Version 230.12 by Xiaoling on 2024/12/09 10:15

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24
25 (((
26 (((
27 {{info}}
28 **This manual is also applicable to the LT-33222-L.**
29 {{/info}}
30
31 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
32
33 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 )))
35 )))
36
37 (((
38 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
39 )))
40
41 (((
42 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43
44 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
45 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
46 * Setup your own private LoRaWAN network.
47 )))
48
49 (((
50
51
52 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
53 )))
54
55 (% class="wikigeneratedid" %)
56 [[image:lorawan-nw.jpg||height="354" width="900"]]
57
58
59 == 1.2 Specifications ==
60
61
62 (% style="color:#037691" %)**Hardware System:**
63
64 * STM32L072xxxx MCU
65 * SX1276/78 Wireless Chip 
66 * Power Consumption:
67 ** Idle: 4mA@12V
68 ** 20dB Transmit: 34mA@12V
69 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
70
71 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
72
73 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
74 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
75 * 2 x Relay Output (5A@250VAC / 30VDC)
76 * 2 x 0~~20mA Analog Input (res:0.01mA)
77 * 2 x 0~~30V Analog Input (res:0.01V)
78 * Power Input 7~~ 24V DC. 
79
80 (% style="color:#037691" %)**LoRa Spec:**
81
82 * Frequency Range:
83 ** Band 1 (HF): 862 ~~ 1020 MHz
84 ** Band 2 (LF): 410 ~~ 528 MHz
85 * 168 dB maximum link budget.
86 * +20 dBm - 100 mW constant RF output vs.
87 * +14 dBm high-efficiency PA.
88 * Programmable bit rate up to 300 kbps.
89 * High sensitivity: down to -148 dBm.
90 * Bullet-proof front end: IIP3 = -12.5 dBm.
91 * Excellent blocking immunity.
92 * Low RX current of 10.3 mA, 200 nA register retention.
93 * Fully integrated synthesizer with a resolution of 61 Hz.
94 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
95 * Built-in bit synchronizer for clock recovery.
96 * Preamble detection.
97 * 127 dB Dynamic Range RSSI.
98 * Automatic RF Sense and CAD with ultra-fast AFC.
99 * Packet engine up to 256 bytes with CRC.
100
101
102
103 == 1.3 Features ==
104
105
106 * LoRaWAN Class A & Class C modes
107 * Optional Customized LoRa Protocol
108 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
109 * AT Commands to change parameters
110 * Remotely configure parameters via LoRaWAN Downlink
111 * Firmware upgradable via program port
112 * Counting
113
114
115
116 == 1.4 Applications ==
117
118
119 * Smart buildings & home automation
120 * Logistics and supply chain management
121 * Smart metering
122 * Smart agriculture
123 * Smart cities
124 * Smart factory
125
126
127
128 == 1.5 Hardware Variants ==
129
130
131 (% border="1" cellspacing="3" style="width:510px" %)
132 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
133 |(% style="width:94px" %)**LT-22222-L**|(% style="width:172px" %)(((
134 (% style="text-align:center" %)
135 [[image:lt33222-l.jpg||height="116" width="100"]]
136 )))|(% style="width:256px" %)(((
137 * 2 x Digital Input (Bi-direction)
138 * 2 x Digital Output
139 * 2 x Relay Output (5A@250VAC / 30VDC)
140 * 2 x 0~~20mA Analog Input (res:0.01mA)
141 * 2 x 0~~30V Analog Input (res:0.01v)
142 * 1 x Counting Port
143 )))
144
145 = 2. Assembling the device =
146
147 == 2.1 Connecting the antenna ==
148
149 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
150
151 {{warning}}
152 **Warning! Do not power on the device without connecting the antenna.**
153 {{/warning}}
154
155 == 2.2 Terminals ==
156
157 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
158
159 **Upper screw terminal block (from left to right):**
160
161 (% style="width:634px" %)
162 |=(% style="width: 295px;" %)Screw Terminal|=(% style="width: 338px;" %)Function
163 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
164 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
165 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
166 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
167 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
168 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
169
170 **Lower screw terminal block (from left to right):**
171
172 (% style="width:633px" %)
173 |=(% style="width: 296px;" %)Screw Terminal|=(% style="width: 334px;" %)Function
174 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
175 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
176 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
177 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
178 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
179 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
180 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
181 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
182 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
183 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
184
185 == 2.3 Connecting LT-22222-L to a Power Source ==
186
187 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
188
189 {{warning}}
190 **We recommend that you power on the LT-22222-L after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
191 {{/warning}}
192
193
194 [[image:1653297104069-180.png]]
195
196
197 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
198
199 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
200
201
202 === 3.2.1 Prerequisites ===
203
204 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205
206 [[image:image-20230425173427-2.png||height="246" width="530"]]
207
208 {{info}}
209 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
210 {{/info}}
211
212 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
213
214 === 3.2.2 The Things Stack ===
215
216 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
217
218 {{info}}
219 The Things Stack Sandbox was formally called The Things Stack Community Edition.
220 {{/info}}
221
222
223 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
224
225
226 [[image:dragino-lorawan-nw-lt-22222-n.jpg]]
227
228 {{info}}
229 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
230 {{/info}}
231
232
233 ==== 3.2.2.1 Setting up ====
234
235 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
236 * Log in to your The Things Stack Sandbox account.
237 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
238 * Go to your application's page and click on the **End devices** in the left menu.
239 * On the End devices page, click on **+ Register end device**. Two registration options are available:
240
241 ==== 3.2.2.2 Using the LoRaWAN Device Repository ====
242
243 * On the **Register end device** page:
244 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
245 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
246 *** **End device brand**: Dragino Technology Co., Limited
247 *** **Model**: LT22222-L I/O Controller
248 *** **Hardware ver**: Unknown
249 *** **Firmware ver**: 1.6.0
250 *** **Profile (Region)**: Select the region that matches your device.
251 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
252
253 [[image:lt-22222-l-dev-repo-reg-p1.png]]
254
255
256 * Register end device page continued...
257 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
258 ** In the **DevEUI** field, enter the **DevEUI**.
259 ** In the **AppKey** field, enter the **AppKey.**
260 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
261 ** Under **After registration**, select the **View registered end device** option.
262
263 [[image:lt-22222-l-dev-repo-reg-p2.png]]
264
265
266 ==== 3.2.2.3 Adding device manually ====
267
268 * On the **Register end device** page:
269 ** Select the option **Enter end device specifies manually** under **Input method**.
270 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
271 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
272 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
273 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
274 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
275 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
276
277 [[image:lt-22222-l-manually-p1.png]]
278
279
280 * Register end device page continued...
281 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
282 ** In the **DevEUI** field, enter the **DevEUI**.
283 ** In the **AppKey** field, enter the **AppKey**.
284 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
285 ** Under **After registration**, select the **View registered end device** option.
286 ** Click the **Register end device** button.
