI2 port to trigger on high level, valid signal is 100ms ) **
407
408 **AT+SETCNT=1,60   (Set COUNT1 value to 60)**
409
410 **AT+SETCNT=2,60   (Set COUNT2 value to 60)**
411 )))
412 )))
413
414
415
416 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
417
418 **LT22222-L**: This mode the DI1 is used as a counting pin.
419
420 [[image:image-20220523181246-5.png]]
421
422 (((
423 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
424 )))
425
426 [[image:image-20220523181301-6.png]]
427
428 * RO is for relay. ROx=1 : close,ROx=0 always open.
429 * FIRST: Indicate this is the first packet after join network.
430 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
431
432 (((
433 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
434 )))
435
436 (((
437 **To use counting mode, please run:**
438 )))
439
440 (% class="box infomessage" %)
441 (((
442 (((
443 **AT+MOD=3**
444
445 **ATZ**
446 )))
447 )))
448
449 (((
450 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
451 )))
452
453
454
455 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
456
457
458 **LT22222-L**: This mode the DI1 is used as a counting pin.
459
460 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
461
462 [[image:image-20220523181903-8.png]]
463
464
465 (((
466 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
467 )))
468
469 [[image:image-20220523181727-7.png]]
470
471 * RO is for relay. ROx=1 : close,ROx=0 always open.
472 * FIRST: Indicate this is the first packet after join network.
473 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
474
475 (((
476 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
477 )))
478
479 (((
480
481
482 **To use this mode, please run:**
483 )))
484
485 (% class="box infomessage" %)
486 (((
487 (((
488 **AT+MOD=4**
489
490 **ATZ**
491 )))
492 )))
493
494
495
496 (((
497 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
498 )))
499
500 (((
501
502
503 **Plus below command for AVI1 Counting:**
504 )))
505
506 (% class="box infomessage" %)
507 (((
508 (((
509 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
510
511 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
512
513 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
514
515 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
516 )))
517 )))
518
519
520 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
521
522
523 **LT22222-L**: This mode the DI1 is used as a counting pin.
524
525 [[image:image-20220523182334-9.png]]
526
527 (((
528
529
530 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
531 )))
532
533 * RO is for relay. ROx=1 : close,ROx=0 always open.
534 * FIRST: Indicate this is the first packet after join network.
535 * (((
536 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
537 )))
538
539 (((
540 (% style="color:red" %)Note: DO3 is not valid for LT-22222-L.
541 )))
542
543 (((
544
545
546 **To use this mode, please run:**
547 )))
548
549 (% class="box infomessage" %)
550 (((
551 (((
552 **AT+MOD=5**
553
554 **ATZ**
555 )))
556 )))
557
558 (((
559 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
560 )))
561
562
563
564 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
565
566
567 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
568
569 For example, if user has configured below commands:
570
571 * **AT+MOD=1 ** **~-~->** The normal working mode
572 * **AT+ADDMOD6=1**   **~-~->** Enable trigger
573
574 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
575
576 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
577 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
578
579 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
580
581 (% style="color:#4f81bd" %)**Trigger base on voltage**:
582
583 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
584
585 **Example:**
586
587 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
588
589 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
590
591
592
593 (% style="color:#4f81bd" %)**Trigger base on current**:
594
595 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
596
597 **Example:**
598
599 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
600
601
602
603 (% style="color:#4f81bd" %)**Trigger base on DI status**:
604
605 DI status trigger Flag.
606
607 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
608
609
610 **Example:**
611
612 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
613
614
615 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
616
617 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
618
619 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
620
621 AA: Code for this downlink Command:
622
623 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
624
625 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
626
627 yy2 yy2: AC1 or AV1 high limit.
628
629 yy3 yy3: AC2 or AV2 low limit.
630
631 Yy4 yy4: AC2 or AV2 high limit.
632
633
634 **Example1**: AA 00 13 88 00 00 00 00 00 00
635
636 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
637
638
639 **Example2**: AA 02 01 00
640
641 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
642
643
644
645 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
646
647 MOD6 Payload : total 11 bytes payload
648
649 [[image:image-20220524085923-1.png]]
650
651
652 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
653
654 [[image:image-20220524090106-2.png]]
655
656 * Each bits shows if the corresponding trigger has been configured.
