Version 206.1 by Dilisi S on 2024/11/20 05:04

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 {{info}}
27 **This manual is also applicable to the LT-33222-L.**
28 {{/info}}
29
30 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31
32 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
33 )))
34 )))
35
36 (((
37 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 )))
39
40 (((
41 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42
43 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
44 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 * Setup your own private LoRaWAN network.
46
47 {{info}}
48 You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
49 {{/info}}
50 )))
51
52 (((
53
54
55 The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
56 )))
57
58 (% class="wikigeneratedid" %)
59 [[image:lorawan-nw.jpg||height="354" width="900"]]
60
61 == 1.2 Specifications ==
62
63 (% style="color:#037691" %)**Hardware System:**
64
65 * STM32L072xxxx MCU
66 * SX1276/78 Wireless Chip 
67 * Power Consumption:
68 ** Idle: 4mA@12V
69 ** 20dB Transmit: 34mA@12V
70 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
71
72 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
73
74 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
75 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
76 * 2 x Relay Output (5A@250VAC / 30VDC)
77 * 2 x 0~~20mA Analog Input (res:0.01mA)
78 * 2 x 0~~30V Analog Input (res:0.01V)
79 * Power Input 7~~ 24V DC. 
80
81 (% style="color:#037691" %)**LoRa Spec:**
82
83 * Frequency Range:
84 ** Band 1 (HF): 862 ~~ 1020 MHz
85 ** Band 2 (LF): 410 ~~ 528 MHz
86 * 168 dB maximum link budget.
87 * +20 dBm - 100 mW constant RF output vs.
88 * +14 dBm high-efficiency PA.
89 * Programmable bit rate up to 300 kbps.
90 * High sensitivity: down to -148 dBm.
91 * Bullet-proof front end: IIP3 = -12.5 dBm.
92 * Excellent blocking immunity.
93 * Low RX current of 10.3 mA, 200 nA register retention.
94 * Fully integrated synthesizer with a resolution of 61 Hz.
95 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
96 * Built-in bit synchronizer for clock recovery.
97 * Preamble detection.
98 * 127 dB Dynamic Range RSSI.
99 * Automatic RF Sense and CAD with ultra-fast AFC.
100 * Packet engine up to 256 bytes with CRC.
101
102 == 1.3 Features ==
103
104 * LoRaWAN Class A & Class C modes
105 * Optional Customized LoRa Protocol
106 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
107 * AT Commands to change parameters
108 * Remotely configure parameters via LoRaWAN Downlink
109 * Firmware upgradable via program port
110 * Counting
111
112 == 1.4 Applications ==
113
114 * Smart buildings & home automation
115 * Logistics and supply chain management
116 * Smart metering
117 * Smart agriculture
118 * Smart cities
119 * Smart factory
120
121 == 1.5 Hardware Variants ==
122
123 (% style="width:524px" %)
124 |(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description**
125 |(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)(((
126
127 )))|(% style="width:329px" %)(((
128 * 2 x Digital Input (Bi-direction)
129 * 2 x Digital Output
130 * 2 x Relay Output (5A@250VAC / 30VDC)
131 * 2 x 0~~20mA Analog Input (res:0.01mA)
132 * 2 x 0~~30V Analog Input (res:0.01v)
133 * 1 x Counting Port
134 )))
135
136 == 2. Assembling the device ==
137
138 == 2.1 Connecting the antenna ==
139
140 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
141
142 {{warning}}
143 Warning! Do not power on the device without connecting the antenna.
144 {{/warning}}
145
146 == 2.2 Terminals ==
147
148 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
149
150 Upper screw terminal block (from left to right):
151
152 (% style="width:634px" %)
153 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
154 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
155 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
156 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
157 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
158 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
159 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
160
161 Lower screw terminal block (from left to right):
162
163 (% style="width:633px" %)
164 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
165 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
166 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
167 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
168 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
169 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
170 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
171 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
172 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
173 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
174 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
175
176 == 2.3 Connecting LT-22222-L to a Power Source ==
177
178 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
179
180 {{warning}}
181 **We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
182 {{/warning}}
183
184
185 [[image:1653297104069-180.png]]
186
187
188 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
189
190 The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
191
192
193 === 3.2.1 Prerequisites ===
194
195 The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
196
197 [[image:image-20230425173427-2.png||height="246" width="530"]]
198
199 {{info}}
200 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
201 {{/info}}
202
203 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
204
205 === 3.2.2 The Things Stack ===
206
207 This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
208
209 {{info}}
210 The Things Stack Sandbox was formally called The Things Stack Community Edition.
211 {{/info}}
212
213
214 The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
215
216 [[image:dragino-ttn-te.jpg]]
217
218
219
220 ==== 3.2.2.1 Setting up ====
221
222 * Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
223 * Log in to your The Things Stack Sandbox account.
224 * Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
225 * Go to your application's page and click on the **End devices** in the left menu.
226 * On the End devices page, click on **+ Register end device**. Two registration options are available:
227
228
229 ==== 3.2.2.2 Using the LoRaWAN Device Repository ====
230
231 * On the **Register end device** page:
232 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
233 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
234 *** **End device brand**: Dragino Technology Co., Limited
235 *** **Model**: LT22222-L I/O Controller
236 *** **Hardware ver**: Unknown
237 *** **Firmware ver**: 1.6.0
238 *** **Profile (Region)**: Select the region that matches your device.
239 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
240
241 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
242
243
244 * Register end device page continued...
245 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
246 ** In the **DevEUI** field, enter the **DevEUI**.
247 ** In the **AppKey** field, enter the **AppKey.**
248 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
249 ** Under **After registration**, select the **View registered end device** option.
250
251 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
252
253 ==== ====
254
255 ==== 3.2.2.3 Adding device manually ====
256
257 * On the **Register end device** page:
258 ** Select the option **Enter end device specifies manually** under **Input method**.
259 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
260 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
261 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
262 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
263 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
264 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
265
266 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
267
268
269 * Register end device page continued...
270 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
271 ** In the **DevEUI** field, enter the **DevEUI**.
272 ** In the **AppKey** field, enter the **AppKey**.
273 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
274 ** Under **After registration**, select the **View registered end device** option.
275 ** Click the **Register end device** button.