287
288 [[image:lt-22222-l-manually-p2.png]]
289
290
291 You will be navigated to the **Device overview** page.
292
293
294 [[image:lt-22222-device-overview.png]]
295
296
297 ==== 3.2.2.4 Joining ====
298
299 On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
300
301 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
302
303
304 [[image:lt-22222-l-joining.png]]
305
306
307
308 ==== 3.2.2.5 Uplinks ====
309
310
311 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
312
313 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
314
315 [[image:lt-22222-ul-payload-decoded.png]]
316
317
318 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
319
320 {{info}}
321 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
322 {{/info}}
323
324 [[image:lt-22222-ul-payload-fmt.png]]
325
326
327 We also have a payload formatter that resolves some decoding issues present in the Device Repository formatter. You can add it under the Custom JavaScript formatter. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
328
329 (% class="wikigeneratedid" %)
330 [[image:lt-22222-l-js-custom-payload-formatter.png]]
331
332
333 ==== 3.2.2.6 Downlinks ====
334
335 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
336
337
338 == 3.3 Working Modes and Uplink Payload formats ==
339
340
341 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
342
343 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
344
345 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
346
347 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
348
349 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
350
351 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
352
353 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
354
355 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
356
357 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
358
359 (((
360 This is the default mode.
361
362 The uplink payload is 11 bytes long.
363
364 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
365 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
366 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
367
368 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
369 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
370 |Value|(((
371 AVI1 voltage
372 )))|(((
373 AVI2 voltage
374 )))|(((
375 ACI1 Current
376 )))|(((
377 ACI2 Current
378 )))|**DIDORO***|(((
379 Reserve
380 )))|MOD
381 )))
382
383 (((
384 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
385
386 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
387 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
388 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
389 )))
390
391 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
392 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
393 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
394
395 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
396
397 For example, if the payload is: [[image:image-20220523175847-2.png]]
398
399
400 **The interface values can be calculated as follows:  **
401
402 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
403
404 AVI2 channel voltage is 0x04AC/1000=1.196V
405
406 ACI1 channel current is 0x1310/1000=4.880mA
407
408 ACI2 channel current is 0x1300/1000=4.864mA
409
410 The last byte 0xAA= **10101010**(b) means,
411
412 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
413 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
414 * **[1] DI3 - not used for LT-22222-L.**
415 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
416 * [1] DI1 channel input state:
417 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
418 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
419 ** DI1 LED is ON in both cases.
420 * **[0] DO3 - not used for LT-22222-L.**
421 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
422 * [0] DO1 channel output state:
423 ** DO1 is FLOATING when there is no load between DO1 and V+.
424 ** DO1 is HIGH and there is a load between DO1 and V+.
425 ** DO1 LED is OFF in both cases.
426
427 Reserve = 0
428
429 MOD = 1
430
431 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
432
433
434 (((
435 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
436 )))
437
438 (((
439 The uplink payload is 11 bytes long.
440
441 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
442 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
443 It starts counting again when it reaches the maximum value.**
444
445 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
446 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
447 |Value|COUNT1|COUNT2 |DIDORO*|(((
448 Reserve
449 )))|MOD
450 )))
451
452 (((
453 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
454
455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
456 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
457 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
458
459 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
460 )))
461
462 * FIRST: Indicates that this is the first packet after joining the network.
463 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
464
465 (((
466 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
467
468
469 )))
470
471 (((
472 **To activate this mode, run the following AT commands:**
473 )))
474
475 (((
476 (% class="box infomessage" %)
477 (((
478 **AT+MOD=2**
479
480 **ATZ**
481 )))
482 )))
483
484 (((
485
486
487 (% style="color:#4f81bd" %)**AT Commands for counting:**
488 )))
489
490 (((
491 **For LT22222-L:**
492
493 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
494
495 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
496
497 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
498
499 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
500
501 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
502
503 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
504 )))
505
506
507 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
508
509 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
510 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
511 It starts counting again when it reaches the maximum value.**
512
513 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
514
515 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
516 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
517 |Value|COUNT1|(((
518 ACI1 Current
519 )))|(((
520 ACI2 Current
521 )))|DIDORO*|Reserve|MOD
522
523 (((
524 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
525
526 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
527 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
528 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
529 )))
530
531 * RO is for the relay. ROx=1: closed, ROx=0 always open.
532 * FIRST: Indicates that this is the first packet after joining the network.
533 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
534
535 (((
536 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
537 )))
538
539
540 (((
541 **To activate this mode, run the following AT commands:**
542 )))
543
544 (((
545 (% class="box infomessage" %)
546 (((
547 **AT+MOD=3**
548
549 **ATZ**
550 )))
551 )))
552
553 (((
554 AT Commands for counting:
555
556 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
557 )))
558
559
560 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
561
562 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
563 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
564 It starts counting again when it reaches the maximum value.**
565
566
567 (((
568 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
569 )))
570
571 (((
572 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
573
574 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
575 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
576 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
577 Reserve
578 )))|MOD
579 )))
580
581 (((
582 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
583
584 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
585 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
586 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
587 )))
588
589 * RO is for the relay. ROx=1: closed, ROx=0 always open.
590 * FIRST: Indicates that this is the first packet after joining the network.
591 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
592
593 (((
594 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
595
596
597 )))
598
599 (((
600 **To activate this mode, run the following AT commands:**
601 )))
602
603 (((
604 (% class="box infomessage" %)
605 (((
606 **AT+MOD=4**
607
608 **ATZ**
609 )))
610 )))
611
612 (((
613 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
614 )))
615
616 (((
617 **In addition to that, below are the commands for AVI1 Counting:**
618
619 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
620
621 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
622
623 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
624
625 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
626 )))
627
628
629 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
630
631 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
632 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
633 It starts counting again when it reaches the maximum value.**
634
635
636 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
637
638 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
639 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
640 |Value|(((
641 AVI1 voltage
642 )))|(((
643 AVI2 voltage
644 )))|(((
645 ACI1 Current
646 )))|COUNT1|DIDORO*|(((
647 Reserve
648 )))|MOD
649
650 (((
651 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
652
653 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
654 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
655 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
656 )))
657
658 * RO is for the relay. ROx=1: closed, ROx=0 always open.
659 * FIRST: Indicates that this is the first packet after joining the network.
660 * (((
661 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
662 )))
663
664 (((
665 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
666 )))
667
668 (((
669 **To activate this mode, run the following AT commands:**
670 )))
671
672 (((
673 (% class="box infomessage" %)
674 (((
675 **AT+MOD=5**
676
677 **ATZ**
678 )))
679 )))
680
681 (((
682 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
683 )))
684
685
686 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
687
688
689 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
690
691 For example, if you configure the following commands:
692
693 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
694 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
695
696 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
697
698 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
699 1. (((
700 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
701
702 * The first uplink uses the payload specified in trigger mode (MOD=6).