657
658 **Example:**
659
660 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
661
662
663 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
664
665 [[image:image-20220524090249-3.png]]
666
667 * Each bits shows which status has been trigger on this uplink.
668
669 **Example:**
670
671 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
672
673
674 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
675
676 [[image:image-20220524090456-4.png]]
677
678 * Each bits shows which status has been trigger on this uplink.
679
680 **Example:**
681
682 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
683
684 00000101: Means both DI1 and DI2 trigger are enabled.
685
686
687 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
688
689 Downlink command to poll MOD6 status:
690
691 **AB 06**
692
693 When device got this command, it will send the MOD6 payload.
694
695
696
697 === 3.3.7 Payload Decoder ===
698
699 (((
700
701
702 **Decoder for TTN/loraserver/ChirpStack**: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/Payload_decoder/]]
703
704
705 )))
706
707
708 == 3.4 ​Configure LT via AT or Downlink ==
709
710 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
711
712 (((
713 There are two kinds of Commands:
714 )))
715
716 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
717
718 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
719
720
721 === 3.4.1 Common Commands ===
722
723 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
724
725
726
727 === 3.4.2 Sensor related commands ===
728
729 ==== 3.4.2.1 Set Transmit Interval ====
730
731 Set device uplink interval.
732
733 * (% style="color:#037691" %)**AT Command:**
734
735 (% class="box infomessage" %)
736 (((
737 **AT+TDC=N **
738 )))
739
740 **Example: **AT+TDC=30000. Means set interval to 30 seconds
741
742
743 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
744
745 (% class="box infomessage" %)
746 (((
747 **0x01 aa bb cc     ~/~/ Same as AT+TDC=0x(aa bb cc)**
748 )))
749
750
751
752 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
753
754 Set work mode.
755
756 * (% style="color:#037691" %)**AT Command:**
757
758 (% class="box infomessage" %)
759 (((
760 **AT+MOD=N  **
761 )))
762
763 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
764
765
766 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
767
768 (% class="box infomessage" %)
769 (((
770 **0x0A aa     ~/~/ Same as AT+MOD=aa**
771 )))
772
773
774
775 ==== 3.4.2.3 Poll an uplink ====
776
777 * (% style="color:#037691" %)AT Command:
778
779 There is no AT Command to poll uplink
780
781
782 * (% style="color:#037691" %)Downlink Payload (prefix 0x08):
783
784 (% class="box infomessage" %)
785 (((
786 **0x08 FF     ~/~/ Poll an uplink,**
787 )))
788
789 **Example**: 0x08FF, ask device to send an Uplink
790
791
792
793 ==== 3.4.2.4 Enable Trigger Mode ====
794
795 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
796
797 * (% style="color:#037691" %)AT Command:
798
799 (% class="box infomessage" %)
800 (((
801 **AT+ADDMOD6=1 or 0**
802 )))
803
804 1: Enable Trigger Mode
805
806 0: Disable Trigger Mode
807
808
809 * (% style="color:#037691" %)Downlink Payload (prefix 0x0A 06):
810
811 (% class="box infomessage" %)
812 (((
813 **0x0A 06 aa     ~/~/ Same as AT+ADDMOD6=aa,**
814 )))
815
816
817
818 ==== 3.4.2.5 Poll trigger settings ====
819
820 Poll trigger settings,
821
822 * (% style="color:#037691" %)AT Command:
823
824 There is no AT Command for this feature.
825
826
827 * (% style="color:#037691" %)Downlink Payload (prefix 0x AB 06):
828
829 (% class="box infomessage" %)
830 (((
831 **0xAB 06  ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command**
832 )))
833
834
835
836 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
837
838 Enable Disable DI1/DI2/DI2 as trigger,
839
840 * (% style="color:#037691" %)AT Command:
841
842 **Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
843
844
845 **Example:**
846
847 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
848
849 * (% style="color:#037691" %)Downlink Payload (prefix 0xAA 02):
850
851 **0xAA 02 aa bb        **~/~/ Same as AT+DTRI=aa,bb
852
853
854
855
856 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
857
858 Set DI1 or DI3(for LT-33222-L) trigger.
859
860 * (% style="color:#037691" %)AT Command:
861
862 **AT+TRIG1=a,b**
863
864 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
865
866 b : delay timing.