276
277 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
278
279
280 You will be navigated to the **Device overview** page.
281
282
283 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
284
285
286 ==== 3.2.2.4 Joining ====
287
288 On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
289
290 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
291
292
293 [[image:lt-22222-join-network.png||height="625" width="1000"]]
294
295
296 ==== 3.2.2.5 Uplinks ====
297
298
299 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
300
301 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
302
303 [[image:lt-22222-ul-payload-decoded.png]]
304
305
306 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
307
308 {{info}}
309 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
310 {{/info}}
311
312 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
313
314
315 ==== 3.2.2.6 Downlinks ====
316
317 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
318
319
320 == 3.3 Working Modes and Uplink Payload formats ==
321
322
323 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
324
325 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
326
327 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
328
329 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
330
331 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
332
333 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
334
335 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
336
337 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
338
339 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
340
341 (((
342 This is the default mode.
343
344 The uplink payload is 11 bytes long.
345
346 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
347 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
348 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
349
350 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
351 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
352 |Value|(((
353 AVI1 voltage
354 )))|(((
355 AVI2 voltage
356 )))|(((
357 ACI1 Current
358 )))|(((
359 ACI2 Current
360 )))|**DIDORO***|(((
361 Reserve
362 )))|MOD
363 )))
364
365 (((
366 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
367
368 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
369 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
370 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
371 )))
372
373 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
374 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
375 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
376
377 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
378
379 For example, if the payload is: [[image:image-20220523175847-2.png]]
380
381
382 **The interface values can be calculated as follows:  **
383
384 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
385
386 AVI2 channel voltage is 0x04AC/1000=1.196V
387
388 ACI1 channel current is 0x1310/1000=4.880mA
389
390 ACI2 channel current is 0x1300/1000=4.864mA
391
392 The last byte 0xAA= **10101010**(b) means,
393
394 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
395 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
396 * **[1] DI3 - not used for LT-22222-L.**
397 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
398 * [1] DI1 channel input state:
399 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
400 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
401 ** DI1 LED is ON in both cases.
402 * **[0] DO3 - not used for LT-22222-L.**
403 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
404 * [0] DO1 channel output state:
405 ** DO1 is FLOATING when there is no load between DO1 and V+.
406 ** DO1 is HIGH and there is a load between DO1 and V+.
407 ** DO1 LED is OFF in both cases.
408
409 Reserve = 0
410
411 MOD = 1
412
413 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
414
415
416 (((
417 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
418 )))
419
420 (((
421 The uplink payload is 11 bytes long.
422
423 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
424 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
425 It starts counting again when it reaches the maximum value.**
426
427 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
428 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
429 |Value|COUNT1|COUNT2 |DIDORO*|(((
430 Reserve
431 )))|MOD
432 )))
433
434 (((
435 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
436
437 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
438 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
439 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
440
441 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
442 )))
443
444 * FIRST: Indicates that this is the first packet after joining the network.
445 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
446
447 (((
448 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
449
450
451 )))
452
453 (((
454 **To activate this mode, run the following AT commands:**
455 )))
456
457 (((
458 (% class="box infomessage" %)
459 (((
460 **AT+MOD=2**
461
462 **ATZ**
463 )))
464 )))
465
466 (((
467
468
469 (% style="color:#4f81bd" %)**AT Commands for counting:**
470 )))
471
472 (((
473 **For LT22222-L:**
474
475 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
476
477 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
478
479 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
480
481 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
482
483 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
484
485 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
486 )))
487
488
489 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
490
491 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
492 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
493 It starts counting again when it reaches the maximum value.**
494
495 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
496
497 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
498 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
499 |Value|COUNT1|(((
500 ACI1 Current
501 )))|(((
502 ACI2 Current
503 )))|DIDORO*|Reserve|MOD
504
505 (((
506 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
507
508 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
509 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
510 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
511 )))
512
513 * RO is for the relay. ROx=1: closed, ROx=0 always open.
514 * FIRST: Indicates that this is the first packet after joining the network.
515 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
516
517 (((
518 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
519 )))
520
521
522 (((
523 **To activate this mode, run the following AT commands:**
524 )))
525
526 (((
527 (% class="box infomessage" %)
528 (((
529 **AT+MOD=3**
530
531 **ATZ**
532 )))
533 )))
534
535 (((
536 AT Commands for counting:
537
538 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
539 )))
540
541
542 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
543
544 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
545 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
546 It starts counting again when it reaches the maximum value.**
547
548
549 (((
550 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
551 )))
552
553 (((
554 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
555
556 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
557 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
558 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
559 Reserve
560 )))|MOD
561 )))
562
563 (((
564 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
565
566 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
567 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
568 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
569 )))
570
571 * RO is for the relay. ROx=1: closed, ROx=0 always open.
572 * FIRST: Indicates that this is the first packet after joining the network.
573 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
574
575 (((
576 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
577
578
579 )))
580
581 (((
582 **To activate this mode, run the following AT commands:**
583 )))
584
585 (((
586 (% class="box infomessage" %)
587 (((
588 **AT+MOD=4**
589
590 **ATZ**
591 )))
592 )))
593
594 (((
595 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
596 )))
597
598 (((
599 **In addition to that, below are the commands for AVI1 Counting:**
600
601 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
602
603 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
604
605 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
606
607 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
608 )))
609
610
611 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
612
613 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
614 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
615 It starts counting again when it reaches the maximum value.**
616
617
618 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
619
620 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
621 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
622 |Value|(((
623 AVI1 voltage
624 )))|(((
625 AVI2 voltage
626 )))|(((
627 ACI1 Current
628 )))|COUNT1|DIDORO*|(((
629 Reserve
630 )))|MOD
631
632 (((
633 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
634
635 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
636 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
637 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
638 )))
639
640 * RO is for the relay. ROx=1: closed, ROx=0 always open.
641 * FIRST: Indicates that this is the first packet after joining the network.
642 * (((
643 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
644 )))
645
646 (((
647 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
648 )))
649
650 (((
651 **To activate this mode, run the following AT commands:**
652 )))
653
654 (((
655 (% class="box infomessage" %)
656 (((
657 **AT+MOD=5**
658
659 **ATZ**
660 )))
661 )))
662
663 (((
664 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
665 )))
666
667
668 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
669
670
671 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
672
673 For example, if you configure the following commands:
674
675 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
676 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
677
678 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
679
680 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
681 1. (((
682 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
683
684 * The first uplink uses the payload specified in trigger mode (MOD=6).