703 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
704 )))
705
706 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
707
708 (% style="color:#4f81bd" %)**Trigger based on voltage**:
709
710 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
711
712
713 **Example:**
714
715 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
716
717 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
718
719
720 (% style="color:#4f81bd" %)**Trigger based on current**:
721
722 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
723
724
725 **Example:**
726
727 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
728
729
730 (% style="color:#4f81bd" %)**Trigger based on DI status**:
731
732 DI status triggers Flag.
733
734 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
735
736
737 **Example:**
738
739 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
740
741
742 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
743
744 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
745
746 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
747
748 AA: Type Code for this downlink Command:
749
750 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
751
752 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
753
754 yy2 yy2: AC1 or AV1 HIGH limit.
755
756 yy3 yy3: AC2 or AV2 LOW limit.
757
758 Yy4 yy4: AC2 or AV2 HIGH limit.
759
760
761 **Example 1**: AA 00 13 88 00 00 00 00 00 00
762
763 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
764
765
766 **Example 2**: AA 02 01 00
767
768 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
769
770
771 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
772
773 MOD6 Payload: total of 11 bytes
774
775 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
776 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
777 |Value|(((
778 TRI_A FLAG
779 )))|(((
780 TRI_A Status
781 )))|(((
782 TRI_DI FLAG+STA
783 )))|Reserve|Enable/Disable MOD6|(((
784 MOD(6)
785 )))
786
787 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
788
789 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
790 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
791 |(((
792 AV1_LOW
793 )))|(((
794 AV1_HIGH
795 )))|(((
796 AV2_LOW
797 )))|(((
798 AV2_HIGH
799 )))|(((
800 AC1_LOW
801 )))|(((
802 AC1_HIGH
803 )))|(((
804 AC2_LOW
805 )))|(((
806 AC2_HIGH
807 )))
808
809 * Each bit shows if the corresponding trigger has been configured.
810
811 **Example:**
812
813 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
814
815
816 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
817
818 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
819 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
820 |(((
821 AV1_LOW
822 )))|(((
823 AV1_HIGH
824 )))|(((
825 AV2_LOW
826 )))|(((
827 AV2_HIGH
828 )))|(((
829 AC1_LOW
830 )))|(((
831 AC1_HIGH
832 )))|(((
833 AC2_LOW
834 )))|(((
835 AC2_HIGH
836 )))
837
838 * Each bit shows which status has been triggered on this uplink.
839
840 **Example:**
841
842 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
843
844
845 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
846
847 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
848 |(% style="width:50px" %)**bit 7**|(% style="width:50px" %)**bit 6**|(% style="width:50px" %)**bit 5**|(% style="width:50px" %)**bit 4**|(% style="width:90px" %)**bit 3**|(% style="width:80px" %)**bit 2**|(% style="width:90px" %)**bit 1**|(% style="width:95px" %)**bit 0**
849 |(% style="width:49px" %)N/A|(% style="width:53px" %)N/A|(% style="width:53px" %)N/A|(% style="width:55px" %)N/A|(% style="width:99px" %)DI2_STATUS|(% style="width:83px" %)DI2_FLAG|(% style="width:98px" %)DI1_STATUS|(% style="width:85px" %)DI1_FLAG
850
851 * Each bit shows which status has been triggered on this uplink.
852
853 **Example:**
854
855 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger by DI1.
856
857 00000101: This means both DI1 and DI2 triggers are enabled.
858
859
860 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
861
862 Downlink command to poll/request MOD6 status:
863
864 **AB 06**
865
866 When device receives this command, it will send the MOD6 payload.
867
868
869 === 3.3.7 Payload Decoder ===
870
871 (((
872
873
874 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
875 )))
876
877
878 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
879
880
881 (((
882 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
883 )))
884
885 (((
886 (((
887 There are two tytes of commands:
888 )))
889 )))
890
891 * (% style="color:blue" %)**Common commands**(%%):
892
893 * (% style="color:blue" %)**Sensor-related commands**(%%):
894
895
896 === 3.4.1 Common commands ===
897
898
899 (((
900 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
901
902
903 )))
904
905 === 3.4.2 Sensor-related commands ===
906
907
908 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
909
910
911 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
912
913
914 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
915
916 (% style="color:#037691" %)**AT command**
917
918 (% border="2" style="width:500px" %)
919 |**Command**|AT+TDC=<time>
920 |**Parameters**|**time **: uplink interval in milliseconds
921 |**Get**|AT+TDC=?
922 |**Response**|(((
923 current uplink interval
924
925 OK
926 )))
927 |**Set**|AT+TDC=<time>
928 |**Response**|OK
929 |**Example**|(((
930 AT+TDC=30000
931
932 Sets the uplink interval to **30 seconds** (30000 milliseconds)
933 )))
934
935 (% style="color:#037691" %)**Downlink payload**
936
937 (% border="2" style="width:500px" %)
938 |**Payload**|(((
939 <prefix><time>
940 )))
941 |**Parameters**|(((
942 **prefix** : 0x01
943
944 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
945 )))
946 |**Example**|(((
947 01 **00 00 1E**
948
949 Sets the uplink interval to **30 seconds**
950
951 Conversion: 30 (dec) = 00 00 1E (hex)
952
953 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
954
955 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
956 )))
957
958 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
959
960
961 Sets the working mode.
962
963 (% style="color:#037691" %)**AT command**
964
965 (% border="2" style="width:500px" %)
966 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
967 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
968 **working_mode** :
969
970 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
971
972 2 = Double DI Counting + DO + RO
973
974 3 = Single DI Counting + 2 x ACI + DO + RO
975
976 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
977
978 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
979
980 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
981 )))
982 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
983 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
984 Current working mode
985
986 OK
987 )))
988 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
989 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
990 Attention:Take effect after ATZ
991
992 OK
993 )))
994 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
995 AT+MOD=2
996
997 Sets the device to working mode 2 (Double DI Counting + DO + RO)
998 )))
999
1000 (% class="wikigeneratedid" %)
1001 (% style="color:#037691" %)**Downlink payload**
1002
1003 (% border="2" style="width:500px" %)
1004 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
1005 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1006 **prefix** : 0x0A
1007
1008 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
1009 )))
1010 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1011 0A **02**
1012
1013 Sets the device to working mode 2 (Double DI Counting + DO + RO)
1014 )))
1015
1016
1017 ==== 3.4.2.3 Request an uplink from the device ====
1018
1019
1020 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
1021
1022 (% style="color:#037691" %)**AT command**
1023
1024 There is no AT Command available for this feature.
1025
1026 (% style="color:#037691" %)**Downlink payload**
1027
1028 (% border="2" style="width:500px" %)
1029 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1030 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1031 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1032 08 **FF**