867
868
869 **Example:**
870
871 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
872
873
874 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
875 * **0x09 01 aa bb cc    ** ~/~/ same as AT+TRIG1=aa,0x(bb cc)
876
877
878
879 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
880
881 Set DI2 trigger.
882
883 * (% style="color:#037691" %)**AT Command:**
884
885 **AT+TRIG2=a,b**
886
887
888 a : Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
889
890 b : delay timing.
891
892
893 **Example:**
894
895 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
896
897
898 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
899
900 **0x09 02 aa bb cc           **~/~/ same as AT+TRIG1=aa,0x(bb cc)
901
902
903
904
905 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
906
907 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
908
909 * (% style="color:#037691" %)**AT Command**
910
911 **AT+ACLIM**
912
913
914 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
915
916 **0x AA 01 aa bb cc dd ee ff gg hh        ** ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
917
918
919
920
921 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
922
923 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
924
925 * (% style="color:#037691" %)**AT Command**
926
927 **AT+AVLIM  See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
928
929
930 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
931
932 **0x AA 00 aa bb cc dd ee ff gg hh    ** ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
933
934
935
936
937 ==== 3.4.2.11 Trigger – Set minimum interval ====
938
939 Set AV and AC trigger minimum interval, system won’t response to the second trigger within this set time after the first trigger.
940
941 * (% style="color:#037691" %)**AT Command**
942
943 **AT+ATDC=5. Device won’t response the second trigger within 5 minute after the first trigger.**
944
945
946 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
947
948 **0x AC aa bb   ** ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
949
950
951
952
953 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
954
955 * (% style="color:#037691" %)**AT Command**
956
957 There is no AT Command to control Digital Output
958
959
960 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
961 * **0x02 aa bb cc     **~/~/ Set DO1/DO2/DO3 output
962
963 (((
964 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
965 )))
966
967 (((
968 01: Low,  00: High ,  11: No action
969 )))
970
971 [[image:image-20220524092754-5.png]]
972
973 (((
974 (% style="color:red" %)Note: For LT-22222-L, there is no DO3, the last byte can use any value.
975 )))
976
977 (((
978 (% style="color:red" %)Device will upload a packet if downlink code executes successfully.
979 )))
980
981
982
983
984 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
985
986 * (% style="color:#037691" %)**AT Command**
987
988 There is no AT Command to control Digital Output
989
990
991 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
992
993 **0xA9 aa bb cc     **~/~/ Set DO1/DO2/DO3 output with time control
994
995
996 This is to control the digital output time of DO pin. Include four bytes:
997
998 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
999
1000 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1001
1002 01: DO pins will change back to original state after timeout.
1003
1004 00: DO pins will change to an inverter state after timeout 
1005
1006
1007 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1008
1009 [[image:image-20220524093238-6.png]]
1010
1011
1012 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1013
1014 [[image:image-20220524093328-7.png]]
1015
1016
1017 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1018
1019 [[image:image-20220524093351-8.png]]
1020
1021
1022 (% style="color:#4f81bd" %)**Sixth and Seventh Byte**:
1023
1024 Latching time. Unit: ms
1025
1026 Device will upload a packet if downlink code executes successfully.
1027
1028
1029 **Example payload:**
1030
1031 **~1. A9 01 01 01 01 07 D0**
1032
1033 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1034
1035 **2. A9 01 00 01 11 07 D0**
1036
1037 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1038
1039 **3. A9 00 00 00 00 07 D0**
1040
1041 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1042
1043 **4. A9 00 11 01 00 07 D0**
1044
1045 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1046
1047
1048
1049
1050 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1051
1052 * (% style="color:#037691" %)**AT Command:**
1053
1054 There is no AT Command to control Relay Output
1055
1056
1057 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1058
1059 **0x03 aa bb     **~/~/ Set RO1/RO2 output
1060
1061
1062 (((
1063 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1064 )))
1065
1066 (((
1067 01: Close ,  00: Open , 11: No action
1068 )))
1069
1070 (((
1071 [[image:image-20220524093724-9.png]]
1072 )))
1073
1074 Device will upload a packet if downlink code executes successfully.
1075
1076
1077
1078
1079 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1080
1081 * (% style="color:#037691" %)**AT Command:**
1082
1083 There is no AT Command to control Relay Output
1084
1085
1086 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1087
1088 **0x05 aa bb cc dd     **~/~/ Set RO1/RO2 relay with time control
1089
1090
1091 This is to control the relay output time of relay. Include four bytes:
1092
1093 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1094
1095 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1096
1097 01: Relays will change back to original state after timeout.