685 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
686 )))
687
688 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
689
690 (% style="color:#4f81bd" %)**Trigger based on voltage**:
691
692 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
693
694
695 **Example:**
696
697 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
698
699 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
700
701
702 (% style="color:#4f81bd" %)**Trigger based on current**:
703
704 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
705
706
707 **Example:**
708
709 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
710
711
712 (% style="color:#4f81bd" %)**Trigger based on DI status**:
713
714 DI status triggers Flag.
715
716 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
717
718
719 **Example:**
720
721 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
722
723
724 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
725
726 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
727
728 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
729
730 AA: Type Code for this downlink Command:
731
732 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
733
734 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
735
736 yy2 yy2: AC1 or AV1 HIGH limit.
737
738 yy3 yy3: AC2 or AV2 LOW limit.
739
740 Yy4 yy4: AC2 or AV2 HIGH limit.
741
742
743 **Example 1**: AA 00 13 88 00 00 00 00 00 00
744
745 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
746
747
748 **Example 2**: AA 02 01 00
749
750 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
751
752
753 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
754
755 MOD6 Payload: total of 11 bytes
756
757 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
758 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
759 |Value|(((
760 TRI_A FLAG
761 )))|(((
762 TRI_A Status
763 )))|(((
764 TRI_DI FLAG+STA
765 )))|Reserve|Enable/Disable MOD6|(((
766 MOD(6)
767 )))
768
769 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
770
771 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
772 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
773 |(((
774 AV1_LOW
775 )))|(((
776 AV1_HIGH
777 )))|(((
778 AV2_LOW
779 )))|(((
780 AV2_HIGH
781 )))|(((
782 AC1_LOW
783 )))|(((
784 AC1_HIGH
785 )))|(((
786 AC2_LOW
787 )))|(((
788 AC2_HIGH
789 )))
790
791 * Each bit shows if the corresponding trigger has been configured.
792
793 **Example:**
794
795 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
796
797
798 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
799
800 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
801 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
802 |(((
803 AV1_LOW
804 )))|(((
805 AV1_HIGH
806 )))|(((
807 AV2_LOW
808 )))|(((
809 AV2_HIGH
810 )))|(((
811 AC1_LOW
812 )))|(((
813 AC1_HIGH
814 )))|(((
815 AC2_LOW
816 )))|(((
817 AC2_HIGH
818 )))
819
820 * Each bit shows which status has been triggered on this uplink.
821
822 **Example:**
823
824 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
825
826
827 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
828
829 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %)
830 |(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0**
831 |(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG
832
833 * Each bits shows which status has been triggered on this uplink.
834
835 **Example:**
836
837 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
838
839 00000101: Means both DI1 and DI2 trigger are enabled.
840
841
842 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
843
844 Downlink command to poll MOD6 status:
845
846 **AB 06**
847
848 When device got this command, it will send the MOD6 payload.
849
850
851 === 3.3.7 Payload Decoder ===
852
853 (((
854
855
856 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
857 )))
858
859
860 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
861
862 (((
863 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
864 )))
865
866 (((
867 (((
868 There are two tytes of commands:
869 )))
870 )))
871
872 * (% style="color:blue" %)**Common commands**(%%):
873
874 * (% style="color:blue" %)**Sensor-related commands**(%%):
875
876 === 3.4.1 Common commands ===
877
878 (((
879 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
880 )))
881
882 === 3.4.2 Sensor-related commands ===
883
884 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
885
886
887 ==== 3.4.2.1 Set Transmit Interval ====
888
889 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
890
891 (% style="color:#037691" %)**AT command**
892
893 (% border="2" style="width:500px" %)
894 |**Command**|AT+TDC=<time>
895 |**Response**|
896 |**Parameters**|**time** : uplink interval is in milliseconds
897 |**Example**|(((
898 AT+TDC=30000
899
900 Sets the uplink interval to 30,000 milliseconds (30 seconds)
901 )))
902
903 (% style="color:#037691" %)**Downlink payload**
904
905 (% border="2" style="width:500px" %)
906 |**Payload**|(((
907 <prefix><time>
908 )))
909 |**Parameters**|(((
910 **prefix** : 0x01
911
912 **time** : uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
913 )))
914 |**Example**|(((
915 01 **00 75 30**
916
917 Sets the uplink interval to 30,000 milliseconds (30 seconds)
918
919 Conversion: 30000 (dec) = 00 75 30 (hex)
920
921 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
922 )))
923
924 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
925
926 Sets the working mode.
927
928 (% style="color:#037691" %)**AT command**
929
930 (% border="2" style="width:500px" %)
931 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MODE=<working_mode>
932 |(% style="width:97px" %)**Response**|(% style="width:413px" %)
933 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
934 **working_mode** :
935
936 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
937
938 2 = Double DI Counting + DO + RO
939
940 3 = Single DI Counting + 2 x ACI + DO + RO
941
942 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
943
944 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
945
946 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
947 )))
948 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
949 AT+MOD=2
950
951 Sets the device to working mode 2 (Double DI Counting + DO + RO)
952 )))
953
954 (% class="wikigeneratedid" %)
955 (% style="color:#037691" %)**Downlink payload**
956
957 (% border="2" style="width:500px" %)
958 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
959 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
960 **prefix** : 0x0A
961
962 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
963 )))
964 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
965 0A **02**
966
967 Sets the device to working mode 2 (Double DI Counting + DO + RO)
968 )))
969
970 ==== 3.4.2.3 Poll an uplink ====
971
972 Requests an uplink from LT-22222-L.
973
974 (% style="color:#037691" %)**AT command**
975
976 There is no AT Command to request an uplink from LT-22222-L
977
978 (% style="color:#037691" %)**Downlink payload**
979
980 (% border="2" style="width:500px" %)
981 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
982 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
983 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
984 08 FF
985
986 Requests an uplink from LT-22222-L.
987 )))
988
989 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
990
991 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
992
993 (% style="color:#037691" %)**AT Command**
994
995 (% border="2" style="width:500px" %)
996 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
997 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
998 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
999 **enable/disable trigger_mode** :
1000
1001 1 = enable trigger mode
1002
1003 0 = disable trigger mode
1004 )))
1005 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1006 AT+ADDMOD6=1
1007
1008 Enable trigger mode for the current working mode
1009 )))
1010
1011 (% style="color:#037691" %)**Downlink payload**
1012
1013 (% border="2" style="width:500px" %)
1014 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1015 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1016 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1017
1018 **working mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1019 )))
1020 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1021 0A 06 **01**
1022
1023 Enable trigger mode for the current working mode
1024 )))