1033
1034 Requests an uplink from LT-22222-L.
1035 )))
1036
1037
1038 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1039
1040
1041 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
1042
1043 (% style="color:#037691" %)**AT Command**
1044
1045 (% border="2" style="width:500px" %)
1046 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1047 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1048 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1049 **enable/disable trigger_mode** :
1050
1051 1 = enable trigger mode
1052
1053 0 = disable trigger mode
1054 )))
1055 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1056 AT+ADDMOD6=1
1057
1058 Enable trigger mode for the current working mode
1059 )))
1060
1061 (% style="color:#037691" %)**Downlink payload**
1062
1063 (% border="2" style="width:500px" %)
1064 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1065 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1066 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1067
1068 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1069 )))
1070 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1071 0A 06 **01**
1072
1073 Enable trigger mode for the current working mode
1074 )))
1075
1076
1077 ==== 3.4.2.5 Request trigger settings ====
1078
1079
1080 Requests the trigger settings.
1081
1082 (% style="color:#037691" %)**AT Command:**
1083
1084 There is no AT Command available for this feature.
1085
1086 (% style="color:#037691" %)**Downlink Payload**
1087
1088 (% border="2" style="width:500px" %)
1089 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1090 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1091 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1092 AB 06
1093
1094 Uplinks the trigger settings.
1095 )))
1096
1097
1098 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1099
1100
1101 Enable or disable DI1/DI2/DI3 as a trigger.
1102
1103 (% style="color:#037691" %)**AT Command**
1104
1105 (% border="2" style="width:500px" %)
1106 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1107 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1108 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1109 **DI1_trigger:**
1110
1111 1 = enable DI1 trigger
1112
1113 0 = disable DI1 trigger
1114
1115 **DI2 _trigger**
1116
1117 1 = enable DI2 trigger
1118
1119 0 = disable DI2 trigger
1120 )))
1121 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1122 AT+DTRI=1,0
1123
1124 Enable DI1 trigger, disable DI2 trigger
1125 )))
1126
1127 (% class="wikigeneratedid" %)
1128 (% style="color:#037691" %)**Downlink Payload**
1129
1130 (% border="2" style="width:500px" %)
1131 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1132 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1133 **prefix :** AA 02 (two bytes in hexadecimal)
1134
1135 **DI1_trigger:**
1136
1137 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1138
1139 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1140
1141 **DI2 _trigger**
1142
1143 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1144
1145 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1146 )))
1147 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1148 AA 02 **01 00**
1149
1150 Enable DI1 trigger, disable DI2 trigger
1151 )))
1152
1153
1154 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1155
1156
1157 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1158
1159 (% style="color:#037691" %)**AT Command**
1160
1161 (% border="2" style="width:500px" %)
1162 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1163 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1164 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1165 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1166
1167 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1168 )))
1169 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1170 AT+TRIG1=1,100
1171
1172 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1173 )))
1174
1175 (% class="wikigeneratedid" %)
1176 (% style="color:#037691" %)**Downlink Payload**
1177
1178 (% border="2" style="width:500px" %)
1179 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1180 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1181 **prefix** : 09 01 (hexadecimal)
1182
1183 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1184
1185 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1186 )))
1187 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1188 09 01 **01 00 64**
1189
1190 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1191 )))
1192
1193
1194 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1195
1196
1197 Sets DI2 as a trigger.
1198
1199 (% style="color:#037691" %)**AT Command**
1200
1201 (% border="2" style="width:500px" %)
1202 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1203 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1204 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1205 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1206
1207 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1208 )))
1209 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1210 AT+TRIG2=0,100
1211
1212 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1213 )))
1214
1215 (% style="color:#037691" %)**Downlink Payload**
1216
1217 (% border="2" style="width:500px" %)
1218 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1219 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1220 **prefix** : 09 02 (hexadecimal)
1221
1222 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1223
1224 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1225 )))
1226 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1227
1228
1229 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1230
1231
1232 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1233
1234 (% style="color:#037691" %)**AT Command**
1235
1236 (% border="2" style="width:500px" %)
1237 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1238 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1239 )))
1240 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1241 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1242 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1243
1244 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1245
1246 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1247
1248 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1249 )))
1250 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1251 AT+ACLIM=10000,15000,0,0
1252
1253 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1254 )))
1255 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1256
1257 (% style="color:#037691" %)**Downlink Payload**
1258
1259 (% border="2" style="width:500px" %)
1260 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1261 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1262 **prefix **: AA 01 (hexadecimal)
1263
1264 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1265
1266 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1267
1268 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1269
1270 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1271 )))
1272 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1273 AA 01 **27** **10 3A** **98** 00 00 00 00
1274
1275 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1276 )))
1277 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1278
1279
1280 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1281
1282
1283 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1284
1285 (% style="color:#037691" %)**AT Command**
1286
1287 (% border="2" style="width:500px" %)
1288 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1289 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1290 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1291 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1292
1293 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1294
1295 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1296
1297 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1298 )))
1299 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1300 AT+AVLIM=3000,6000,0,2000
1301
1302 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1303 )))
1304 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1305
1306 (% style="color:#037691" %)**Downlink Payload**
1307
1308 (% border="2" style="width:500px" %)
1309 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1310 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1311 **prefix **: AA 00 (hexadecimal)
1312
1313 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1314
1315 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1316
1317 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1318
1319 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1320 )))
1321 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1322 AA 00 **0B B8 17 70 00 00 07 D0**
1323
1324 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1325 )))
1326 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1327
1328
1329 ==== 3.4.2.11 Trigger – Set minimum interval ====
1330
1331
1332 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1333
1334 (% style="color:#037691" %)**AT Command**
1335
1336 (% border="2" style="width:500px" %)
1337 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1338 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1339 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1340 **time** : in minutes
1341 )))
1342 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1343 AT+ATDC=5
1344
1345 The device won't respond to the second trigger within 5 minutes after the first trigger.
1346 )))
1347 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1348
1349 (% style="color:#037691" %)**Downlink Payload**
1350
1351 (% border="2" style="width:500px" %)
1352 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1353 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1354 **prefix** : AC (hexadecimal)
1355
1356 **time **: in minutes (two bytes in hexadecimal)
1357 )))
1358 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1359 AC **00 05**
1360
1361 The device won't respond to the second trigger within 5 minutes after the first trigger.
1362 )))
1363 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1364
1365
1366 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1367
1368
1369 Controls the digital outputs DO1, DO2, and DO3
1370
1371 (% style="color:#037691" %)**AT Command**
1372
1373 There is no AT Command to control the Digital Output.
1374
1375
1376 (% style="color:#037691" %)**Downlink Payload**
1377
1378 (% border="2" style="width:500px" %)
1379 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1380 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1381 **prefix** : 02 (hexadecimal)
1382
1383 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1384
1385 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1386
1387 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1388 )))
1389 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1390 02 **01 00 01**
1391
1392 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1393
1394 **More examples:**
1395
1396 (((
1397 01: Low,  00: High,  11: No action
1398
1399 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1400 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1401 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1402 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1403 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1404 )))
1405
1406 (((
1407 (((
1408 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1409 )))
1410
1411 (((
1412 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1413 )))
1414 )))
1415 )))
1416
1417
1418 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1419
1420
1421 * (% style="color:#037691" %)**AT Command**
1422
1423 There is no AT command to control the digital output.
1424
1425
1426 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1427
1428 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Sets DO1/DO2/DO3 outputs with time control
1429
1430 This is to control the digital output time of DO pin. Include four bytes:
1431
1432 (% style="color:#4f81bd" %)**First byte**(%%)**:** Type code (0xA9)
1433
1434 (% style="color:#4f81bd" %)**Second byte**(%%): Inverter Mode
1435
1436 **01:** DO pins revert to their original state after the timeout.