1098
1099 00: Relays will change to an inverter state after timeout
1100
1101
1102 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1103
1104 [[image:image-20220524093831-10.png]]
1105
1106
1107 (% style="color:#4f81bd" %)**Fourth/Fifth Bytes(cc)**(%%): Latching time. Unit: ms
1108
1109 Device will upload a packet if downlink code executes successfully.
1110
1111
1112 **Example payload:**
1113
1114 **~1. 05 01 11 07 D0**
1115
1116 Relay1 and Relay 2 will be set to NO , last 2 seconds, then change back to original state.
1117
1118 **2. 05 01 10 07 D0**
1119
1120 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then both change back to original state.
1121
1122 **3. 05 00 01 07 D0**
1123
1124 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then relay change to NO, Relay2 change to NC.
1125
1126 **4. 05 00 00 07 D0**
1127
1128 Relay 1 & relay2 will change to NC, last 2 seconds, then both change to NO.
1129
1130
1131
1132
1133 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1134
1135 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1136
1137 * (% style="color:#037691" %)**AT Command:**
1138
1139 (% style="color:#037691" %)**​​​​​​​**(%%)**AT+VOLMAX   ** ~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1140
1141
1142 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1143
1144 **0xA5 aa bb cc   **~/~/ Same as AT+VOLMAX=(aa bb),cc
1145
1146
1147
1148
1149 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1150
1151 * (% style="color:#037691" %)**AT Command:**
1152
1153 (% style="color:#037691" %)**​​​​​​​​​​​​​​**(%%)**AT+SETCNT=aa,(bb cc dd ee) **
1154
1155 aa: 1: Set count1,
1156
1157 2: Set count2,
1158
1159 3: Set AV1 count
1160
1161 Bb cc dd ee: number to be set
1162
1163
1164 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1165
1166 **0x A8 aa bb cc dd ee     **~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1167
1168
1169
1170
1171 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1172
1173 Clear counting for counting mode
1174
1175 * (% style="color:#037691" %)**AT Command:**
1176
1177 (% style="color:#037691" %)​​​​​​​​​​​​​​(%%)**AT+CLRCOUNT ** ~/~/ clear all counting
1178
1179
1180 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1181
1182 **0x A6 01    ** ~/~/ clear all counting
1183
1184
1185
1186
1187 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1188
1189 * (% style="color:#037691" %)**AT Command:**
1190
1191 **AT+COUTIME=60  **~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1192
1193
1194 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1195
1196 **0x A7 aa bb cc     **~/~/ same as AT+COUTIME =aa bb cc,
1197
1198 (((
1199 range: aa bb cc:0 to 16777215,  (unit:second)
1200
1201
1202 )))
1203
1204
1205
1206 == 3.5 Integrate with Mydevice ==
1207
1208 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1209
1210 (((
1211 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1212 )))
1213
1214 (((
1215 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1216 )))
1217
1218 [[image:1653356737703-362.png||height="232" width="732"]]
1219
1220 [[image:image-20220524094641-11.png||height="390" width="723"]]
1221
1222
1223 [[image:image-20220524094641-12.png||height="402" width="718"]]
1224
1225
1226 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1227
1228 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1229
1230 Search under The things network
1231
1232 [[image:1653356838789-523.png||height="337" width="740"]]
1233
1234
1235
1236 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1237
1238 [[image:image-20220524094909-1.png||height="335" width="729"]]
1239
1240
1241 [[image:image-20220524094909-2.png||height="337" width="729"]]
1242
1243
1244 [[image:image-20220524094909-3.png||height="338" width="727"]]
1245
1246
1247 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1248
1249
1250 [[image:image-20220524094909-5.png||height="341" width="734"]]
1251
1252
1253
1254 == 3.6 Interface Detail ==
1255
1256 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1257
1258 Support NPN Type sensor
1259
1260 [[image:1653356991268-289.png]]