1025
1026 ==== 3.4.2.5 Poll trigger settings ====
1027
1028 Polls the trigger settings.
1029
1030 (% style="color:#037691" %)**AT Command:**
1031
1032 There is no AT Command for this feature.
1033
1034 (% style="color:#037691" %)**Downlink Payload**
1035
1036 (% border="2" style="width:500px" %)
1037 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1038 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1039 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1040 AB 06
1041
1042 Uplinks the trigger settings.
1043 )))
1044
1045 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1046
1047 Enable or disable DI1/DI2/DI3 as a trigger.
1048
1049 (% style="color:#037691" %)**AT Command**
1050
1051 (% border="2" style="width:500px" %)
1052 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1053 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1054 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1055 **DI1_trigger:**
1056
1057 1 = enable DI1 trigger
1058
1059 0 = disable DI1 trigger
1060
1061 **DI2 _trigger**
1062
1063 1 = enable DI2 trigger
1064
1065 0 = disable DI2 trigger
1066 )))
1067 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1068 AT+DTRI=1,0
1069
1070 Enable DI1 trigger, disable DI2 trigger
1071 )))
1072
1073 (% class="wikigeneratedid" %)
1074 (% style="color:#037691" %)**Downlink Payload**
1075
1076 (% border="2" style="width:500px" %)
1077 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1078 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1079 **prefix :** AA 02 (two bytes in hexadecimal)
1080
1081 **DI1_trigger:**
1082
1083 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1084
1085 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1086
1087 **DI2 _trigger**
1088
1089 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1090
1091 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1092 )))
1093 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1094 AA 02 **01 00**
1095
1096 Enable DI1 trigger, disable DI2 trigger
1097 )))
1098
1099 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1100
1101 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1102
1103
1104 (% style="color:#037691" %)**AT Command**
1105
1106 (% border="2" style="width:500px" %)
1107 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1108 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1109 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1110 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1111
1112 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1113 )))
1114 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1115 AT+TRIG1=1,100
1116
1117 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1118 )))
1119
1120 (% class="wikigeneratedid" %)
1121 (% style="color:#037691" %)**Downlink Payload**
1122
1123 (% border="2" style="width:500px" %)
1124 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1125 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1126 **prefix** : 09 01 (hexadecimal)
1127
1128 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1129
1130 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1131 )))
1132 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1133 09 01 **01 00 64**
1134
1135 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1136 )))
1137
1138 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1139
1140 Sets DI2 as a trigger.
1141
1142
1143 (% style="color:#037691" %)**AT Command**
1144
1145 (% border="2" style="width:500px" %)
1146 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1147 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1148 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1149 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1150
1151 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1152 )))
1153 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1154 AT+TRIG2=0,100
1155
1156 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1157 )))
1158
1159 (% style="color:#037691" %)**Downlink Payload**
1160
1161 (% border="2" style="width:500px" %)
1162 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1163 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1164 **prefix** : 09 02 (hexadecimal)
1165
1166 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1167
1168 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1169 )))
1170 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1171
1172 ==== ====
1173
1174 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1175
1176 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1177
1178 (% style="color:#037691" %)**AT Command**
1179
1180 (% border="2" style="width:500px" %)
1181 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1182 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1183 )))
1184 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1185 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1186 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1187
1188 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1189
1190 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1191
1192 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1193 )))
1194 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1195 AT+ACLIM=10000,15000,0,0
1196
1197 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1198 )))
1199 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1200
1201 (% style="color:#037691" %)**Downlink Payload**
1202
1203 (% border="2" style="width:500px" %)
1204 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1205 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1206 **prefix **: AA 01 (hexadecimal)
1207
1208 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1209
1210 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1211
1212 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1213
1214 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1215 )))
1216 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1217 AA 01 **27** **10 3A** **98** 00 00 00 00
1218
1219 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1220 )))
1221 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1222
1223 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1224
1225 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1226
1227 (% style="color:#037691" %)**AT Command**
1228
1229 (% border="2" style="width:500px" %)
1230 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1231 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1232 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1233 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1234
1235 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1236
1237 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1238
1239 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1240 )))
1241 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1242 AT+AVLIM=3000,6000,0,2000
1243
1244 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1245 )))
1246 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1247
1248 (% style="color:#037691" %)**Downlink Payload**
1249
1250 (% border="2" style="width:500px" %)
1251 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1252 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1253 **prefix **: AA 00 (hexadecimal)
1254
1255 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1256
1257 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1258
1259 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1260
1261 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1262 )))
1263 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1264 AA 00 **0B B8 17 70 00 00 07 D0**
1265
1266 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1267 )))
1268 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1269
1270 ==== 3.4.2.11 Trigger – Set minimum interval ====
1271
1272 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1273
1274 (% style="color:#037691" %)**AT Command**
1275
1276 (% border="2" style="width:500px" %)
1277 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1278 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1279 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1280 **time** : in minutes
1281 )))
1282 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1283 AT+ATDC=5
1284
1285 The device won't respond to the second trigger within 5 minutes after the first trigger.
1286 )))
1287 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1288
1289 (% style="color:#037691" %)**Downlink Payload**
1290
1291 (% border="2" style="width:500px" %)
1292 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1293 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1294 **prefix** : AC (hexadecimal)
1295
1296 **time **: in minutes (two bytes in hexadecimal)
1297 )))
1298 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1299 AC **00 05**
1300
1301 The device won't respond to the second trigger within 5 minutes after the first trigger.
1302 )))
1303 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1304
1305 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1306
1307 Controls the digital outputs DO1, DO2, and DO3
1308
1309 (% style="color:#037691" %)**AT Command**
1310
1311 There is no AT Command to control the Digital Output.
1312
1313
1314 (% style="color:#037691" %)**Downlink Payload**
1315
1316 (% border="2" style="width:500px" %)
1317 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1318 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1319 **prefix** : 02 (hexadecimal)
1320
1321 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1322
1323 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1324
1325 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1326 )))
1327 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1328 02 **01 00 01**
1329
1330 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1331
1332 **More examples:**
1333
1334 (((
1335 01: Low,  00: High,  11: No action
1336
1337 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1338 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1339 |02  01  00  11|Low|High|No Action
1340 |02  00  11  01|High|No Action|Low
1341 |02  11  01  00|No Action|Low|High
1342 )))
1343
1344 (((
1345 (((
1346 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1347 )))
1348
1349 (((
1350 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1351 )))
1352 )))
1353 )))
1354
1355 ==== ====
1356
1357 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1358
1359
1360 * (% style="color:#037691" %)**AT Command**
1361
1362 There is no AT Command to control Digital Output
1363
1364
1365 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1366
1367 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1368
1369
1370 This is to control the digital output time of DO pin. Include four bytes:
1371
1372 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1373
1374 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1375
1376 01: DO pins will change back to original state after timeout.