1437 **00:** DO pins switch to an inverted state after the timeout.
1438
1439
1440 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1441
1442 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1443 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1444 |0x01|DO1 set to low
1445 |0x00|DO1 set to high
1446 |0x11|DO1 NO Action
1447
1448 (% style="color:#4f81bd" %)**Fourth byte**(%%): Control Method and Port status:
1449
1450 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1451 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1452 |0x01|DO2 set to low
1453 |0x00|DO2 set to high
1454 |0x11|DO2 NO Action
1455
1456 (% style="color:#4f81bd" %)**Fifth byte**(%%): Control Method and Port status:
1457
1458 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1459 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1460 |0x01|DO3 set to low
1461 |0x00|DO3 set to high
1462 |0x11|DO3 NO Action
1463
1464 (% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth bytes**:(%%) Latching time (Unit: ms)
1465
1466
1467 (% style="color:red" %)**Note: **
1468
1469 Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1470
1471 Before firmware v1.6.0, the latch time only supported 2 bytes.
1472
1473 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1474
1475
1476 **Example payload:**
1477
1478 **~1. A9 01 01 01 01 07 D0**
1479
1480 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1481
1482 **2. A9 01 00 01 11 07 D0**
1483
1484 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1485
1486 **3. A9 00 00 00 00 07 D0**
1487
1488 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1489
1490 **4. A9 00 11 01 00 07 D0**
1491
1492 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1493
1494
1495 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1496
1497
1498 * (% style="color:#037691" %)**AT Command:**
1499
1500 There is no AT Command to control the Relay Output
1501
1502
1503 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1504
1505 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Sets RO1/RO2 output
1506
1507
1508 (((
1509 If the payload is 0x030100, it means setting RO1 to close and RO2 to open.
1510 )))
1511
1512 (((
1513 00: Close ,  01: Open , 11: No action
1514
1515 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1516 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1517 |03  00  11|Open|No Action
1518 |03  01  11|Close|No Action
1519 |03  11  00|No Action|Open
1520 |03  11  01|No Action|Close
1521 |03  00  00|Open|Open
1522 |03  01  01|Close|Close
1523 |03  01  00|Close|Open
1524 |03  00  01|Open|Close
1525 )))
1526
1527 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1528
1529
1530 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1531
1532
1533 Controls the relay output time.
1534
1535 * (% style="color:#037691" %)**AT Command:**
1536
1537 There is no AT Command to control the Relay Output
1538
1539
1540 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1541
1542 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1543
1544
1545 This controls the relay output time and includes 4 bytes:
1546
1547 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1548
1549 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1550
1551 01: Relays will change back to their original state after timeout.
1552
1553 00: Relays will change to the inverter state after timeout.
1554
1555
1556 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1557
1558 [[image:image-20221008095908-1.png||height="364" width="564"]]
1559
1560
1561 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1562
1563
1564 (% style="color:red" %)**Note:**
1565
1566 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1567
1568 Before firmware v1.6.0, the latch time only supported 2 bytes.
1569
1570
1571 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1572
1573
1574 **Example payload:**
1575
1576 **~1. 05 01 11 07 D0**
1577
1578 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1579
1580 **2. 05 01 10 07 D0**
1581
1582 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1583
1584 **3. 05 00 01 07 D0**
1585
1586 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1587
1588 **4. 05 00 00 07 D0**
1589
1590 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1591
1592
1593
1594 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1595
1596
1597 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1598
1599 (% style="color:#037691" %)**AT Command**
1600
1601 (% border="2" style="width:500px" %)
1602 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1603 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1604 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1605 **voltage** : voltage threshold in mV
1606
1607 **logic**:
1608
1609 **0** : lower than
1610
1611 **1**: higher than
1612
1613 if you leave logic parameter blank, it is considered 0
1614 )))
1615 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1616 AT+VOLMAX=20000
1617
1618 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1619
1620 AT+VOLMAX=20000,0
1621
1622 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1623
1624 AT+VOLMAX=20000,1
1625
1626 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1627 )))
1628
1629 (% style="color:#037691" %)**Downlink Payload**
1630
1631 (% border="2" style="width:500px" %)
1632 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1633 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1634 **prefix** : A5 (hex)
1635
1636 **voltage** : voltage threshold in mV (2 bytes in hex)
1637
1638 **logic**: (1 byte in hexadecimal)
1639
1640 **0** : lower than
1641
1642 **1**: higher than
1643
1644 if you leave logic parameter blank, it is considered 1 (higher than)
1645 )))
1646 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1647 A5 **4E 20**
1648
1649 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1650
1651 A5 **4E 20 00**
1652
1653 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1654
1655 A5 **4E 20 01**
1656
1657 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1658 )))
1659
1660 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1661
1662 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1663
1664 (% style="color:#037691" %)**AT Command**
1665
1666 (% border="2" style="width:500px" %)
1667 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1668 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1669 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1670 **counting_parameter** :
1671
1672 1: COUNT1
1673
1674 2: COUNT2
1675
1676 3: AVI1 Count
1677
1678 **number** : Start number
1679 )))
1680 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1681 AT+SETCNT=1,10
1682
1683 Sets the COUNT1 to 10.
1684 )))
1685
1686 (% style="color:#037691" %)**Downlink Payload**
1687
1688 (% border="2" style="width:500px" %)
1689 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1690 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1691 prefix : A8 (hex)
1692
1693 **counting_parameter** : (1 byte in hexadecimal)
1694
1695 1: COUNT1
1696
1697 2: COUNT2
1698
1699 3: AVI1 Count
1700
1701 **number** : Start number, 4 bytes in hexadecimal
1702 )))
1703 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1704 A8 **01 00 00 00 0A**
1705
1706 Sets the COUNT1 to 10.
1707 )))
1708
1709 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1710
1711 This command clears the counting in counting mode.
1712
1713 (% style="color:#037691" %)**AT Command**
1714
1715 (% border="2" style="width:500px" %)
1716 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1717 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1718
1719 (% style="color:#037691" %)**Downlink Payload**
1720
1721 (% border="2" style="width:500px" %)
1722 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1723 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1724 prefix : A6 (hex)
1725
1726 clear? : 01 (hex)
1727 )))
1728 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1729
1730
1731 ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1732
1733
1734 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1735
1736 (% style="color:#037691" %)**AT Command**
1737
1738 (% border="2" style="width:500px" %)
1739 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1740 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1741 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1742 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1743 AT+COUTIME=60
