Version 230.1 by Dilisi S on 2024/12/09 02:51

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 {{info}}
27 **This manual is also applicable to the LT-33222-L.**
28 {{/info}}
29
30 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31
32 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
33 )))
34 )))
35
36 (((
37 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 )))
39
40 (((
41 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42
43 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
44 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 * Setup your own private LoRaWAN network.
46 )))
47
48 (((
49
50
51 The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
52 )))
53
54 (% class="wikigeneratedid" %)
55 [[image:lorawan-nw.jpg||height="354" width="900"]]
56
57
58 == 1.2 Specifications ==
59
60
61 (% style="color:#037691" %)**Hardware System:**
62
63 * STM32L072xxxx MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption:
66 ** Idle: 4mA@12V
67 ** 20dB Transmit: 34mA@12V
68 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
69
70 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
71
72 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
73 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
74 * 2 x Relay Output (5A@250VAC / 30VDC)
75 * 2 x 0~~20mA Analog Input (res:0.01mA)
76 * 2 x 0~~30V Analog Input (res:0.01V)
77 * Power Input 7~~ 24V DC. 
78
79 (% style="color:#037691" %)**LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 MHz
83 ** Band 2 (LF): 410 ~~ 528 MHz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * +14 dBm high-efficiency PA.
87 * Programmable bit rate up to 300 kbps.
88 * High sensitivity: down to -148 dBm.
89 * Bullet-proof front end: IIP3 = -12.5 dBm.
90 * Excellent blocking immunity.
91 * Low RX current of 10.3 mA, 200 nA register retention.
92 * Fully integrated synthesizer with a resolution of 61 Hz.
93 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
94 * Built-in bit synchronizer for clock recovery.
95 * Preamble detection.
96 * 127 dB Dynamic Range RSSI.
97 * Automatic RF Sense and CAD with ultra-fast AFC.
98 * Packet engine up to 256 bytes with CRC.
99
100 == 1.3 Features ==
101
102 * LoRaWAN Class A & Class C modes
103 * Optional Customized LoRa Protocol
104 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
105 * AT Commands to change parameters
106 * Remotely configure parameters via LoRaWAN Downlink
107 * Firmware upgradable via program port
108 * Counting
109
110 == 1.4 Applications ==
111
112 * Smart buildings & home automation
113 * Logistics and supply chain management
114 * Smart metering
115 * Smart agriculture
116 * Smart cities
117 * Smart factory
118
119 == 1.5 Hardware Variants ==
120
121
122 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
123 |(% style="background-color:#4f81bd; color:white; width:94px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:172px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:244px" %)**Description**
124 |(% style="width:94px" %)**LT-22222-L**|(% style="width:172px" %)(((
125 (% style="text-align:center" %)
126 [[image:lt33222-l.jpg||height="116" width="100"]]
127 )))|(% style="width:256px" %)(((
128 * 2 x Digital Input (Bi-direction)
129 * 2 x Digital Output
130 * 2 x Relay Output (5A@250VAC / 30VDC)
131 * 2 x 0~~20mA Analog Input (res:0.01mA)
132 * 2 x 0~~30V Analog Input (res:0.01v)
133 * 1 x Counting Port
134 )))
135
136 = 2. Assembling the device =
137
138 == 2.1 Connecting the antenna ==
139
140 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
141
142 {{warning}}
143 **Warning! Do not power on the device without connecting the antenna.**
144 {{/warning}}
145
146 == 2.2 Terminals ==
147
148 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
149
150 **Upper screw terminal block (from left to right):**
151
152 (% style="width:634px" %)
153 |=(% style="width: 295px;" %)Screw Terminal|=(% style="width: 338px;" %)Function
154 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
155 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
156 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
157 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
158 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
159 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
160
161 **Lower screw terminal block (from left to right):**
162
163 (% style="width:633px" %)
164 |=(% style="width: 296px;" %)Screw Terminal|=(% style="width: 334px;" %)Function
165 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
166 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
167 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
168 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
169 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
170 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
171 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
172 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
173 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
174 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
175
176 == 2.3 Connecting LT-22222-L to a Power Source ==
177
178 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
179
180 {{warning}}
181 **We recommend that you power on the LT-22222-L after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
182 {{/warning}}
183
184
185 [[image:1653297104069-180.png]]
186
187
188 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
189
190 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
191
192
193 === 3.2.1 Prerequisites ===
194
195 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
196
197 [[image:image-20230425173427-2.png||height="246" width="530"]]
198
199 {{info}}
200 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
201 {{/info}}
202
203 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
204
205 === 3.2.2 The Things Stack ===
206
207 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
208
209 {{info}}
210 The Things Stack Sandbox was formally called The Things Stack Community Edition.
211 {{/info}}
212
213
214 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
215
216
217 [[image:dragino-lorawan-nw-lt-22222-n.jpg]]
218
219 {{info}}
220 You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
221 {{/info}}
222
223
224 ==== 3.2.2.1 Setting up ====
225
226 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
227 * Log in to your The Things Stack Sandbox account.
228 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
229 * Go to your application's page and click on the **End devices** in the left menu.
230 * On the End devices page, click on **+ Register end device**. Two registration options are available:
231
232 ==== 3.2.2.2 Using the LoRaWAN Device Repository ====
233
234 * On the **Register end device** page:
235 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
236 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
237 *** **End device brand**: Dragino Technology Co., Limited
238 *** **Model**: LT22222-L I/O Controller
239 *** **Hardware ver**: Unknown
240 *** **Firmware ver**: 1.6.0
241 *** **Profile (Region)**: Select the region that matches your device.
242 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
243
244 [[image:lt-22222-l-dev-repo-reg-p1.png]]
245
246
247 * Register end device page continued...
248 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
249 ** In the **DevEUI** field, enter the **DevEUI**.
250 ** In the **AppKey** field, enter the **AppKey.**
251 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
252 ** Under **After registration**, select the **View registered end device** option.
253
254 [[image:lt-22222-l-dev-repo-reg-p2.png]]
255
256
257 ==== 3.2.2.3 Adding device manually ====
258
259 * On the **Register end device** page:
260 ** Select the option **Enter end device specifies manually** under **Input method**.
261 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
262 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
263 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
264 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
265 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
266 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
267
268 [[image:lt-22222-l-manually-p1.png]]
269
270
271 * Register end device page continued...
272 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
273 ** In the **DevEUI** field, enter the **DevEUI**.
274 ** In the **AppKey** field, enter the **AppKey**.
275 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
276 ** Under **After registration**, select the **View registered end device** option.
277 ** Click the **Register end device** button.