1261
1262
1263
1264 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1265
1266 (((
1267 The DI port of LT-22222-L can support NPN or PNP output sensor.
1268 )))
1269
1270 (((
1271 (((
1272 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high
1273 )))
1274 )))
1275
1276 [[image:1653357170703-587.png]]
1277
1278 (((
1279 (((
1280 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1281 )))
1282 )))
1283
1284 (((
1285
1286 )))
1287
1288 (((
1289 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1290 )))
1291
1292 (((
1293 This type of sensor will output a low signal GND when active.
1294 )))
1295
1296 * (((
1297 Connect sensor’s output to DI1-
1298 )))
1299 * (((
1300 Connect sensor’s VCC to DI1+.
1301 )))
1302
1303 (((
1304 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1305 )))
1306
1307 (((
1308 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1309 )))
1310
1311 (((
1312 If DI1+ = 12v, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1313 )))
1314
1315 (((
1316
1317 )))
1318
1319 (((
1320 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1321 )))
1322
1323 (((
1324 This type of sensor will output a high signal (example 24v) when active.
1325 )))
1326
1327 * (((
1328 Connect sensor’s output to DI1+
1329 )))
1330 * (((
1331 Connect sensor’s GND DI1-.
1332 )))
1333
1334 (((
1335 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1336 )))
1337
1338 (((
1339 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1340 )))
1341
1342 (((
1343 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1344 )))
1345
1346 (((
1347
1348 )))
1349
1350 (((
1351 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1352 )))
1353
1354 (((
1355 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1356 )))
1357
1358 * (((
1359 Connect sensor’s output to DI1+ with a serial 50K resistor
1360 )))
1361 * (((
1362 Connect sensor’s GND DI1-.
1363 )))
1364
1365 (((
1366 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1367 )))
1368
1369 (((
1370 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1371 )))
1372
1373 (((
1374 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1375 )))
1376
1377
1378
1379 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1380
1381 NPN output: GND or Float. Max voltage can apply to output pin is 36v.
1382
1383 [[image:1653357531600-905.png]]
1384
1385
1386
1387 === 3.6.4 Analog Input Interface ===
1388
1389 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1390
1391
1392 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1393
1394 [[image:1653357592296-182.png]]
1395
1396 Example to connect a 4~~20mA sensor
1397
1398 We take the wind speed sensor as an example for reference only.
1399
1400
1401 **Specifications of the wind speed sensor:**
1402
1403 Red:  12~~24v
1404
1405 Yellow:  4~~20mA
1406
1407 Black:  GND
1408
1409
1410 **Connection diagram:**
1411
1412 [[image:1653357640609-758.png]]
1413
1414 [[image:1653357648330-671.png||height="155" width="733"]]
1415
1416
1417
1418 === 3.6.5 Relay Output ===
1419
1420 (((
1421 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device’s Power Line to in serial of RO1_1 and RO_2. Such as below:
1422 )))
1423
1424 [[image:image-20220524100215-9.png]]
1425
1426 [[image:image-20220524100215-10.png||height="382" width="723"]]
1427
1428
1429
1430 == 3.7 LEDs Indicators ==
1431
1432 [[image:image-20220524100748-11.png]]
1433
1434
1435 = 4. Use AT Command =
1436
1437 == 4.1 Access AT Command ==
1438
1439 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1440
1441 [[image:1653358238933-385.png]]
1442
1443
1444 (((
1445 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1446 )))
1447
1448 [[image:1653358355238-883.png]]
1449
1450
1451 (((
1452 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1453 )))
1454
1455 (((
1456 AT+<CMD>?        : Help on <CMD>
1457 )))
1458
1459 (((
1460 AT+<CMD>         : Run <CMD>
1461 )))
1462
1463 (((
1464 AT+<CMD>=<value> : Set the value
1465 )))
1466
1467 (((
1468 AT+<CMD>=?       : Get the value
1469 )))
1470
1471 (((
1472 ATZ: Trig a reset of the MCU
1473 )))
1474
1475 (((