1377
1378 00: DO pins will change to an inverter state after timeout 
1379
1380
1381 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1382
1383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1384 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1385 |0x01|DO1 set to low
1386 |0x00|DO1 set to high
1387 |0x11|DO1 NO Action
1388
1389 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port status:
1390
1391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1392 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1393 |0x01|DO2 set to low
1394 |0x00|DO2 set to high
1395 |0x11|DO2 NO Action
1396
1397 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port status:
1398
1399 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1400 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1401 |0x01|DO3 set to low
1402 |0x00|DO3 set to high
1403 |0x11|DO3 NO Action
1404
1405 (% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth Bytes**:(%%) Latching time (Unit: ms)
1406
1407
1408 (% style="color:red" %)**Note: **
1409
1410 Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1411
1412 Before firmware v1.6.0, the latch time only supported 2 bytes.
1413
1414 (% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1415
1416
1417 **Example payload:**
1418
1419 **~1. A9 01 01 01 01 07 D0**
1420
1421 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1422
1423 **2. A9 01 00 01 11 07 D0**
1424
1425 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1426
1427 **3. A9 00 00 00 00 07 D0**
1428
1429 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1430
1431 **4. A9 00 11 01 00 07 D0**
1432
1433 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1434
1435
1436 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1437
1438
1439 * (% style="color:#037691" %)**AT Command:**
1440
1441 There is no AT Command to control Relay Output
1442
1443
1444 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1445
1446 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1447
1448
1449 (((
1450 If payload is 0x030100, it means setting RO1 to close and RO2 to open.
1451 )))
1452
1453 (((
1454 00: Close ,  01: Open , 11: No action
1455
1456 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1457 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1458 |03  00  11|Open|No Action
1459 |03  01  11|Close|No Action
1460 |03  11  00|No Action|Open
1461 |03  11  01|No Action|Close
1462 |03  00  00|Open|Open
1463 |03  01  01|Close|Close
1464 |03  01  00|Close|Open
1465 |03  00  01|Open|Close
1466 )))
1467
1468 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1469
1470
1471 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1472
1473 Controls the relay output time.
1474
1475 * (% style="color:#037691" %)**AT Command:**
1476
1477 There is no AT Command to control Relay Output
1478
1479
1480 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1481
1482 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1483
1484
1485 This is to control the relay output time. It includes four bytes:
1486
1487 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1488
1489 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1490
1491 01: Relays will change back to their original state after timeout.
1492
1493 00: Relays will change to the inverter state after timeout.
1494
1495
1496 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1497
1498 [[image:image-20221008095908-1.png||height="364" width="564"]]
1499
1500
1501 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1502
1503
1504 (% style="color:red" %)**Note:**
1505
1506 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1507
1508 Before firmware v1.6.0, the latch time only supported 2 bytes.
1509
1510
1511 (% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1512
1513
1514 **Example payload:**
1515
1516 **~1. 05 01 11 07 D0**
1517
1518 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1519
1520 **2. 05 01 10 07 D0**
1521
1522 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1523
1524 **3. 05 00 01 07 D0**
1525
1526 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1527
1528 **4. 05 00 00 07 D0**
1529
1530 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1531
1532
1533
1534 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1535
1536
1537 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1538
1539 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1540
1541 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1542
1543 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1544
1545
1546 (% style="color:#037691" %)**AT Command**
1547
1548 (% border="2" style="width:500px" %)
1549 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage><logic>
1550 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1551 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1552 **voltage** : voltage threshold in mV
1553
1554 **logic**:
1555
1556 0 : lower than
1557
1558 1: higher than
1559
1560 if you leave logic parameter blank, it is considered 0
1561 )))
1562 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1563 AT+VOLMAX=20000
1564
1565 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1566
1567 AT+VOLMAX=20000,0
1568
1569 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1570
1571 AT+VOLMAX=20000,1
1572
1573 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1574 )))
1575
1576 (% style="color:#037691" %)**Downlink Payload**
1577
1578 (% border="2" style="width:500px" %)
1579 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1580 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1581 **prefix** : A5 (hex)
1582
1583 **voltage** : voltage threshold in mV (2 bytes in hex)
1584
1585 **logic**: (1 byte in hexadecimal)
1586
1587 0 : lower than
1588
1589 1: higher than
1590
1591 if you leave logic parameter blank, it is considered 1 (higher than)
1592 )))
1593 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1594 A5 **4E 20**
1595
1596 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1597
1598 A5 **4E 20 00**
1599
1600 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1601
1602 A5 **4E 20 01**
1603
1604 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1605 )))
1606
1607 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1608
1609 This feature allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1610
1611 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1612
1613 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1614
1615 (% style="color:red" %)**bb cc dd ee: **(%%)The number to be set
1616
1617
1618 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1619
1620 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1621
1622
1623 (% style="color:#037691" %)**AT Command**
1624
1625 (% border="2" style="width:500px" %)
1626 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter><number>
1627 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1628 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1629 **counting_parameter** :
1630
1631 1: COUNT1
1632
1633 2: COUNT2
1634
1635 3: AVI1 Count
1636
1637 **number** : Start number
1638 )))
1639 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1640 AT+SETCNT=1,10
1641
1642 Sets the COUNT1 to 10.
1643 )))
1644
1645 (% style="color:#037691" %)**Downlink Payload**
1646
1647 (% border="2" style="width:500px" %)
1648 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1649 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1650 prefix : A8 (hex)
1651
1652 **counting_parameter** : (1 byte in hexadecimal)
1653
1654 1: COUNT1
1655
1656 2: COUNT2
1657
1658 3: AVI1 Count
1659
1660 **number** : Start number, 4 bytes in hexadecimal
1661 )))
1662 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1663 A8 **01 00 00 00 0A**
1664
1665 Sets the COUNT1 to 10.
1666 )))