278
279 [[image:lt-22222-l-manually-p2.png]]
280
281
282 You will be navigated to the **Device overview** page.
283
284
285 [[image:lt-22222-device-overview.png]]
286
287
288 ==== 3.2.2.4 Joining ====
289
290 On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
291
292 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
293
294
295 [[image:lt-22222-l-joining.png]]
296
297
298
299 ==== 3.2.2.5 Uplinks ====
300
301
302 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
303
304 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
305
306 [[image:lt-22222-ul-payload-decoded.png]]
307
308
309 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
310
311 {{info}}
312 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
313 {{/info}}
314
315 [[image:lt-22222-ul-payload-fmt.png]]
316
317
318 We also have a payload formatter that resolves some decoding issues present in the Device Repository formatter. You can add it under the Custom JavaScript formatter. It can be found [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LT22222-L/v1.6_decoder_ttn%20.txt]]:
319
320 (% class="wikigeneratedid" %)
321 [[image:lt-22222-l-js-custom-payload-formatter.png]]
322
323
324 ==== 3.2.2.6 Downlinks ====
325
326 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
327
328
329 == 3.3 Working Modes and Uplink Payload formats ==
330
331
332 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
333
334 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
335
336 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
337
338 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
339
340 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
341
342 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
343
344 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
345
346 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
347
348 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
349
350 (((
351 This is the default mode.
352
353 The uplink payload is 11 bytes long.
354
355 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
356 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
357 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
358
359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
360 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
361 |Value|(((
362 AVI1 voltage
363 )))|(((
364 AVI2 voltage
365 )))|(((
366 ACI1 Current
367 )))|(((
368 ACI2 Current
369 )))|**DIDORO***|(((
370 Reserve
371 )))|MOD
372 )))
373
374 (((
375 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
376
377 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
378 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
379 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
380 )))
381
382 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
383 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
384 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
385
386 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
387
388 For example, if the payload is: [[image:image-20220523175847-2.png]]
389
390
391 **The interface values can be calculated as follows:  **
392
393 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
394
395 AVI2 channel voltage is 0x04AC/1000=1.196V
396
397 ACI1 channel current is 0x1310/1000=4.880mA
398
399 ACI2 channel current is 0x1300/1000=4.864mA
400
401 The last byte 0xAA= **10101010**(b) means,
402
403 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
404 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
405 * **[1] DI3 - not used for LT-22222-L.**
406 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
407 * [1] DI1 channel input state:
408 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
409 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
410 ** DI1 LED is ON in both cases.
411 * **[0] DO3 - not used for LT-22222-L.**
412 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
413 * [0] DO1 channel output state:
414 ** DO1 is FLOATING when there is no load between DO1 and V+.
415 ** DO1 is HIGH and there is a load between DO1 and V+.
416 ** DO1 LED is OFF in both cases.
417
418 Reserve = 0
419
420 MOD = 1
421
422 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
423
424
425 (((
426 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
427 )))
428
429 (((
430 The uplink payload is 11 bytes long.
431
432 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
433 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
434 It starts counting again when it reaches the maximum value.**
435
436 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
437 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
438 |Value|COUNT1|COUNT2 |DIDORO*|(((
439 Reserve
440 )))|MOD
441 )))
442
443 (((
444 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
445
446 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
447 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
448 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
449
450 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
451 )))
452
453 * FIRST: Indicates that this is the first packet after joining the network.
454 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
455
456 (((
457 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
458
459
460 )))
461
462 (((
463 **To activate this mode, run the following AT commands:**
464 )))
465
466 (((
467 (% class="box infomessage" %)
468 (((
469 **AT+MOD=2**
470
471 **ATZ**
472 )))
473 )))
474
475 (((
476
477
478 (% style="color:#4f81bd" %)**AT Commands for counting:**
479 )))
480
481 (((
482 **For LT22222-L:**
483
484 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
485
486 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
487
488 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
489
490 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
491
492 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
493
494 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
495 )))
496
497
498 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
499
500 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
501 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
502 It starts counting again when it reaches the maximum value.**
503
504 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
505
506 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
507 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
508 |Value|COUNT1|(((
509 ACI1 Current
510 )))|(((
511 ACI2 Current
512 )))|DIDORO*|Reserve|MOD
513
514 (((
515 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
516
517 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
518 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
519 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
520 )))
521
522 * RO is for the relay. ROx=1: closed, ROx=0 always open.
523 * FIRST: Indicates that this is the first packet after joining the network.
524 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
525
526 (((
527 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
528 )))
529
530
531 (((
532 **To activate this mode, run the following AT commands:**
533 )))
534
535 (((
536 (% class="box infomessage" %)
537 (((
538 **AT+MOD=3**
539
540 **ATZ**
541 )))
542 )))
543
544 (((
545 AT Commands for counting:
546
547 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
548 )))
549
550
551 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
552
553 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
554 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
555 It starts counting again when it reaches the maximum value.**
556
557
558 (((
559 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
560 )))
561
562 (((
563 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
564
565 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
566 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
567 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
568 Reserve
569 )))|MOD
570 )))
571
572 (((
573 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
574
575 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
576 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
577 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
578 )))
579
580 * RO is for the relay. ROx=1: closed, ROx=0 always open.
581 * FIRST: Indicates that this is the first packet after joining the network.
582 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
583
584 (((
585 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
586
587
588 )))
589
590 (((
591 **To activate this mode, run the following AT commands:**
592 )))
593
594 (((
595 (% class="box infomessage" %)
596 (((
597 **AT+MOD=4**
598
599 **ATZ**
600 )))
601 )))
602
603 (((
604 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
605 )))
606
607 (((
608 **In addition to that, below are the commands for AVI1 Counting:**
609
610 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
611
612 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), the counter increases by 1)**
613
614 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If the AVI1 voltage is lower than VOLMAX (20000mV =20V), counter increases by 1)**
615
616 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If the AVI1 voltage is higher than VOLMAX (20000mV =20V), counter increases by 1)**
617 )))
618
619
620 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
621
622 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
623 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
624 It starts counting again when it reaches the maximum value.**
625
626
627 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
628
629 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
630 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
631 |Value|(((
632 AVI1 voltage
633 )))|(((
634 AVI2 voltage
635 )))|(((
636 ACI1 Current
637 )))|COUNT1|DIDORO*|(((
638 Reserve
639 )))|MOD
640
641 (((
642 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
643
644 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
645 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
646 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
647 )))
648
649 * RO is for the relay. ROx=1: closed, ROx=0 always open.
650 * FIRST: Indicates that this is the first packet after joining the network.
651 * (((
652 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
653 )))
654
655 (((
656 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
657 )))
658
659 (((
660 **To activate this mode, run the following AT commands:**
661 )))
662
663 (((
664 (% class="box infomessage" %)
665 (((
666 **AT+MOD=5**
667
668 **ATZ**
669 )))
670 )))
671
672 (((
673 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
674 )))
675
676
677 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
678
679
680 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
681
682 For example, if you configure the following commands:
683
684 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
685 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
686
687 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
688
689 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
690 1. (((
691 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
692
693 * The first uplink uses the payload specified in trigger mode (MOD=6).
694 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
695 )))
696
697 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
698
699 (% style="color:#4f81bd" %)**Trigger based on voltage**:
700
701 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
702
703
704 **Example:**
705
706 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
707
708 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
709
710
711 (% style="color:#4f81bd" %)**Trigger based on current**:
712
713 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
714
715
716 **Example:**
717
718 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
719
720
721 (% style="color:#4f81bd" %)**Trigger based on DI status**:
722
723 DI status triggers Flag.
724
725 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
726
727
728 **Example:**
729
730 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
731
732
733 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
734
735 **Type Code**: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
736
737 **Format**: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
738
739 AA: Type Code for this downlink Command:
740
741 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
742
743 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
744
745 yy2 yy2: AC1 or AV1 HIGH limit.
746
747 yy3 yy3: AC2 or AV2 LOW limit.