1476 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1477 )))
1478
1479 (((
1480 AT+DEUI: Get or Set the Device EUI
1481 )))
1482
1483 (((
1484 AT+DADDR: Get or Set the Device Address
1485 )))
1486
1487 (((
1488 AT+APPKEY: Get or Set the Application Key
1489 )))
1490
1491 (((
1492 AT+NWKSKEY: Get or Set the Network Session Key
1493 )))
1494
1495 (((
1496 AT+APPSKEY: Get or Set the Application Session Key
1497 )))
1498
1499 (((
1500 AT+APPEUI: Get or Set the Application EUI
1501 )))
1502
1503 (((
1504 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1505 )))
1506
1507 (((
1508 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1509 )))
1510
1511 (((
1512 AT+DR: Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1513 )))
1514
1515 (((
1516 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1517 )))
1518
1519 (((
1520 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1521 )))
1522
1523 (((
1524 AT+RX2FQ: Get or Set the Rx2 window frequency
1525 )))
1526
1527 (((
1528 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1529 )))
1530
1531 (((
1532 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1533 )))
1534
1535 (((
1536 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1537 )))
1538
1539 (((
1540 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1541 )))
1542
1543 (((
1544 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1545 )))
1546
1547 (((
1548 AT+NJM: Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1549 )))
1550
1551 (((
1552 AT+NWKID: Get or Set the Network ID
1553 )))
1554
1555 (((
1556 AT+FCU: Get or Set the Frame Counter Uplink
1557 )))
1558
1559 (((
1560 AT+FCD: Get or Set the Frame Counter Downlink
1561 )))
1562
1563 (((
1564 AT+CLASS: Get or Set the Device Class
1565 )))
1566
1567 (((
1568 AT+JOIN: Join network
1569 )))
1570
1571 (((
1572 AT+NJS: Get OTAA Join Status
1573 )))
1574
1575 (((
1576 AT+SENDB: Send hexadecimal data along with the application port
1577 )))
1578
1579 (((
1580 AT+SEND: Send text data along with the application port
1581 )))
1582
1583 (((
1584 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1585 )))
1586
1587 (((
1588 AT+RECV: Print last received data in raw format
1589 )))
1590
1591 (((
1592 AT+VER: Get current image version and Frequency Band
1593 )))
1594
1595 (((
1596 AT+CFM: Get or Set the confirmation mode (0-1)
1597 )))
1598
1599 (((
1600 AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1601 )))
1602
1603 (((
1604 AT+SNR: Get the SNR of the last received packet
1605 )))
1606
1607 (((
1608 AT+RSSI: Get the RSSI of the last received packet
1609 )))
1610
1611 (((
1612 AT+TDC: Get or set the application data transmission interval in ms
1613 )))
1614
1615 (((
1616 AT+PORT: Get or set the application port
1617 )))
1618
1619 (((
1620 AT+DISAT: Disable AT commands
1621 )))
1622
1623 (((
1624 AT+PWORD: Set password, max 9 digits
1625 )))
1626
1627 (((
1628 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1629 )))
1630
1631 (((
1632 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1633 )))
1634
1635 (((
1636 AT+CFG: Print all settings
1637
1638
1639 )))
1640
1641
1642
1643 == 4.2 Common AT Command Sequence ==
1644
1645 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1646
1647 (((
1648
1649
1650 **If device has not joined network yet:**
1651 )))
1652
1653 (((
1654 (% style="background-color:#dcdcdc" %)123456
1655 )))
1656
1657 (((
1658 (% style="background-color:#dcdcdc" %)AT+FDR
1659 )))
1660
1661 (((
1662 (% style="background-color:#dcdcdc" %)123456
1663 )))
1664
1665 (((
1666 (% style="background-color:#dcdcdc" %)AT+NJM=0
1667 )))
1668
1669 (((
1670 (% style="background-color:#dcdcdc" %)ATZ
1671 )))
1672
1673
1674 (((
1675 **If device already joined network:**
1676 )))
1677
1678 (((
1679 (% style="background-color:#dcdcdc" %)AT+NJM=0
1680 )))
1681
1682 (((
1683 (% style="background-color:#dcdcdc" %)ATZ
1684
1685
1686 )))
1687
1688
1689
1690 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1691
1692 (((
1693
1694
1695 (% style="background-color:#dcdcdc" %)123456(%%)  Enter Password to have AT access.