1667
1668 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1669
1670 This feature clears the counting in counting mode.
1671
1672 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1673
1674 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1675
1676 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1677
1678 (% style="color:#037691" %)**AT Command**
1679
1680 (% border="2" style="width:500px" %)
1681 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1682 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1683
1684 (% style="color:#037691" %)**Downlink Payload**
1685
1686 (% border="2" style="width:500px" %)
1687 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1688 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1689 prefix : A6 (hex)
1690
1691 clear? : 01 (hex)
1692 )))
1693 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1694
1695 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1696
1697 This feature allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1698
1699 * (% style="color:#037691" %)**AT Command:**
1700
1701 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Sets the save time to 60 seconds. The device will save the counting result in internal flash every 60 seconds. (Min value: 30 seconds)
1702
1703
1704 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1705
1706 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1707
1708 (((
1709 Range: aa bb cc:0 to 16777215,  (unit: seconds)
1710 )))
1711
1712
1713 (% style="color:#037691" %)**AT Command**
1714
1715 (% border="2" style="width:500px" %)
1716 |(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1717 |(% style="width:124px" %)**Response**|(% style="width:374px" %)
1718 |(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1719 |(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1720 AT+COUTIME=60
1721
1722 Sets the device to save its counting results to the memory every 60 seconds.
1723 )))
1724
1725 (% style="color:#037691" %)**Downlink Payload**
1726
1727 (% border="2" style="width:500px" %)
1728 |(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1729 |(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1730 prefix : A7
1731
1732 time : seconds, 3 bytes in hexadecimal
1733 )))
1734 |(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1735 A7 **00 00 3C**
1736
1737 Sets the device to save its counting results to the memory every 60 seconds.
1738 )))
1739
1740
1741 ==== 3.4.2.20 Reset save RO DO state ====
1742
1743 This feature allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1744
1745 * (% style="color:#037691" %)**AT Command:**
1746
1747 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1748
1749 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state will not change when the device reconnects to the network.
1750
1751
1752 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1753
1754 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1755
1756
1757 (% border="2" style="width:500px" %)
1758 |(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1759 |(% style="width:127px" %)**Response**|(% style="width:371px" %)
1760 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1761 state :
1762
1763 0 : RODO will close when the device joins the network. (default)
1764
1765 1: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1766 )))
1767 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1768 (% style="color:blue" %)**AT+RODORESET=1 **
1769
1770 RODO will close when the device joins the network. (default)
1771
1772 (% style="color:blue" %)**AT+RODORESET=0 **
1773
1774 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1775 )))
1776
1777
1778 (% border="2" style="width:500px" %)
1779 |(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1780 |(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1781 prefix : AD
1782
1783 state :
1784
1785 0 : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1786
1787 1: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1788 )))
1789 |(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1790 AD **01**
1791
1792 RODO will close when the device joins the network. (default)
1793
1794 AD **00**
1795
1796 After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1797 )))
1798
1799
1800 ==== 3.4.2.21 Encrypted payload ====
1801
1802 This feature allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1803
1804 * (% style="color:#037691" %)**AT Command:**
1805
1806 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1807
1808 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1809
1810
1811
1812 ==== 3.4.2.22 Get sensor value ====
1813
1814
1815 * (% style="color:#037691" %)**AT Command:**
1816
1817 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port retrieves the reading of the current sensor.
1818
1819 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port retrieves the current sensor reading and uploads it.
1820
1821
1822
1823 ==== 3.4.2.23 Resets the downlink packet count ====
1824
1825
1826 * (% style="color:#037691" %)**AT Command:**
1827
1828 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1829
1830 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1831
1832
1833
1834 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1835
1836
1837 * (% style="color:#037691" %)**AT Command:**
1838
1839 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1840
1841 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1842
1843
1844 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1845
1846 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1847
1848
1849
1850 ==== 3.4.2.25 Copy downlink to uplink ====
1851
1852
1853 * (% style="color:#037691" %)**AT Command**(%%)**:**
1854
1855 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1856
1857 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1858
1859
1860 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1861
1862 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1863
1864
1865
1866 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1867
1868 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1869
1870
1871
1872 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1873
1874
1875 * (((
1876 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1877
1878 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1879
1880
1881 )))
1882
1883 **Example:**
1884
1885 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1886
1887
1888 == 3.5 Integrating with ThingsEye.io ==
1889
1890 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1891
1892 === 3.5.1 Configuring The Things Stack ===
1893
1894 We use The Things Stack Sandbox in this example:
1895
1896 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1897 * Select **MQTT** under **Integrations** in the left menu.
1898 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1899 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1900
1901 {{info}}
1902 The username and  password (API key) you created here are required in the next section.
1903 {{/info}}
1904
1905 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1906
1907 === 3.5.2 Configuring ThingsEye.io ===
1908
1909 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1910 * Under the **Integrations center**, click **Integrations**.
1911 * Click the **Add integration** button (the button with the **+** symbol).
1912
1913 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1914
1915
1916 On the **Add integration** window, configure the following:
1917
1918 **Basic settings:**
1919
1920 * Select **The Things Stack Community** from the **Integration type** list.
1921 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1922 * Ensure the following options are turned on.
1923 ** Enable integration
1924 ** Debug mode
1925 ** Allow create devices or assets
1926 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1927
1928 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1929
1930
1931 **Uplink data converter:**
1932
1933 * Click the **Create new** button if it is not selected by default.
1934 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1935 * Click the **JavaScript** button.
1936 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1937 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1938
1939 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1940
1941
1942 **Downlink data converter (this is an optional step):**
1943
1944 * Click the **Create new** button if it is not selected by default.
1945 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1946 * Click the **JavaScript** button.
1947 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1948 * Click the **Next** button. You will be navigated to the **Connection** tab.
1949
1950 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1951
1952
1953 **Connection:**
1954
1955 * Choose **Region** from the **Host type**.
1956 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1957 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1958 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1959
1960 [[image:message-1.png]]
1961
1962
1963 * Click the **Add** button.
1964
1965 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1966
1967
1968 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1969
1970
1971 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1972
1973
1974 ==== 3.5.2.1 Viewing integration details ====
1975
1976 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1977
1978 [[image:integration-details.png||height="686" width="1000"]]
1979
1980
1981 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1982
1983 {{info}}
1984 See also ThingsEye documentation.
1985 {{/info}}
1986
1987 ==== **3.5.2.2 Viewing events** ====
1988
1989 The **Events **tab displays all the uplink messages from the LT-22222-L.
1990
1991 * Select **Debug **from the **Event type** dropdown.
1992 * Select the** time frame** from the **time window**.