748
749 Yy4 yy4: AC2 or AV2 HIGH limit.
750
751
752 **Example 1**: AA 00 13 88 00 00 00 00 00 00
753
754 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
755
756
757 **Example 2**: AA 02 01 00
758
759 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
760
761
762 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
763
764 MOD6 Payload: total of 11 bytes
765
766 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
767 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
768 |Value|(((
769 TRI_A FLAG
770 )))|(((
771 TRI_A Status
772 )))|(((
773 TRI_DI FLAG+STA
774 )))|Reserve|Enable/Disable MOD6|(((
775 MOD(6)
776 )))
777
778 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
779
780 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
781 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
782 |(((
783 AV1_LOW
784 )))|(((
785 AV1_HIGH
786 )))|(((
787 AV2_LOW
788 )))|(((
789 AV2_HIGH
790 )))|(((
791 AC1_LOW
792 )))|(((
793 AC1_HIGH
794 )))|(((
795 AC2_LOW
796 )))|(((
797 AC2_HIGH
798 )))
799
800 * Each bit shows if the corresponding trigger has been configured.
801
802 **Example:**
803
804 10100000: This means the system is configured to use the triggers AV1_LOW and AV2_LOW.
805
806
807 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
808
809 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
810 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
811 |(((
812 AV1_LOW
813 )))|(((
814 AV1_HIGH
815 )))|(((
816 AV2_LOW
817 )))|(((
818 AV2_HIGH
819 )))|(((
820 AC1_LOW
821 )))|(((
822 AC1_HIGH
823 )))|(((
824 AC2_LOW
825 )))|(((
826 AC2_HIGH
827 )))
828
829 * Each bit shows which status has been triggered on this uplink.
830
831 **Example:**
832
833 10000000: The uplink is triggered by AV1_LOW, indicating that the voltage is too low.
834
835
836 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
837
838 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %)
839 |(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0**
840 |(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG
841
842 * Each bit shows which status has been triggered on this uplink.
843
844 **Example:**
845
846 00000111: This means both DI1 and DI2 triggers are enabled, and this packet is trigger by DI1.
847
848 00000101: This means both DI1 and DI2 triggers are enabled.
849
850
851 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enabled. 0x00: MOD6 is disabled.
852
853 Downlink command to poll/request MOD6 status:
854
855 **AB 06**
856
857 When device receives this command, it will send the MOD6 payload.
858
859
860 === 3.3.7 Payload Decoder ===
861
862 (((
863
864
865 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
866 )))
867
868
869 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
870
871 (((
872 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
873 )))
874
875 (((
876 (((
877 There are two tytes of commands:
878 )))
879 )))
880
881 * (% style="color:blue" %)**Common commands**(%%):
882
883 * (% style="color:blue" %)**Sensor-related commands**(%%):
884
885 === 3.4.1 Common commands ===
886
887 (((
888 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
889 )))
890
891 === 3.4.2 Sensor-related commands ===
892
893 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
894
895
896 ==== 3.4.2.1 Set Transmit/Uplink Interval ====
897
898 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
899
900 (% style="color:#037691" %)**AT command**
901
902 (% border="2" style="width:500px" %)
903 |**Command**|AT+TDC=<time>
904 |**Parameters**|**time **: uplink interval in milliseconds
905 |**Get**|AT+TDC=?
906 |**Response**|(((
907 current uplink interval
908
909 OK
910 )))
911 |**Set**|AT+TDC=<time>
912 |**Response**|OK
913 |**Example**|(((
914 AT+TDC=30000
915
916 Sets the uplink interval to **30 seconds** (30000 milliseconds)
917 )))
918
919 (% style="color:#037691" %)**Downlink payload**
920
921 (% border="2" style="width:500px" %)
922 |**Payload**|(((
923 <prefix><time>
924 )))
925 |**Parameters**|(((
926 **prefix** : 0x01
927
928 **time** : uplink interval in **seconds**, represented by **3  bytes** in **hexadecimal**.
929 )))
930 |**Example**|(((
931 01 **00 00 1E**
932
933 Sets the uplink interval to **30 seconds**
934
935 Conversion: 30 (dec) = 00 00 1E (hex)
936
937 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30]]
938
939 [[image:Screenshot 2024-11-23 at 18.27.11.png]]
940 )))
941
942 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
943
944 Sets the working mode.
945
946 (% style="color:#037691" %)**AT command**
947
948 (% border="2" style="width:500px" %)
949 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MOD=<working_mode>
950 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
951 **working_mode** :
952
953 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
954
955 2 = Double DI Counting + DO + RO
956
957 3 = Single DI Counting + 2 x ACI + DO + RO
958
959 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
960
961 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
962
963 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
964 )))
965 |(% style="width:97px" %)**Get**|(% style="width:413px" %)AT+MOD=?
966 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
967 Current working mode
968
969 OK
970 )))
971 |(% style="width:97px" %)**Set**|(% style="width:413px" %)AT+MOD=<working_mode>
972 |(% style="width:97px" %)**Response**|(% style="width:413px" %)(((
973 Attention:Take effect after ATZ
974
975 OK
976 )))
977 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
978 AT+MOD=2
979
980 Sets the device to working mode 2 (Double DI Counting + DO + RO)
981 )))
982
983 (% class="wikigeneratedid" %)
984 (% style="color:#037691" %)**Downlink payload**
985
986 (% border="2" style="width:500px" %)
987 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
988 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
989 **prefix** : 0x0A
990
991 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
992 )))
993 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
994 0A **02**
995
996 Sets the device to working mode 2 (Double DI Counting + DO + RO)
997 )))
998
999 ==== 3.4.2.3 Request an uplink from the device ====
1000
1001 Requests an uplink from LT-22222-L. The content of the uplink payload varies based on the device's current working mode.
1002
1003 (% style="color:#037691" %)**AT command**
1004
1005 There is no AT Command available for this feature.
1006
1007 (% style="color:#037691" %)**Downlink payload**
1008
1009 (% border="2" style="width:500px" %)
1010 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
1011 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
1012 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1013 08 **FF**
1014
1015 Requests an uplink from LT-22222-L.
1016 )))
1017
1018 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
1019
1020 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
1021
1022 (% style="color:#037691" %)**AT Command**
1023
1024 (% border="2" style="width:500px" %)
1025 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
1026 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1027 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1028 **enable/disable trigger_mode** :
1029
1030 1 = enable trigger mode
1031
1032 0 = disable trigger mode
1033 )))
1034 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1035 AT+ADDMOD6=1
1036
1037 Enable trigger mode for the current working mode
1038 )))
1039
1040 (% style="color:#037691" %)**Downlink payload**
1041
1042 (% border="2" style="width:500px" %)
1043 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1044 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1045 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1046
1047 **enable/disable trigger_mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1048 )))
1049 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1050 0A 06 **01**
1051
1052 Enable trigger mode for the current working mode
1053 )))
1054
1055 ==== 3.4.2.5 Request trigger settings ====
1056
1057 Requests the trigger settings.
1058
1059 (% style="color:#037691" %)**AT Command:**
1060
1061 There is no AT Command available for this feature.
1062
1063 (% style="color:#037691" %)**Downlink Payload**
1064
1065 (% border="2" style="width:500px" %)
1066 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1067 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1068 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1069 AB 06
1070
1071 Uplinks the trigger settings.
1072 )))