1696 )))
1697
1698 (((
1699 (% style="background-color:#dcdcdc" %) AT+FDR(%%)   Reset Parameters to Factory Default, Keys Reserve
1700 )))
1701
1702 (((
1703 (% style="background-color:#dcdcdc" %) 123456(%%)  Enter Password to have AT access.
1704 )))
1705
1706 (((
1707 (% style="background-color:#dcdcdc" %) AT+CLASS=C(%%) Set to work in CLASS C
1708 )))
1709
1710 (((
1711 (% style="background-color:#dcdcdc" %) AT+NJM=0(%%)  Set to ABP mode
1712 )))
1713
1714 (((
1715 (% style="background-color:#dcdcdc" %) AT+ADR=0(%%)  Set the Adaptive Data Rate Off
1716 )))
1717
1718 (((
1719 (% style="background-color:#dcdcdc" %) AT+DR=5(%%)  Set Data Rate
1720 )))
1721
1722 (((
1723 (% style="background-color:#dcdcdc" %) AT+TDC=60000(%%)  Set transmit interval to 60 seconds
1724 )))
1725
1726 (((
1727 (% style="background-color:#dcdcdc" %) AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1728 )))
1729
1730 (((
1731 (% style="background-color:#dcdcdc" %) AT+RX2FQ=868400000(%%)  Set RX2Frequency to 868.4Mhz (according to the result from server)
1732 )))
1733
1734 (((
1735 (% style="background-color:#dcdcdc" %) AT+RX2DR=5(%%)  Set RX2DR to match the downlink DR from server. see below
1736 )))
1737
1738 (((
1739 (% style="background-color:#dcdcdc" %) AT+DADDR=26 01 1A F1 (%%) Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1740 )))
1741
1742 (((
1743 (% style="background-color:#dcdcdc" %) ATZ         (%%) Reset MCU
1744
1745
1746 )))
1747
1748 (((
1749 (% style="color:red" %)**Note:**
1750 )))
1751
1752 (((
1753 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1754 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1755 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1756 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1757 )))
1758
1759 (((
1760 [[image:1653359097980-169.png||height="188" width="729"]]
1761 )))
1762
1763 (((
1764
1765 )))
1766
1767
1768 === 4.2.3 Change to Class A ===
1769
1770 If sensor JOINED
1771 (% style="background-color:#dcdcdc" %)AT+CLASS=A
1772 ATZ
1773
1774
1775 = 5. FAQ =
1776
1777 == 5.1 How to upgrade the image? ==
1778
1779
1780 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1781
1782 * Support new features
1783 * For bug fix
1784 * Change LoRaWAN bands.
1785
1786 Below shows the hardware connection for how to upload an image to the LT:
1787
1788 [[image:1653359603330-121.png]]
1789
1790
1791 (((
1792 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1793 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1794 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1795
1796
1797 (% style="color:blue" %)**For LT-22222-L**(%%):
1798 Hold down the PRO button and then momentarily press the RST reset button and the **DO1 led** will change from OFF to ON. When **DO1 LED** is on, it means the device is in download mode.
1799 )))
1800
1801 [[image:image-20220524103407-12.png]]
1802
1803 [[image:image-20220524103429-13.png]]
1804
1805 [[image:image-20220524104033-15.png]]
1806
1807
1808 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1809
1810 [[image:1653360054704-518.png||height="186" width="745"]]
1811
1812
1813 (((
1814 (((
1815
1816
1817 == 5.2 How to change the LoRa Frequency Bands/Region? ==
1818 )))
1819 )))
1820
1821 (((
1822 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1823 )))
1824
1825 (((
1826
1827
1828 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
1829 )))
1830
1831 (((
1832 (((
1833 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
1834 )))
1835 )))
1836
1837 (((
1838 (((
1839 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
1840
1841
1842 )))
1843 )))
1844
1845 (((
1846 (% style="color:#4f81bd" %)**Step1**(%%): Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1847 )))
1848
1849 (((
1850 [[image:1653360231087-571.png||height="401" width="727"]]
1851 )))
1852
1853 (((
1854 (% style="color:red" %)Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.