1744
1745 Sets the device to save its counting results to the memory every 60 seconds.
1746 )))
1747
1748 (% style="color:#037691" %)**Downlink Payload**
1749
1750 (% border="2" style="width:500px" %)
1751 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1752 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1753 prefix : A7
1754
1755 time : seconds, 3 bytes in hexadecimal
1756 )))
1757 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1758 A7 **00 00 3C**
1759
1760 Sets the device to save its counting results to the memory every 60 seconds.
1761 )))
1762
1763
1764 ==== 3.4.2.20 Reset saved RO and DO states ====
1765
1766
1767 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1768
1769 (% style="color:#037691" %)**AT Command**
1770
1771 (% border="2" style="width:500px" %)
1772 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1773 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1774 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1775 **state** :
1776
1777 **0** : RODO will close when the device joins the network. (default)
1778
1779 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1780 )))
1781 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1782 (% style="color:blue" %)**AT+RODORESET=1 **
1783
1784 RODO will close when the device joins the network. (default)
1785
1786 (% style="color:blue" %)**AT+RODORESET=0 **
1787
1788 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1789 )))
1790
1791 (% style="color:#037691" %)**Downlink Payload**
1792
1793 (% border="2" style="width:500px" %)
1794 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1795 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1796 **prefix** : AD
1797
1798 **state** :
1799
1800 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1801
1802 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1803 )))
1804 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1805 AD **01**
1806
1807 RODO will close when the device joins the network. (default)
1808
1809 AD **00**
1810
1811 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1812 )))
1813
1814
1815 ==== 3.4.2.21 Encrypted payload ====
1816
1817
1818 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1819
1820 (% style="color:#037691" %)**AT Command:**
1821
1822 (% border="2" style="width:500px" %)
1823 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1824 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1825 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1826 **state** :
1827
1828 **1** : The payload is uploaded without encryption
1829
1830 **0** : The payload is encrypted when uploaded (default)
1831 )))
1832 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1833 AT+DECRYPT=1
1834
1835 The payload is uploaded without encryption
1836
1837 AT+DECRYPT=0
1838
1839 The payload is encrypted when uploaded (default)
1840 )))
1841
1842 There is no downlink payload for this configuration.
1843
1844
1845 ==== 3.4.2.22 Get sensor value ====
1846
1847
1848 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1849
1850 (% style="color:#037691" %)**AT Command**
1851
1852 (% border="2" style="width:500px" %)
1853 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1854 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1855 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1856 **state** :
1857
1858 **0 **: Retrieves the current sensor reading via the serial port.
1859
1860 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1861 )))
1862 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1863 AT+GETSENSORVALUE=0
1864
1865 Retrieves the current sensor reading via the serial port.
1866
1867 AT+GETSENSORVALUE=1
1868
1869 Retrieves and uplinks the current sensor reading via the serial port.
1870 )))
1871
1872 There is no downlink payload for this configuration.
1873
1874
1875 ==== 3.4.2.23 Resetting the downlink packet count ====
1876
1877
1878 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1879
1880 (% style="color:#037691" %)**AT Command**
1881
1882 (% border="2" style="width:500px" %)
1883 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1884 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1885
1886 )))
1887 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1888 **state **:
1889
1890 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1891
1892
1893 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1894 )))
1895 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1896 AT+DISFCNTCHECK=0
1897
1898 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1899
1900 AT+DISFCNTCHECK=1
1901
1902 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1903 )))
1904
1905 There is no downlink payload for this configuration.
1906
1907
1908 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1909
1910
1911 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1912
1913 (% style="color:#037691" %)**AT Command**
1914
1915 (% border="2" style="width:500px" %)
1916 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1917 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1918 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1919 **state** :
1920
1921 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1922
1923 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1924 )))
1925 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1926 AT+DISMACANS=0
1927
1928 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1929
1930 AT+DISMACANS=1
1931
1932 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1933 )))
1934
1935 (% style="color:#037691" %)**Downlink Payload**
1936
1937 (% border="2" style="width:500px" %)
1938 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1939 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1940 **prefix** : 21
1941
1942 **state** : (2 bytes in hexadecimal)
1943
1944 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1945
1946 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1947 )))
1948 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1949 21 **00 01**
1950
1951 Set DISMACANS=1
1952 )))
1953
1954
1955 ==== 3.4.2.25 Copy downlink to uplink ====
1956
1957
1958 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1959
1960 (% style="color:#037691" %)**AT Command**(%%)**:**
1961
1962 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1963
1964 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1965
1966
1967 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1968
1969 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1970
1971 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1972
1973 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1974
1975
1976 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1977
1978 There is no downlink option available for this feature.
1979
1980
1981 ==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1982
1983
1984 This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1985
1986 * (((
1987 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1988
1989 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
1990
1991
1992
1993 )))
1994
1995 **Example:**
1996
1997 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1998
1999
2000 == 3.5 Integrating with ThingsEye.io ==
2001
2002
2003 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
2004
2005
2006 === 3.5.1 Configuring The Things Stack ===
2007
2008
2009 We use The Things Stack Sandbox in this example:
2010
2011 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
2012 * Select **MQTT** under **Integrations** in the left menu.
2013 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2014 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
2015
2016 {{info}}
2017 The username and  password (API key) you created here are required in the next section.
2018 {{/info}}
2019
2020 [[image:tts-mqtt-integration.png]]
2021
2022
2023 === 3.5.2 Configuring ThingsEye.io ===
2024
2025
2026 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
2027
2028 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2029 * Under the **Integrations center**, click **Integrations**.
2030 * Click the **Add integration** button (the button with the **+** symbol).
2031
2032 [[image:thingseye-io-step-1.png]]
2033
2034
2035 On the **Add integration** window, configure the following:
2036
2037 **Basic settings:**
2038
2039 * Select **The Things Stack Community** from the **Integration type** list.
2040 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2041 * Ensure the following options are turned on.
2042 ** Enable integration
2043 ** Debug mode
2044 ** Allow create devices or assets
2045 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
2046
2047 [[image:thingseye-io-step-2.png]]
2048
2049
2050 **Uplink data converter:**
2051
2052 * Click the **Create new** button if it is not selected by default.
2053 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2054 * Click the **JavaScript** button.
2055 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2056 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2057
2058 [[image:thingseye-io-step-3.png]]
2059
2060
2061 **Downlink data converter (this is an optional step):**
2062
2063 * Click the **Create new** button if it is not selected by default.
2064 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2065 * Click the **JavaScript** button.
2066 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2067 * Click the **Next** button. You will be navigated to the **Connection** tab.
2068
2069 [[image:thingseye-io-step-4.png]]
2070
2071
2072 **Connection:**
2073
2074 * Choose **Region** from the **Host type**.
2075 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2076 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2077 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2078
2079 [[image:message-1.png]]
2080
2081
2082 * Click the **Add** button.
2083
2084 [[image:thingseye-io-step-5.png]]
2085
2086
2087 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2088
2089
2090 [[image:thingseye.io_integrationsCenter_integrations.png]]
2091
2092
2093 ==== 3.5.2.1 Viewing integration details ====
2094
2095
2096 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2097
2098 [[image:integration-details.png]]
2099
2100
2101 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2102
2103 {{info}}
2104 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2105 {{/info}}
2106
2107
2108 ==== 3.5.2.2 Viewing events ====
2109
2110
2111 The **Events **tab displays all the uplink messages from the LT-22222-L.
2112
2113 * Select **Debug **from the **Event type** dropdown.