1993
1994 [[image:thingseye-events.png||height="686" width="1000"]]
1995
1996
1997 * To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1998
1999 [[image:thingseye-json.png||width="1000"]]
2000
2001
2002 ==== **3.5.2.3 Deleting an integration** ====
2003
2004 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2005
2006
2007 == 3.6 Interface Details ==
2008
2009 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2010
2011
2012 Supports NPN-type sensors.
2013
2014 [[image:1653356991268-289.png]]
2015
2016
2017 === 3.6.2 Digital Input Ports: DI1/DI2 ===
2018
2019
2020 (((
2021 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
2022 )))
2023
2024 (((
2025 (((
2026 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
2027
2028
2029 )))
2030 )))
2031
2032 [[image:1653357170703-587.png]]
2033
2034 (((
2035 (((
2036 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
2037 )))
2038 )))
2039
2040 (((
2041
2042 )))
2043
2044 (((
2045 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
2046 )))
2047
2048 (((
2049 This type of sensor outputs a low (GND) signal when active.
2050 )))
2051
2052 * (((
2053 Connect the sensor's output to DI1-
2054 )))
2055 * (((
2056 Connect the sensor's VCC to DI1+.
2057 )))
2058
2059 (((
2060 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
2061 )))
2062
2063 (((
2064 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
2065 )))
2066
2067 (((
2068 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2069 )))
2070
2071 (((
2072
2073 )))
2074
2075 (((
2076 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2077 )))
2078
2079 (((
2080 This type of sensor outputs a high signal (e.g., 24V) when active.
2081 )))
2082
2083 * (((
2084 Connect the sensor's output to DI1+
2085 )))
2086 * (((
2087 Connect the sensor's GND DI1-.
2088 )))
2089
2090 (((
2091 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2092 )))
2093
2094 (((
2095 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2096 )))
2097
2098 (((
2099 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2100 )))
2101
2102 (((
2103
2104 )))
2105
2106 (((
2107 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2108 )))
2109
2110 (((
2111 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2112 )))
2113
2114 * (((
2115 Connect the sensor's output to DI1+ with a 50K resistor in series.
2116 )))
2117 * (((
2118 Connect the sensor's GND DI1-.
2119 )))
2120
2121 (((
2122 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2123 )))
2124
2125 (((
2126 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2127 )))
2128
2129 (((
2130 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2131 )))
2132
2133
2134 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
2135
2136 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
2137
2138 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
2139
2140 [[image:image-20230616235145-1.png]]
2141
2142 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
2143
2144 [[image:image-20240219115718-1.png]]
2145
2146
2147 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2148
2149
2150 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2151
2152 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2153
2154 [[image:1653357531600-905.png]]
2155
2156
2157 === 3.6.4 Analog Input Interfaces ===
2158
2159
2160 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2161
2162
2163 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2164
2165 [[image:1653357592296-182.png]]
2166
2167 Example: Connecting a 4~~20mA sensor
2168
2169 We will use the wind speed sensor as an example for reference only.
2170
2171
2172 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2173
2174 (% style="color:red" %)**Red:  12~~24V**
2175
2176 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2177
2178 **Black:  GND**
2179
2180 **Connection diagram:**
2181
2182 [[image:1653357640609-758.png]]
2183
2184 [[image:1653357648330-671.png||height="155" width="733"]]
2185
2186
2187 Example: Connecting to a regulated power supply to measure voltage
2188
2189 [[image:image-20230608101532-1.png||height="606" width="447"]]
2190
2191 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2192
2193 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2194
2195
2196 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2197
2198 (% style="color:red" %)**Red:  12~~24v**
2199
2200 **Black:  GND**
2201
2202
2203 === 3.6.5 Relay Output ===
2204
2205
2206 (((
2207 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2208
2209 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2210 )))
2211
2212 [[image:image-20220524100215-9.png]]
2213
2214
2215 [[image:image-20220524100215-10.png||height="382" width="723"]]
2216
2217
2218 == 3.7 LEDs Indicators ==
2219
2220 The table below lists the behavior of LED indicators for each port function.
2221
2222 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2223 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2224 |**PWR**|Always on when there is power
2225 |**TX**|(((
2226 (((
2227 Device boot: TX blinks 5 times.
2228 )))
2229
2230 (((
2231 Successful network join: TX remains ON for 5 seconds.
2232 )))
2233
2234 (((
2235 Transmit a LoRa packet: TX blinks once
2236 )))
2237 )))
2238 |**RX**|RX blinks once when a packet is received.
2239 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2240 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2241 |**DI1**|(((
2242 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2243 )))
2244 |**DI2**|(((
2245 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2246 )))
2247 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2248 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2249
2250 = 4. Using AT Commands =
2251
2252 The LT-22222-L supports programming using AT Commands.
2253
2254 == 4.1 Connecting the LT-22222-L to a PC ==
2255
2256 (((
2257 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2258
2259 [[image:usb-ttl-programming.png]]
2260 )))
2261
2262
2263
2264 (((
2265 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2266 )))
2267
2268 [[image:1653358355238-883.png]]
2269
2270
2271 (((
2272 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2273
2274 == 4.2 LT-22222-L related AT commands ==
2275 )))
2276
2277 (((
2278 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2279
2280 * **##AT##+<CMD>?** : Help on <CMD>
2281 * **##AT##+<CMD>** : Run <CMD>
2282 * **##AT##+<CMD>=<value>** : Set the value
2283 * **##AT##+<CMD>=?** : Get the value
2284 * ##**ATZ**##: Trigger a reset of the MCU
2285 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2286 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2287 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2288 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2289 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2290 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2291 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2292 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2293 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2294 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2295 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2296 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
2297 * AT+RX2FQ: Get or set the Rx2 window frequency
2298 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2299 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2300 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2301 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2302 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2303 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2304 * AT+NWKID: Get or set the Network ID
2305 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
2306 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
2307 * AT+CLASS: Get or set the Device Class
2308 * AT+JOIN: Join network
2309 * AT+NJS: Get OTAA Join Status
2310 * AT+SENDB: Send hexadecimal data along with the application port
2311 * AT+SEND: Send text data along with the application port
2312 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
2313 * AT+RECV: Print last received data in raw format
2314 * AT+VER: Get current image version and Frequency Band
2315 * AT+CFM: Get or Set the confirmation mode (0-1)
2316 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
2317 * AT+SNR: Get the SNR of the last received packet
2318 * AT+RSSI: Get the RSSI of the last received packet
2319 * AT+TDC: Get or set the application data transmission interval in ms
2320 * AT+PORT: Get or set the application port
2321 * AT+DISAT: Disable AT commands
2322 * AT+PWORD: Set password, max 9 digits
2323 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2324 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
2325 * AT+CFG: Print all settings
2326 )))
2327
2328
2329 == 4.2 Common AT Command Sequence ==
2330
2331 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2332
2333 (((
2334
2335
2336 (((
2337 (% style="color:blue" %)**If the device has not yet joined the network:**
2338 )))
2339 )))
2340
2341 (((
2342 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2343 )))
2344
2345 (((
2346 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2347 )))
2348
2349 (((