1073
1074 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1075
1076 Enable or disable DI1/DI2/DI3 as a trigger.
1077
1078 (% style="color:#037691" %)**AT Command**
1079
1080 (% border="2" style="width:500px" %)
1081 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1082 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1083 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1084 **DI1_trigger:**
1085
1086 1 = enable DI1 trigger
1087
1088 0 = disable DI1 trigger
1089
1090 **DI2 _trigger**
1091
1092 1 = enable DI2 trigger
1093
1094 0 = disable DI2 trigger
1095 )))
1096 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1097 AT+DTRI=1,0
1098
1099 Enable DI1 trigger, disable DI2 trigger
1100 )))
1101
1102 (% class="wikigeneratedid" %)
1103 (% style="color:#037691" %)**Downlink Payload**
1104
1105 (% border="2" style="width:500px" %)
1106 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1107 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1108 **prefix :** AA 02 (two bytes in hexadecimal)
1109
1110 **DI1_trigger:**
1111
1112 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1113
1114 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1115
1116 **DI2 _trigger**
1117
1118 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1119
1120 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1121 )))
1122 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1123 AA 02 **01 00**
1124
1125 Enable DI1 trigger, disable DI2 trigger
1126 )))
1127
1128 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1129
1130 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1131
1132
1133 (% style="color:#037691" %)**AT Command**
1134
1135 (% border="2" style="width:500px" %)
1136 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1137 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1138 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1139 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1140
1141 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1142 )))
1143 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1144 AT+TRIG1=1,100
1145
1146 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1147 )))
1148
1149 (% class="wikigeneratedid" %)
1150 (% style="color:#037691" %)**Downlink Payload**
1151
1152 (% border="2" style="width:500px" %)
1153 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1154 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1155 **prefix** : 09 01 (hexadecimal)
1156
1157 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1158
1159 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1160 )))
1161 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1162 09 01 **01 00 64**
1163
1164 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1165 )))
1166
1167 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1168
1169 Sets DI2 as a trigger.
1170
1171
1172 (% style="color:#037691" %)**AT Command**
1173
1174 (% border="2" style="width:500px" %)
1175 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1176 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1177 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1178 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1179
1180 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1181 )))
1182 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1183 AT+TRIG2=0,100
1184
1185 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1186 )))
1187
1188 (% style="color:#037691" %)**Downlink Payload**
1189
1190 (% border="2" style="width:500px" %)
1191 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1192 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1193 **prefix** : 09 02 (hexadecimal)
1194
1195 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1196
1197 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1198 )))
1199 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1200
1201 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1202
1203 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1204
1205 (% style="color:#037691" %)**AT Command**
1206
1207 (% border="2" style="width:500px" %)
1208 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1209 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1210 )))
1211 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1212 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1213 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1214
1215 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1216
1217 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1218
1219 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1220 )))
1221 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1222 AT+ACLIM=10000,15000,0,0
1223
1224 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1225 )))
1226 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1227
1228 (% style="color:#037691" %)**Downlink Payload**
1229
1230 (% border="2" style="width:500px" %)
1231 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1232 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1233 **prefix **: AA 01 (hexadecimal)
1234
1235 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1236
1237 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1238
1239 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1240
1241 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1242 )))
1243 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1244 AA 01 **27** **10 3A** **98** 00 00 00 00
1245
1246 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1247 )))
1248 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1249
1250 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1251
1252 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1253
1254 (% style="color:#037691" %)**AT Command**
1255
1256 (% border="2" style="width:500px" %)
1257 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1258 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1259 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1260 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1261
1262 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1263
1264 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1265
1266 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1267 )))
1268 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1269 AT+AVLIM=3000,6000,0,2000
1270
1271 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1272 )))
1273 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1274
1275 (% style="color:#037691" %)**Downlink Payload**
1276
1277 (% border="2" style="width:500px" %)
1278 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1279 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1280 **prefix **: AA 00 (hexadecimal)
1281
1282 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1283
1284 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1285
1286 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1287
1288 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1289 )))
1290 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1291 AA 00 **0B B8 17 70 00 00 07 D0**
1292
1293 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1294 )))
1295 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1296
1297 ==== 3.4.2.11 Trigger – Set minimum interval ====
1298
1299 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1300
1301 (% style="color:#037691" %)**AT Command**
1302
1303 (% border="2" style="width:500px" %)
1304 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1305 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1306 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1307 **time** : in minutes
1308 )))
1309 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1310 AT+ATDC=5
1311
1312 The device won't respond to the second trigger within 5 minutes after the first trigger.
1313 )))
1314 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1315
1316 (% style="color:#037691" %)**Downlink Payload**
1317
1318 (% border="2" style="width:500px" %)
1319 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1320 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1321 **prefix** : AC (hexadecimal)
1322
1323 **time **: in minutes (two bytes in hexadecimal)
1324 )))
1325 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1326 AC **00 05**
1327
1328 The device won't respond to the second trigger within 5 minutes after the first trigger.
1329 )))
1330 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1331
1332 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1333
1334 Controls the digital outputs DO1, DO2, and DO3
1335
1336 (% style="color:#037691" %)**AT Command**
1337
1338 There is no AT Command to control the Digital Output.
1339
1340
1341 (% style="color:#037691" %)**Downlink Payload**
1342
1343 (% border="2" style="width:500px" %)
1344 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1345 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1346 **prefix** : 02 (hexadecimal)
1347
1348 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1349
1350 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1351
1352 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1353 )))
1354 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1355 02 **01 00 01**
1356
1357 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1358
1359 **More examples:**
1360
1361 (((
1362 01: Low,  00: High,  11: No action
1363
1364 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:383px" %)
1365 |(% style="background-color:#4f81bd; color:white; width:126px" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white; width:85px" %)**DO1**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO2**|(% style="background-color:#4f81bd; color:white; width:86px" %)**DO3**
1366 |(% style="width:126px" %)02  01  00  11|(% style="width:85px" %)Low|(% style="width:86px" %)High|(% style="width:86px" %)No Action
1367 |(% style="width:126px" %)02  00  11  01|(% style="width:85px" %)High|(% style="width:86px" %)No Action|(% style="width:86px" %)Low
1368 |(% style="width:126px" %)02  11  01  00|(% style="width:85px" %)No Action|(% style="width:86px" %)Low|(% style="width:86px" %)High
1369 )))
1370
1371 (((
1372 (((
1373 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1374 )))
1375
1376 (((
1377 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1378 )))
1379 )))
1380 )))
1381
1382 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1383
1384
1385 * (% style="color:#037691" %)**AT Command**
1386
1387 There is no AT command to control the digital output.
1388
1389
1390 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1391
1392 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Sets DO1/DO2/DO3 outputs with time control
1393
1394 This is to control the digital output time of DO pin. Include four bytes:
1395
1396 (% style="color:#4f81bd" %)**First byte**(%%)**:** Type code (0xA9)
1397
1398 (% style="color:#4f81bd" %)**Second byte**(%%): Inverter Mode
1399
1400 **01:** DO pins revert to their original state after the timeout.
1401 **00:** DO pins switch to an inverted state after the timeout.