2114 * Select the** time frame** from the **time window**.
2115
2116 [[image:thingseye-events.png]]
2117
2118
2119 * To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2120
2121 [[image:thingseye-json.png]]
2122
2123
2124 ==== 3.5.2.3 Deleting an integration ====
2125
2126
2127 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2128
2129
2130 ==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2131
2132
2133 This will be added soon.
2134
2135
2136 == 3.6 Interface Details ==
2137
2138 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2139
2140
2141 Supports** NPN-type **sensors.
2142
2143 [[image:1653356991268-289.png]]
2144
2145
2146 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2147
2148
2149 (((
2150 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2151 )))
2152
2153 (((
2154 (((
2155 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2156
2157
2158 )))
2159 )))
2160
2161 [[image:1653357170703-587.png]]
2162
2163 (((
2164 (((
2165 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2166 )))
2167 )))
2168
2169 (((
2170
2171 )))
2172
2173 (((
2174 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2175 )))
2176
2177 (((
2178 This type of sensor outputs a low (GND) signal when active.
2179 )))
2180
2181 * (((
2182 Connect the sensor's output to DI1-
2183 )))
2184 * (((
2185 Connect the sensor's VCC to DI1+.
2186 )))
2187
2188 (((
2189 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2190 )))
2191
2192 (((
2193 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2194 )))
2195
2196 (((
2197 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2198 )))
2199
2200 (((
2201
2202 )))
2203
2204 (((
2205 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2206 )))
2207
2208 (((
2209 This type of sensor outputs a high signal (e.g., 24V) when active.
2210 )))
2211
2212 * (((
2213 Connect the sensor's output to DI1+
2214 )))
2215 * (((
2216 Connect the sensor's GND DI1-.
2217 )))
2218
2219 (((
2220 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2221 )))
2222
2223 (((
2224 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2225 )))
2226
2227 (((
2228 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2229 )))
2230
2231 (((
2232
2233 )))
2234
2235 (((
2236 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2237 )))
2238
2239 (((
2240 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2241 )))
2242
2243 * (((
2244 Connect the sensor's output to DI1+ with a 50K resistor in series.
2245 )))
2246 * (((
2247 Connect the sensor's GND DI1-.
2248 )))
2249
2250 (((
2251 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2252 )))
2253
2254 (((
2255 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2256 )))
2257
2258 (((
2259 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2260 )))
2261
2262
2263 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2264
2265 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2266
2267 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2268
2269 [[image:image-20230616235145-1.png]]
2270
2271 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2272
2273 [[image:image-20240219115718-1.png]]
2274
2275
2276 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2277
2278
2279 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2280
2281 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2282
2283 [[image:1653357531600-905.png]]
2284
2285
2286 === 3.6.4 Analog Input Interfaces ===
2287
2288
2289 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2290
2291
2292 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2293
2294 [[image:1653357592296-182.png]]
2295
2296 Example: Connecting a 4~~20mA sensor
2297
2298 We will use the wind speed sensor as an example for reference only.
2299
2300
2301 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2302
2303 (% style="color:red" %)**Red:  12~~24V**
2304
2305 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2306
2307 **Black:  GND**
2308
2309 **Connection diagram:**
2310
2311 [[image:1653357640609-758.png]]
2312
2313 [[image:1653357648330-671.png||height="155" width="733"]]
2314
2315
2316 Example: Connecting to a regulated power supply to measure voltage
2317
2318 [[image:image-20230608101532-1.png||height="606" width="447"]]
2319
2320 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2321
2322 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2323
2324
2325 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2326
2327 (% style="color:red" %)**Red:  12~~24v**
2328
2329 **Black:  GND**
2330
2331
2332 === 3.6.5 Relay Output ===
2333
2334
2335 (((
2336 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2337
2338 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2339 )))
2340
2341 [[image:image-20220524100215-9.png]]
2342
2343
2344 [[image:image-20220524100215-10.png||height="382" width="723"]]
2345
2346
2347 == 3.7 LED Indicators ==
2348
2349
2350 The table below lists the behavior of LED indicators for each port function.
2351
2352 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2353 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2354 |**PWR**|Always on when there is power
2355 |**TX**|(((
2356 (((
2357 Device boot: TX blinks 5 times.
2358 )))
2359
2360 (((
2361 Successful network join: TX remains ON for 5 seconds.
2362 )))
2363
2364 (((
2365 Transmit a LoRa packet: TX blinks once
2366 )))
2367 )))
2368 |**RX**|RX blinks once when a packet is received.
2369 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2370 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2371 |**DI1**|(((
2372 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2373 )))
2374 |**DI2**|(((
2375 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2376 )))
2377 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2378 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2379