2350 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2351 )))
2352
2353 (((
2354 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2355 )))
2356
2357 (((
2358 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2359 )))
2360
2361
2362 (((
2363 (% style="color:blue" %)**If the device has already joined the network:**
2364 )))
2365
2366 (((
2367 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2368 )))
2369
2370 (((
2371 (% style="background-color:#dcdcdc" %)##**ATZ**##
2372 )))
2373
2374
2375 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2376
2377 (((
2378
2379
2380 (((
2381 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2382 )))
2383 )))
2384
2385 (((
2386 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2387 )))
2388
2389 (((
2390 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2391 )))
2392
2393 (((
2394 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2395 )))
2396
2397 (((
2398 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2399 )))
2400
2401 (((
2402 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2403 )))
2404
2405 (((
2406 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2407 )))
2408
2409 (((
2410 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2411 )))
2412
2413 (((
2414 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2415 )))
2416
2417 (((
2418 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2419 )))
2420
2421 (((
2422 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2423 )))
2424
2425 (((
2426 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2427 )))
2428
2429 (((
2430 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2431
2432
2433 )))
2434
2435 (((
2436 (% style="color:red" %)**Note:**
2437 )))
2438
2439 (((
2440 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2441
2442 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2443
2444 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2445 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2446
2447 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2448 )))
2449
2450 (((
2451 [[image:1653359097980-169.png||height="188" width="729"]]
2452 )))
2453
2454
2455 === 4.2.3 Change to Class A ===
2456
2457
2458 (((
2459 (% style="color:blue" %)**If the sensor has JOINED:**
2460
2461 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2462
2463 (% style="background-color:#dcdcdc" %)**ATZ**
2464 )))
2465
2466
2467 = 5. Case Study =
2468
2469 == 5.1 Counting how many objects pass through the flow line ==
2470
2471 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2472
2473
2474 = 6. FAQ =
2475
2476 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2477
2478
2479 == 6.1 How to update the firmware? ==
2480
2481 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2482
2483 * Support new features
2484 * Fix bugs
2485 * Change LoRaWAN frequency bands
2486
2487 You will need the following things before proceeding:
2488
2489 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2490 * USB to TTL adapter
2491 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2492 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2493
2494 {{info}}
2495 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2496 {{/info}}
2497
2498 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2499
2500 [[image:usb-ttl-programming.png]]
2501
2502
2503
2504 Start the STM32 Flash Loader and choose the correct COM port to update.
2505
2506 (((
2507 (((
2508 (% style="color:blue" %)**For LT-22222-L**(%%):
2509
2510 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2511 )))
2512
2513
2514 )))
2515
2516 [[image:image-20220524103407-12.png]]
2517
2518
2519 [[image:image-20220524103429-13.png]]
2520
2521
2522 [[image:image-20220524104033-15.png]]
2523
2524
2525 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2526
2527 [[image:1653360054704-518.png||height="186" width="745"]]
2528
2529
2530 (((
2531 (((
2532 == 6.2 How to change the LoRaWAN frequency band/region? ==
2533 )))
2534 )))
2535
2536 (((
2537 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2538 )))
2539
2540 (((
2541
2542
2543 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2544 )))
2545
2546 (((
2547 (((
2548 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2549 )))
2550 )))
2551
2552 (((
2553 (((
2554 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2555
2556
2557 )))
2558 )))
2559
2560 (((
2561 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2562
2563 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2564 )))
2565
2566 (((
2567
2568 )))
2569
2570 {{warning}}
2571 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2572 {{/warning}}
2573
2574
2575 (((
2576 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2577
2578
2579 )))
2580
2581 (((
2582 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2583
2584 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2585
2586 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2587
2588 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2589
2590 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2591
2592 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2593
2594 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2595
2596 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2597
2598 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2599
2600 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2601
2602 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2603
2604 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2605 )))
2606
2607
2608 (((
2609 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2610 )))
2611
2612 [[image:1653360498588-932.png||height="485" width="726"]]
2613
2614
2615 == 6.4 How to change the uplink interval? ==
2616
2617 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2618
2619
2620 == 6.5 Can I see the counting event in the serial output? ==
2621
2622 (((
2623 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2624
2625
2626 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2627
2628 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2629
2630
2631 )))
2632
2633 (((
2634 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2635
2636 * If the device is not properly shut down and is directly powered off.
2637 * It will default to a power-off state.
2638 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2639 * After a restart, the status before the power failure will be read from flash.
2640
2641 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2642
2643 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2644
2645
2646 [[image:image-20221006170630-1.png||height="610" width="945"]]
2647
2648
2649 == 6.9 Can the LT-22222-L save the RO state? ==
2650
2651 To enable this feature, the firmware version must be 1.6.0 or higher.
2652
2653
2654 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2655
2656 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2657
2658
2659 = 7. Troubleshooting =
2660
2661 This section provides some known troubleshooting tips.
2662
2663
2664 )))
2665
2666 (((
2667 (((
2668 == 7.1 Downlink isn't working. How can I solve this? ==
2669 )))
2670 )))
2671
2672 (((
2673 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2674 )))
2675
2676 (((
2677
2678
2679 == 7.2 Having trouble uploading an image? ==
2680 )))
2681
2682 (((
2683 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2684 )))
2685
2686 (((
2687
2688
2689 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2690 )))
2691
2692 (((
2693 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2694 )))
2695
2696
2697 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2698
2699 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2700 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2701
2702
2703 = 8. Ordering information =
2704
2705 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2706
2707 (% style="color:#4f81bd" %)**XXX:**
2708
2709 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2710 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2711 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2712 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2713 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2714 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2715 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2716 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2717 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2718
2719 = 9. Package information =
2720
2721 **Package includes**:
2722
2723 * 1 x LT-22222-L I/O Controller
2724 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2725 * 1 x bracket for DIN rail mounting
2726 * 1 x 3.5 mm programming cable
2727
2728 **Dimension and weight**:
2729
2730 * Device Size: 13.5 x 7 x 3 cm
2731 * Device Weight: 105 g
2732 * Package Size / pcs : 14.5 x 8 x 5 cm
2733 * Weight / pcs : 170 g
2734
2735 = 10. Support =
2736
2737 * (((
2738 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2739 )))
2740 * (((
2741 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2742
2743
2744 )))
2745
2746 = 11. Reference​​​​​ =
2747
2748 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2749 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2750 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]