1402
1403
1404 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1405
1406 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1407 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1408 |0x01|DO1 set to low
1409 |0x00|DO1 set to high
1410 |0x11|DO1 NO Action
1411
1412 (% style="color:#4f81bd" %)**Fourth byte**(%%): Control Method and Port status:
1413
1414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1415 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1416 |0x01|DO2 set to low
1417 |0x00|DO2 set to high
1418 |0x11|DO2 NO Action
1419
1420 (% style="color:#4f81bd" %)**Fifth byte**(%%): Control Method and Port status:
1421
1422 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1423 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1424 |0x01|DO3 set to low
1425 |0x00|DO3 set to high
1426 |0x11|DO3 NO Action
1427
1428 (% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth bytes**:(%%) Latching time (Unit: ms)
1429
1430
1431 (% style="color:red" %)**Note: **
1432
1433 Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1434
1435 Before firmware v1.6.0, the latch time only supported 2 bytes.
1436
1437 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1438
1439
1440 **Example payload:**
1441
1442 **~1. A9 01 01 01 01 07 D0**
1443
1444 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1445
1446 **2. A9 01 00 01 11 07 D0**
1447
1448 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1449
1450 **3. A9 00 00 00 00 07 D0**
1451
1452 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1453
1454 **4. A9 00 11 01 00 07 D0**
1455
1456 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1457
1458
1459 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1460
1461
1462 * (% style="color:#037691" %)**AT Command:**
1463
1464 There is no AT Command to control the Relay Output
1465
1466
1467 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1468
1469 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Sets RO1/RO2 output
1470
1471
1472 (((
1473 If the payload is 0x030100, it means setting RO1 to close and RO2 to open.
1474 )))
1475
1476 (((
1477 00: Close ,  01: Open , 11: No action
1478
1479 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1480 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1481 |03  00  11|Open|No Action
1482 |03  01  11|Close|No Action
1483 |03  11  00|No Action|Open
1484 |03  11  01|No Action|Close
1485 |03  00  00|Open|Open
1486 |03  01  01|Close|Close
1487 |03  01  00|Close|Open
1488 |03  00  01|Open|Close
1489 )))
1490
1491 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1492
1493
1494 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1495
1496 Controls the relay output time.
1497
1498 * (% style="color:#037691" %)**AT Command:**
1499
1500 There is no AT Command to control the Relay Output
1501
1502
1503 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1504
1505 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Sets RO1/RO2 relays with time control
1506
1507
1508 This controls the relay output time and includes 4 bytes:
1509
1510 (% style="color:#4f81bd" %)**First byte **(%%)**:** Type code (0x05)
1511
1512 (% style="color:#4f81bd" %)**Second byte (aa)**(%%): Inverter Mode
1513
1514 01: Relays will change back to their original state after timeout.
1515
1516 00: Relays will change to the inverter state after timeout.
1517
1518
1519 (% style="color:#4f81bd" %)**Third byte (bb)**(%%): Control Method and Ports status:
1520
1521 [[image:image-20221008095908-1.png||height="364" width="564"]]
1522
1523
1524 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh bytes (cc)**(%%): Latching time. Unit: ms
1525
1526
1527 (% style="color:red" %)**Note:**
1528
1529 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1530
1531 Before firmware v1.6.0, the latch time only supported 2 bytes.
1532
1533
1534 (% style="color:red" %)**The device will uplink a packet if the downlink code executes successfully.**
1535
1536
1537 **Example payload:**
1538
1539 **~1. 05 01 11 07 D0**
1540
1541 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1542
1543 **2. 05 01 10 07 D0**
1544
1545 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1546
1547 **3. 05 00 01 07 D0**
1548
1549 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1550
1551 **4. 05 00 00 07 D0**
1552
1553 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1554
1555
1556
1557 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1558
1559
1560 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1561
1562 (% style="color:#037691" %)**AT Command**
1563
1564 (% border="2" style="width:500px" %)
1565 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage>,<logic>
1566 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1567 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1568 **voltage** : voltage threshold in mV
1569
1570 **logic**:
1571
1572 **0** : lower than
1573
1574 **1**: higher than
1575
1576 if you leave logic parameter blank, it is considered 0
1577 )))
1578 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1579 AT+VOLMAX=20000
1580
1581 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1582
1583 AT+VOLMAX=20000,0
1584
1585 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1586
1587 AT+VOLMAX=20000,1
1588
1589 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1590 )))
1591
1592 (% style="color:#037691" %)**Downlink Payload**
1593
1594 (% border="2" style="width:500px" %)
1595 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1596 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1597 **prefix** : A5 (hex)
1598
1599 **voltage** : voltage threshold in mV (2 bytes in hex)
1600
1601 **logic**: (1 byte in hexadecimal)
1602
1603 **0** : lower than
1604
1605 **1**: higher than
1606
1607 if you leave logic parameter blank, it is considered 1 (higher than)
1608 )))
1609 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1610 A5 **4E 20**
1611
1612 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1613
1614 A5 **4E 20 00**
1615
1616 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1617
1618 A5 **4E 20 01**
1619
1620 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1621 )))
1622
1623 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1624
1625 This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1626
1627 (% style="color:#037691" %)**AT Command**
1628
1629 (% border="2" style="width:500px" %)
1630 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter>,<number>
1631 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1632 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1633 **counting_parameter** :
1634
1635 1: COUNT1
1636
1637 2: COUNT2
1638
1639 3: AVI1 Count
1640
1641 **number** : Start number
1642 )))
1643 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1644 AT+SETCNT=1,10
1645
1646 Sets the COUNT1 to 10.
1647 )))
1648
1649 (% style="color:#037691" %)**Downlink Payload**
1650
1651 (% border="2" style="width:500px" %)
1652 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1653 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1654 prefix : A8 (hex)
1655
1656 **counting_parameter** : (1 byte in hexadecimal)
1657
1658 1: COUNT1
1659
1660 2: COUNT2
1661
1662 3: AVI1 Count
1663
1664 **number** : Start number, 4 bytes in hexadecimal
1665 )))
1666 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1667 A8 **01 00 00 00 0A**
1668
1669 Sets the COUNT1 to 10.
1670 )))
1671
1672 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1673
1674 This command clears the counting in counting mode.
1675
1676 (% style="color:#037691" %)**AT Command**
1677
1678 (% border="2" style="width:500px" %)
1679 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1680 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1681
1682 (% style="color:#037691" %)**Downlink Payload**
1683
1684 (% border="2" style="width:500px" %)
1685 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1686 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1687 prefix : A6 (hex)
1688
1689 clear? : 01 (hex)
1690 )))
1691 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1692
1693 ==== 3.4.2.19 Counting ~-~- Set Saving Interval for 'Counting Result' ====
1694
1695 This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1696
1697 (% style="color:#037691" %)**AT Command**
1698
1699 (% border="2" style="width:500px" %)
1700 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1701 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1702 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1703 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1704 AT+COUTIME=60
1705
1706 Sets the device to save its counting results to the memory every 60 seconds.
1707 )))
1708
1709 (% style="color:#037691" %)**Downlink Payload**
1710
1711 (% border="2" style="width:500px" %)
1712 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1713 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1714 prefix : A7
1715
1716 time : seconds, 3 bytes in hexadecimal
1717 )))