2380
2381 = 4. Using AT Commands =
2382
2383
2384 The LT-22222-L supports programming using AT Commands.
2385
2386
2387 == 4.1 Connecting the LT-22222-L to a PC ==
2388
2389
2390 (((
2391 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2392
2393 [[image:usb-ttl-audio-jack-connection.jpg]]
2394
2395
2396 )))
2397
2398
2399 (((
2400 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2401 )))
2402
2403 [[image:1653358355238-883.png]]
2404
2405
2406 (((
2407 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2408
2409
2410 == 4.2 LT-22222-L related AT commands ==
2411
2412
2413 )))
2414
2415 (((
2416 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2417
2418 * **##AT##+<CMD>?** : Help on <CMD>
2419 * **##AT##+<CMD>** : Run <CMD>
2420 * **##AT##+<CMD>=<value>** : Set the value
2421 * **##AT##+<CMD>=?** : Get the value
2422 * ##**ATZ**##: Trigger a reset of the MCU
2423 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2424 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2425 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2426 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2427 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2428 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2429 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2430 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2431 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2432 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2433 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2434 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2435 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2436 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2437 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2438 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2439 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2440 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2441 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2442 * ##**AT+NWKID**##: Get or set the Network ID
2443 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2444 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2445 * ##**AT+CLASS**##: Get or set the Device Class
2446 * ##**AT+JOIN**##: Join network
2447 * ##**AT+NJS**##: Get OTAA Join Status
2448 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2449 * ##**AT+SEND**##: Send text data along with the application port
2450 * ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values)
2451 * ##**AT+RECV**##: Print last received data in raw format
2452 * ##**AT+VER**##: Get current image version and Frequency Band
2453 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2454 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2455 * ##**AT+SNR**##: Get the SNR of the last received packet
2456 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2457 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2458 * ##**AT+PORT**##: Get or set the application port
2459 * ##**AT+DISAT**##: Disable AT commands
2460 * ##**AT+PWORD**##: Set password, max 9 digits
2461 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2462 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2463 * ##**AT+CFG**##: Print all settings
2464 )))
2465
2466
2467 == 4.2 Common AT Command Sequence ==
2468
2469 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2470
2471 (((
2472
2473
2474 (((
2475 (% style="color:blue" %)**If the device has not yet joined the network:**
2476 )))
2477 )))
2478
2479 (((
2480 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2481 )))
2482
2483 (((
2484 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2485 )))
2486
2487 (((
2488 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2489 )))
2490
2491 (((
2492 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2493 )))
2494
2495 (((
2496 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2497 )))
2498
2499
2500 (((
2501 (% style="color:blue" %)**If the device has already joined the network:**
2502 )))
2503
2504 (((
2505 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2506 )))
2507
2508 (((
2509 (% style="background-color:#dcdcdc" %)##**ATZ**##
2510 )))
2511
2512
2513 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2514
2515 (((
2516
2517
2518 (((
2519 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2520 )))
2521 )))
2522
2523 (((
2524 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2525 )))
2526
2527 (((
2528 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2529 )))
2530
2531 (((
2532 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2533 )))
2534
2535 (((
2536 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2537 )))
2538
2539 (((
2540 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2541 )))
2542
2543 (((
2544 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2545 )))
2546
2547 (((
2548 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2549 )))
2550
2551 (((
2552 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2553 )))
2554
2555 (((
2556 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2557 )))
2558
2559 (((
2560 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2561 )))
2562
2563 (((
2564 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2565 )))
2566
2567 (((
2568 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2569
2570
2571 )))
2572
2573 (((
2574 (% style="color:red" %)**Note:**
2575 )))
2576
2577 (((
2578 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2579
2580 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2581
2582 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2583 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2584
2585 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2586 )))
2587
2588 (((
2589 [[image:1653359097980-169.png||height="188" width="729"]]
2590 )))
2591
2592
2593 === 4.2.3 Change to Class A ===
2594
2595
2596 (((
2597 (% style="color:blue" %)**If the sensor has JOINED:**
2598
2599 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2600
2601 (% style="background-color:#dcdcdc" %)**ATZ**
2602 )))
2603
2604
2605 = 5. Case Study =
2606
2607 == 5.1 Counting how many objects pass through the flow line ==
2608
2609
2610 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2611
2612
2613 = 6. FAQ =
2614
2615
2616 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2617
2618
2619 == 6.1 How to update the firmware? ==
2620
2621
2622 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2623
2624 * Support new features
2625 * Fix bugs
2626 * Change LoRaWAN frequency bands
2627
2628 You will need the following things before proceeding:
2629
2630 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2631 * USB to TTL adapter/converter
2632 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2633 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2634
2635 {{info}}
2636 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2637 {{/info}}
2638
2639 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2640
2641 [[image:usb-ttl-audio-jack-connection.jpg]]
2642
2643
2644
2645 Start the STM32 Flash Loader and choose the correct COM port to update.
2646
2647 (((
2648 (((
2649 (% style="color:blue" %)**For LT-22222-L**(%%):
2650
2651 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2652 )))
2653
2654
2655 )))
2656
2657 [[image:image-20220524103407-12.png]]
2658
2659
2660 [[image:image-20220524103429-13.png]]
2661
2662
2663 [[image:image-20220524104033-15.png]]
2664
2665
2666 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2667
2668 [[image:1653360054704-518.png||height="186" width="745"]]
2669
2670
2671 (((
2672 (((
2673 == 6.2 How to change the LoRaWAN frequency band/region? ==
2674
2675
2676 )))
2677 )))
2678
2679 (((
2680 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2681 )))
2682
2683 (((
2684
2685
2686 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2687
2688
2689 )))
2690
2691 (((
2692 (((
2693 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2694 )))
2695 )))
2696
2697 (((
2698 (((
2699 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2700
2701
2702 )))
2703 )))
2704
2705 (((
2706 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2707
2708 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2709 )))
2710
2711 (((
2712
2713 )))
2714
2715 {{warning}}
2716 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2717 {{/warning}}
2718
2719
2720 (((
2721 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2722
2723
2724 )))
2725
2726 (((
2727 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2728
2729 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2730
2731 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2732
2733 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2734
2735 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2736
2737 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2738
2739 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2740
2741 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2742
2743 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2744
2745 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2746
2747 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2748
2749 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2750 )))
2751
2752
2753 (((
2754 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2755 )))
2756
2757 [[image:1653360498588-932.png||height="485" width="726"]]
2758
2759
2760 == 6.4 How to change the uplink interval? ==
2761
2762
2763 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2764
2765
2766 == 6.5 Can I see the counting event in the serial output? ==
2767
2768
2769 (((
2770 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2771
2772
2773 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2774
2775
2776 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2777
2778
2779 )))
2780
2781 (((
2782 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2783
2784
2785 * If the device is not properly shut down and is directly powered off.
2786 * It will default to a power-off state.
2787 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2788 * After a restart, the status before the power failure will be read from flash.
2789
2790
2791 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2792
2793
2794 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2795
2796
2797 [[image:image-20221006170630-1.png||height="610" width="945"]]
2798
2799
2800 == 6.9 Can the LT-22222-L save the RO state? ==
2801
2802
2803 To enable this feature, the firmware version must be 1.6.0 or higher.
2804
2805
2806 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2807
2808
2809 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2810
2811
2812 = 7. Troubleshooting =
2813
2814
2815 This section provides some known troubleshooting tips.
2816
2817
2818 )))
2819
2820 (((
2821 (((
2822 == 7.1 Downlink isn't working. How can I solve this? ==
2823
2824
2825 )))
2826 )))
2827
2828 (((
2829 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2830 )))
2831
2832 (((
2833
2834
2835 == 7.2 Having trouble uploading an image? ==
2836
2837
2838 )))
2839
2840 (((
2841 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2842 )))
2843
2844 (((
2845
2846
2847 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2848
2849
2850 )))
2851
2852 (((
2853 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2854 )))
2855
2856
2857 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2858
2859
2860 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2861 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2862
2863
2864 = 8. Ordering information =
2865
2866
2867 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2868
2869 (% style="color:#4f81bd" %)**XXX:**
2870
2871 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2872 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2873 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2874 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2875 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2876 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2877 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2878 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2879 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2880
2881
2882
2883 = 9. Package information =
2884
2885
2886 **Package includes**:
2887
2888 * 1 x LT-22222-L I/O Controller
2889 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2890 * 1 x bracket for DIN rail mounting
2891 * 1 x 3.5 mm programming cable
2892
2893 **Dimension and weight**:
2894
2895 * Device Size: 13.5 x 7 x 3 cm
2896 * Device Weight: 105 g
2897 * Package Size / pcs : 14.5 x 8 x 5 cm
2898 * Weight / pcs : 170 g
2899
2900
2901
2902 = 10. Support =
2903
2904
2905 * (((
2906 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2907 )))
2908 * (((
2909 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2910
2911
2912 )))
2913
2914 = 11. Reference​​​​​ =
2915
2916
2917 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2918 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2919 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]