1855 )))
1856
1857
1858 (((
1859 (% style="color:#4f81bd" %)**Step2**(%%)**: **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
1860 )))
1861
1862 (((
1863 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1864 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  Reset Parameters to Factory Default, Keys Reserve
1865 (% style="background-color:#dcdcdc" %)123456 (%%) Enter Password to have AT access.
1866 (% style="background-color:#dcdcdc" %)AT+NJM=0 (%%) Set to ABP mode
1867 (% style="background-color:#dcdcdc" %)AT+ADR=0 (%%) Set the Adaptive Data Rate Off
1868 (% style="background-color:#dcdcdc" %)AT+DR=5 (%%) Set Data Rate (Set AT+DR=3 for 915 band)
1869 (% style="background-color:#dcdcdc" %)AT+TDC=60000 (%%) Set transmit interval to 60 seconds
1870 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%)  Set transmit frequency to 868.4Mhz
1871 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  Set Device Address to 26 01 1A F1
1872 (% style="background-color:#dcdcdc" %)ATZ        (%%) Reset MCU
1873 )))
1874
1875
1876 (((
1877 As shown in below:
1878 )))
1879
1880 [[image:1653360498588-932.png||height="485" width="726"]]
1881
1882
1883 == 5.4 Can I see counting event in Serial? ==
1884
1885 (((
1886 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn’t support AT+DEBUG. User can update to latest firmware first.
1887
1888
1889 == 5.5 Can i use point to point communication for LT-22222-L? ==
1890
1891 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]
1892 )))
1893
1894 (((
1895 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
1896
1897 If the device is not shut down, but directly powered off.
1898
1899 It will default that this is a power-off state.
1900
1901 In modes 2 to 5, DO RO status and pulse count are saved in flash.
1902
1903 After restart, the status before power failure will be read from flash.
1904
1905 = 6. Trouble Shooting =
1906 )))
1907
1908 (((
1909 (((
1910 == 6.1 Downlink doesn’t work, how to solve it? ==
1911 )))
1912 )))
1913
1914 (((
1915 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
1916 )))
1917
1918 (((
1919
1920
1921 == 6.2 Have trouble to upload image. ==
1922 )))
1923
1924 (((
1925 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
1926 )))
1927
1928 (((
1929
1930
1931 == 6.3 Why I can’t join TTN in US915 /AU915 bands? ==
1932 )))
1933
1934 (((
1935 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1936 )))
1937
1938
1939
1940 = 7. Order Info =
1941
1942
1943 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
1944
1945
1946 (% style="color:#4f81bd" %)**XXX:**
1947
1948 * (% style="color:#4f81bd" %)**EU433**(%%): LT with frequency bands EU433
1949 * (% style="color:#4f81bd" %)**EU868**(%%): LT with frequency bands EU868
1950 * (% style="color:#4f81bd" %)**KR920**(%%): LT with frequency bands KR920
1951 * (% style="color:#4f81bd" %)**CN470**(%%): LT with frequency bands CN470
1952 * (% style="color:#4f81bd" %)**AS923**(%%): LT with frequency bands AS923
1953 * (% style="color:#4f81bd" %)**AU915**(%%): LT with frequency bands AU915
1954 * (% style="color:#4f81bd" %)**US915**(%%): LT with frequency bands US915
1955 * (% style="color:#4f81bd" %)**IN865**(%%): LT with frequency bands IN865
1956 * (% style="color:#4f81bd" %)**CN779**(%%): LT with frequency bands CN779
1957
1958 = 8. Packing Info =
1959
1960
1961 **Package Includes**:
1962
1963 * LT-22222-L I/O Controller x 1
1964 * Stick Antenna for LoRa RF part x 1
1965 * Bracket for controller x1
1966 * Program cable x 1
1967
1968 **Dimension and weight**:
1969
1970 * Device Size: 13.5 x 7 x 3 cm
1971 * Device Weight: 105g
1972 * Package Size / pcs : 14.5 x 8 x 5 cm
1973 * Weight / pcs : 170g
1974
1975 = 9. Support =
1976
1977 * (((
1978 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1979 )))
1980 * (((
1981 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1982 )))
1983
1984 = 10. Reference​​​​​ =
1985
1986 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
1987 * [[Image Download>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]]
1988 * [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1989 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]