1718 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1719 A7 **00 00 3C**
1720
1721 Sets the device to save its counting results to the memory every 60 seconds.
1722 )))
1723
1724 ==== 3.4.2.20 Reset saved RO and DO states ====
1725
1726 This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1727
1728 (% style="color:#037691" %)**AT Command**
1729
1730 (% border="2" style="width:500px" %)
1731 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1732 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1733 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1734 **state** :
1735
1736 **0** : RODO will close when the device joins the network. (default)
1737
1738 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1739 )))
1740 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1741 (% style="color:blue" %)**AT+RODORESET=1 **
1742
1743 RODO will close when the device joins the network. (default)
1744
1745 (% style="color:blue" %)**AT+RODORESET=0 **
1746
1747 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1748 )))
1749
1750 (% style="color:#037691" %)**Downlink Payload**
1751
1752 (% border="2" style="width:500px" %)
1753 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1754 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1755 **prefix** : AD
1756
1757 **state** :
1758
1759 **0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1760
1761 **1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1762 )))
1763 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1764 AD **01**
1765
1766 RODO will close when the device joins the network. (default)
1767
1768 AD **00**
1769
1770 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1771 )))
1772
1773 ==== 3.4.2.21 Encrypted payload ====
1774
1775 This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1776
1777 (% style="color:#037691" %)**AT Command:**
1778
1779 (% border="2" style="width:500px" %)
1780 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1781 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1782 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1783 **state** :
1784
1785 **1** : The payload is uploaded without encryption
1786
1787 **0** : The payload is encrypted when uploaded (default)
1788 )))
1789 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1790 AT+DECRYPT=1
1791
1792 The payload is uploaded without encryption
1793
1794 AT+DECRYPT=0
1795
1796 The payload is encrypted when uploaded (default)
1797 )))
1798
1799 There is no downlink payload for this configuration.
1800
1801
1802 ==== 3.4.2.22 Get sensor value ====
1803
1804 This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1805
1806 (% style="color:#037691" %)**AT Command**
1807
1808 (% border="2" style="width:500px" %)
1809 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1810 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1811 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1812 **state** :
1813
1814 **0 **: Retrieves the current sensor reading via the serial port.
1815
1816 **1 **: Retrieves and uploads the current sensor reading via the serial port.
1817 )))
1818 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1819 AT+GETSENSORVALUE=0
1820
1821 Retrieves the current sensor reading via the serial port.
1822
1823 AT+GETSENSORVALUE=1
1824
1825 Retrieves and uplinks the current sensor reading via the serial port.
1826 )))
1827
1828 There is no downlink payload for this configuration.
1829
1830
1831 ==== 3.4.2.23 Resetting the downlink packet count ====
1832
1833 This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1834
1835 (% style="color:#037691" %)**AT Command**
1836
1837 (% border="2" style="width:500px" %)
1838 |(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1839 |(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1840
1841 )))
1842 |(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1843 **state **:
1844
1845 **0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1846
1847
1848 **1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1849 )))
1850 |(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1851 AT+DISFCNTCHECK=0
1852
1853 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1854
1855 AT+DISFCNTCHECK=1
1856
1857 When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1858 )))
1859
1860 There is no downlink payload for this configuration.
1861
1862
1863 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1864
1865
1866 This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1867
1868 (% style="color:#037691" %)**AT Command**
1869
1870 (% border="2" style="width:500px" %)
1871 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1872 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1873 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1874 **state** :
1875
1876 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1877
1878 **1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1879 )))
1880 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1881 AT+DISMACANS=0
1882
1883 When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1884
1885 AT+DISMACANS=1
1886
1887 When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1888 )))
1889
1890 (% style="color:#037691" %)**Downlink Payload**
1891
1892 (% border="2" style="width:500px" %)
1893 |(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1894 |(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1895 **prefix** : 21
1896
1897 **state** : (2 bytes in hexadecimal)
1898
1899 **0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1900
1901 **1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1902 )))
1903 |(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1904 21 **00 01**
1905
1906 Set DISMACANS=1
1907 )))
1908
1909 ==== 3.4.2.25 Copy downlink to uplink ====
1910
1911 This command enables the device to immediately uplink the payload of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1912
1913 (% style="color:#037691" %)**AT Command**(%%)**:**
1914
1915 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving a downlink payload from the server, the device will immediately uplink the payload back to the server using port number 100.
1916
1917 Example:**aa xx xx xx xx**         ~/~/ **aa** indicates whether the configuration has changed: **00** means YES, and **01** means NO. **xx xx xx xx** are the bytes uplinked back.
1918
1919
1920 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1921
1922 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1923
1924 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1925
1926 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1927
1928
1929 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1930
1931 There is no downlink option available for this feature.
1932
1933
1934 ==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1935
1936 This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1937
1938 * (((
1939 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1940
1941 (% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
1942
1943
1944
1945 )))
1946
1947 **Example:**
1948
1949 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1950
1951
1952 == 3.5 Integrating with ThingsEye.io ==
1953
1954 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1955
1956 === 3.5.1 Configuring The Things Stack ===
1957
1958 We use The Things Stack Sandbox in this example:
1959
1960 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1961 * Select **MQTT** under **Integrations** in the left menu.
1962 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1963 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1964
1965 {{info}}
1966 The username and  password (API key) you created here are required in the next section.
1967 {{/info}}
1968
1969 [[image:tts-mqtt-integration.png]]
1970
1971 === 3.5.2 Configuring ThingsEye.io ===
1972
1973 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
1974
1975 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1976 * Under the **Integrations center**, click **Integrations**.
1977 * Click the **Add integration** button (the button with the **+** symbol).
1978
1979 [[image:thingseye-io-step-1.png]]
1980
1981
1982 On the **Add integration** window, configure the following:
1983
1984 **Basic settings:**
1985
1986 * Select **The Things Stack Community** from the **Integration type** list.
1987 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1988 * Ensure the following options are turned on.
1989 ** Enable integration
1990 ** Debug mode
1991 ** Allow create devices or assets
1992 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1993
1994 [[image:thingseye-io-step-2.png]]
1995
1996
1997 **Uplink data converter:**
1998
1999 * Click the **Create new** button if it is not selected by default.
2000 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2001 * Click the **JavaScript** button.
2002 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2003 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
2004
2005 [[image:thingseye-io-step-3.png]]
2006
2007
2008 **Downlink data converter (this is an optional step):**
2009
2010 * Click the **Create new** button if it is not selected by default.
2011 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2012 * Click the **JavaScript** button.
2013 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2014 * Click the **Next** button. You will be navigated to the **Connection** tab.
2015
2016 [[image:thingseye-io-step-4.png]]
2017
2018
2019 **Connection:**
2020
2021 * Choose **Region** from the **Host type**.
2022 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2023 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2024 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
2025
2026 [[image:message-1.png]]
2027
2028
2029 * Click the **Add** button.
2030
2031 [[image:thingseye-io-step-5.png]]
2032
2033
2034 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2035
2036
2037 [[image:thingseye.io_integrationsCenter_integrations.png]]
2038
2039
2040 ==== 3.5.2.1 Viewing integration details ====
2041
2042 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2043
2044 [[image:integration-details.png]]
2045
2046
2047 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2048
2049 {{info}}
2050 See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2051 {{/info}}
2052
2053 ==== **3.5.2.2 Viewing events** ====
2054
2055 The **Events **tab displays all the uplink messages from the LT-22222-L.
2056
2057 * Select **Debug **from the **Event type** dropdown.
2058 * Select the** time frame** from the **time window**.
2059
2060 [[image:thingseye-events.png]]
2061
2062
2063 * To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2064
2065 [[image:thingseye-json.png]]
2066
2067
2068 ==== **3.5.2.3 Deleting an integration** ====
2069
2070 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2071
2072
2073 ==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2074
2075 This will be added soon.
2076
2077
2078 == 3.6 Interface Details ==
2079
2080 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2081
2082
2083 Supports** NPN-type **sensors.
2084
2085 [[image:1653356991268-289.png]]
2086
2087
2088 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2089
2090
2091 (((
2092 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2093 )))
2094
2095 (((
2096 (((
2097 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2098
2099
2100 )))
2101 )))
2102
2103 [[image:1653357170703-587.png]]
2104
2105 (((
2106 (((
2107 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2108 )))
2109 )))
2110
2111 (((
2112
2113 )))
2114
2115 (((
2116 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2117 )))
2118
2119 (((
2120 This type of sensor outputs a low (GND) signal when active.
2121 )))
2122
2123 * (((
2124 Connect the sensor's output to DI1-
2125 )))
2126 * (((
2127 Connect the sensor's VCC to DI1+.
2128 )))
2129
2130 (((
2131 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2132 )))
2133
2134 (((
2135 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2136 )))
2137
2138 (((
2139 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2140 )))
2141
2142 (((
2143
2144 )))
2145
2146 (((
2147 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2148 )))
2149
2150 (((
2151 This type of sensor outputs a high signal (e.g., 24V) when active.
2152 )))
2153
2154 * (((
2155 Connect the sensor's output to DI1+
2156 )))
2157 * (((
2158 Connect the sensor's GND DI1-.
2159 )))
2160
2161 (((
2162 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2163 )))
2164
2165 (((
2166 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2167 )))
2168
2169 (((
2170 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2171 )))
2172
2173 (((
2174
2175 )))
2176
2177 (((
2178 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2179 )))
2180
2181 (((
2182 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2183 )))
2184
2185 * (((
2186 Connect the sensor's output to DI1+ with a 50K resistor in series.
2187 )))
2188 * (((
2189 Connect the sensor's GND DI1-.
2190 )))
2191
2192 (((
2193 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2194 )))
2195
2196 (((
2197 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2198 )))
2199
2200 (((
2201 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2202 )))
2203
2204
2205 (% style="color:blue" %)**Example 4**(%%): Connecting to a Dry Contact sensor
2206
2207 From the DI port circuit above, activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference on its own.
2208
2209 To detect a Dry Contact, you can supply a power source to one of the pins of the Dry Contact. A reference circuit diagram is shown below.
2210
2211 [[image:image-20230616235145-1.png]]
2212
2213 (% style="color:blue" %)**Example 5**(%%): Connecting to an Open Collector
2214
2215 [[image:image-20240219115718-1.png]]
2216
2217
2218 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2219
2220
2221 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2222
2223 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2224
2225 [[image:1653357531600-905.png]]
2226
2227
2228 === 3.6.4 Analog Input Interfaces ===
2229
2230
2231 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2232
2233
2234 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2235
2236 [[image:1653357592296-182.png]]
2237
2238 Example: Connecting a 4~~20mA sensor
2239
2240 We will use the wind speed sensor as an example for reference only.
2241
2242
2243 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2244
2245 (% style="color:red" %)**Red:  12~~24V**
2246
2247 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2248
2249 **Black:  GND**
2250
2251 **Connection diagram:**
2252
2253 [[image:1653357640609-758.png]]
2254
2255 [[image:1653357648330-671.png||height="155" width="733"]]
2256
2257
2258 Example: Connecting to a regulated power supply to measure voltage
2259
2260 [[image:image-20230608101532-1.png||height="606" width="447"]]
2261
2262 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2263
2264 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2265
2266
2267 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2268
2269 (% style="color:red" %)**Red:  12~~24v**
2270
2271 **Black:  GND**
2272
2273
2274 === 3.6.5 Relay Output ===
2275
2276
2277 (((
2278 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2279
2280 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2281 )))
2282
2283 [[image:image-20220524100215-9.png]]
2284
2285
2286 [[image:image-20220524100215-10.png||height="382" width="723"]]
2287
2288
2289 == 3.7 LED Indicators ==
2290
2291 The table below lists the behavior of LED indicators for each port function.
2292
2293 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2294 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2295 |**PWR**|Always on when there is power
2296 |**TX**|(((
2297 (((
2298 Device boot: TX blinks 5 times.
2299 )))
2300
2301 (((
2302 Successful network join: TX remains ON for 5 seconds.
2303 )))
2304
2305 (((
2306 Transmit a LoRa packet: TX blinks once
2307 )))
2308 )))
2309 |**RX**|RX blinks once when a packet is received.
2310 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2311 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2312 |**DI1**|(((
2313 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2314 )))
2315 |**DI2**|(((
2316 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2317 )))
2318 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2319 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2320
2321 = 4. Using AT Commands =
2322
2323 The LT-22222-L supports programming using AT Commands.
2324
2325 == 4.1 Connecting the LT-22222-L to a PC ==
2326
2327 (((
2328 You can use a USB-to-TTL adapter/converter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2329
2330 [[image:usb-ttl-audio-jack-connection.jpg]]
2331
2332
2333 )))
2334
2335
2336 (((
2337 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2338 )))
2339
2340 [[image:1653358355238-883.png]]
2341
2342
2343 (((
2344 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2345
2346 == 4.2 LT-22222-L related AT commands ==
2347 )))
2348
2349 (((
2350 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2351
2352 * **##AT##+<CMD>?** : Help on <CMD>
2353 * **##AT##+<CMD>** : Run <CMD>
2354 * **##AT##+<CMD>=<value>** : Set the value
2355 * **##AT##+<CMD>=?** : Get the value
2356 * ##**ATZ**##: Trigger a reset of the MCU
2357 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2358 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2359 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2360 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2361 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2362 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2363 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2364 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2365 * ##**AT+TXP**##: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2366 * **##AT+DR##**:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2367 * **##AT+DCS##**: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2368 * ##**AT+PNM**##: Get or set the public network mode. (0: off, 1: on)
2369 * ##**AT+RX2FQ**##: Get or set the Rx2 window frequency
2370 * ##**AT+RX2DR**##: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2371 * ##**AT+RX1DL**##: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2372 * ##**AT+RX2DL**##: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2373 * ##**AT+JN1DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2374 * ##**AT+JN2DL**##: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2375 * ##**AT+NJM**##: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2376 * ##**AT+NWKID**##: Get or set the Network ID
2377 * ##**AT+FCU**##: Get or set the Frame Counter Uplink (FCntUp)
2378 * ##**AT+FCD**##: Get or set the Frame Counter Downlink (FCntDown)
2379 * ##**AT+CLASS**##: Get or set the Device Class
2380 * ##**AT+JOIN**##: Join network
2381 * ##**AT+NJS**##: Get OTAA Join Status
2382 * ##**AT+SENDB**##: Send hexadecimal data along with the application port
2383 * ##**AT+SEND**##: Send text data along with the application port
2384 * ##**AT+RECVB**##: Print last received data in binary format (with hexadecimal values)
2385 * ##**AT+RECV**##: Print last received data in raw format
2386 * ##**AT+VER**##: Get current image version and Frequency Band
2387 * ##**AT+CFM**##: Get or Set the confirmation mode (0-1)
2388 * ##**AT+CFS**##: Get confirmation status of the last AT+SEND (0-1)
2389 * ##**AT+SNR**##: Get the SNR of the last received packet
2390 * ##**AT+RSSI**##: Get the RSSI of the last received packet
2391 * ##**AT+TDC**##: Get or set the application data transmission interval in ms
2392 * ##**AT+PORT**##: Get or set the application port
2393 * ##**AT+DISAT**##: Disable AT commands
2394 * ##**AT+PWORD**##: Set password, max 9 digits
2395 * ##**AT+CHS**##: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2396 * ##**AT+CHE**##: Get or set eight channels mode, Only for US915, AU915, CN470
2397 * ##**AT+CFG**##: Print all settings
2398 )))
2399
2400
2401 == 4.2 Common AT Command Sequence ==
2402
2403 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2404
2405 (((
2406
2407
2408 (((
2409 (% style="color:blue" %)**If the device has not yet joined the network:**
2410 )))
2411 )))
2412
2413 (((
2414 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2415 )))
2416
2417 (((
2418 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2419 )))
2420
2421 (((
2422 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2423 )))
2424
2425 (((
2426 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2427 )))
2428
2429 (((
2430 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2431 )))
2432
2433
2434 (((
2435 (% style="color:blue" %)**If the device has already joined the network:**
2436 )))
2437
2438 (((
2439 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2440 )))
2441
2442 (((
2443 (% style="background-color:#dcdcdc" %)##**ATZ**##
2444 )))
2445
2446
2447 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2448
2449 (((
2450
2451
2452 (((
2453 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2454 )))
2455 )))
2456
2457 (((
2458 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2459 )))
2460
2461 (((
2462 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2463 )))
2464
2465 (((
2466 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2467 )))
2468
2469 (((
2470 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2471 )))
2472
2473 (((
2474 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2475 )))
2476
2477 (((
2478 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2479 )))
2480
2481 (((
2482 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2483 )))
2484
2485 (((
2486 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2487 )))
2488
2489 (((
2490 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2491 )))
2492
2493 (((
2494 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2495 )))
2496
2497 (((
2498 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2499 )))
2500
2501 (((
2502 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2503
2504
2505 )))
2506
2507 (((
2508 (% style="color:red" %)**Note:**
2509 )))
2510
2511 (((
2512 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2513
2514 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2515
2516 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2517 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2518
2519 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2520 )))
2521
2522 (((
2523 [[image:1653359097980-169.png||height="188" width="729"]]
2524 )))
2525
2526
2527 === 4.2.3 Change to Class A ===
2528
2529
2530 (((
2531 (% style="color:blue" %)**If the sensor has JOINED:**
2532
2533 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2534
2535 (% style="background-color:#dcdcdc" %)**ATZ**
2536 )))
2537
2538
2539 = 5. Case Study =
2540
2541 == 5.1 Counting how many objects pass through the flow line ==
2542
2543 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2544
2545
2546 = 6. FAQ =
2547
2548 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2549
2550
2551 == 6.1 How to update the firmware? ==
2552
2553 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2554
2555 * Support new features
2556 * Fix bugs
2557 * Change LoRaWAN frequency bands
2558
2559 You will need the following things before proceeding:
2560
2561 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2562 * USB to TTL adapter/converter
2563 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2564 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2565
2566 {{info}}
2567 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2568 {{/info}}
2569
2570 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2571
2572 [[image:usb-ttl-audio-jack-connection.jpg]]
2573
2574
2575
2576 Start the STM32 Flash Loader and choose the correct COM port to update.
2577
2578 (((
2579 (((
2580 (% style="color:blue" %)**For LT-22222-L**(%%):
2581
2582 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2583 )))
2584
2585
2586 )))
2587
2588 [[image:image-20220524103407-12.png]]
2589
2590
2591 [[image:image-20220524103429-13.png]]
2592
2593
2594 [[image:image-20220524104033-15.png]]
2595
2596
2597 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2598
2599 [[image:1653360054704-518.png||height="186" width="745"]]
2600
2601
2602 (((
2603 (((
2604 == 6.2 How to change the LoRaWAN frequency band/region? ==
2605 )))
2606 )))
2607
2608 (((
2609 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2610 )))
2611
2612 (((
2613
2614
2615 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2616 )))
2617
2618 (((
2619 (((
2620 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2621 )))
2622 )))
2623
2624 (((
2625 (((
2626 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2627
2628
2629 )))
2630 )))
2631
2632 (((
2633 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2634
2635 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2636 )))
2637
2638 (((
2639
2640 )))
2641
2642 {{warning}}
2643 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2644 {{/warning}}
2645
2646
2647 (((
2648 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2649
2650
2651 )))
2652
2653 (((
2654 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2655
2656 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2657
2658 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2659
2660 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2661
2662 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2663
2664 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2665
2666 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2667
2668 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2669
2670 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2671
2672 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2673
2674 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2675
2676 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2677 )))
2678
2679
2680 (((
2681 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2682 )))
2683
2684 [[image:1653360498588-932.png||height="485" width="726"]]
2685
2686
2687 == 6.4 How to change the uplink interval? ==
2688
2689 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2690
2691
2692 == 6.5 Can I see the counting event in the serial output? ==
2693
2694 (((
2695 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2696
2697
2698 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2699
2700 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2701
2702
2703 )))
2704
2705 (((
2706 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2707
2708 * If the device is not properly shut down and is directly powered off.
2709 * It will default to a power-off state.
2710 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2711 * After a restart, the status before the power failure will be read from flash.
2712
2713 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2714
2715 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2716
2717
2718 [[image:image-20221006170630-1.png||height="610" width="945"]]
2719
2720
2721 == 6.9 Can the LT-22222-L save the RO state? ==
2722
2723 To enable this feature, the firmware version must be 1.6.0 or higher.
2724
2725
2726 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2727
2728 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2729
2730
2731 = 7. Troubleshooting =
2732
2733 This section provides some known troubleshooting tips.
2734
2735
2736 )))
2737
2738 (((
2739 (((
2740 == 7.1 Downlink isn't working. How can I solve this? ==
2741 )))
2742 )))
2743
2744 (((
2745 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2746 )))
2747
2748 (((
2749
2750
2751 == 7.2 Having trouble uploading an image? ==
2752 )))
2753
2754 (((
2755 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2756 )))
2757
2758 (((
2759
2760
2761 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2762 )))
2763
2764 (((
2765 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2766 )))
2767
2768
2769 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2770
2771 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2772 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2773
2774
2775 = 8. Ordering information =
2776
2777 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2778
2779 (% style="color:#4f81bd" %)**XXX:**
2780
2781 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2782 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2783 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2784 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2785 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2786 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2787 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2788 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2789 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2790
2791 = 9. Package information =
2792
2793 **Package includes**:
2794
2795 * 1 x LT-22222-L I/O Controller
2796 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2797 * 1 x bracket for DIN rail mounting
2798 * 1 x 3.5 mm programming cable
2799
2800 **Dimension and weight**:
2801
2802 * Device Size: 13.5 x 7 x 3 cm
2803 * Device Weight: 105 g
2804 * Package Size / pcs : 14.5 x 8 x 5 cm
2805 * Weight / pcs : 170 g
2806
2807 = 10. Support =
2808
2809 * (((
2810 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2811 )))
2812 * (((
2813 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2814
2815
2816 )))
2817
2818 = 11. Reference​​​​​ =
2819
2820 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2821 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2822 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]