Version 205.1 by Dilisi S on 2024/11/19 21:19

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 {{info}}
27 **This manual is also applicable to the LT-33222-L.**
28 {{/info}}
29
30 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31
32 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
33 )))
34 )))
35
36 (((
37 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 )))
39
40 (((
41 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
42
43 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
44 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 * Setup your own private LoRaWAN network.
46
47 {{info}}
48 You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
49 {{/info}}
50 )))
51
52 (((
53
54
55 The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
56 )))
57
58 (% class="wikigeneratedid" %)
59 [[image:lorawan-nw.jpg||height="354" width="900"]]
60
61 == 1.2 Specifications ==
62
63 (% style="color:#037691" %)**Hardware System:**
64
65 * STM32L072xxxx MCU
66 * SX1276/78 Wireless Chip 
67 * Power Consumption:
68 ** Idle: 4mA@12V
69 ** 20dB Transmit: 34mA@12V
70 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
71
72 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
73
74 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
75 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
76 * 2 x Relay Output (5A@250VAC / 30VDC)
77 * 2 x 0~~20mA Analog Input (res:0.01mA)
78 * 2 x 0~~30V Analog Input (res:0.01V)
79 * Power Input 7~~ 24V DC. 
80
81 (% style="color:#037691" %)**LoRa Spec:**
82
83 * Frequency Range:
84 ** Band 1 (HF): 862 ~~ 1020 MHz
85 ** Band 2 (LF): 410 ~~ 528 MHz
86 * 168 dB maximum link budget.
87 * +20 dBm - 100 mW constant RF output vs.
88 * +14 dBm high-efficiency PA.
89 * Programmable bit rate up to 300 kbps.
90 * High sensitivity: down to -148 dBm.
91 * Bullet-proof front end: IIP3 = -12.5 dBm.
92 * Excellent blocking immunity.
93 * Low RX current of 10.3 mA, 200 nA register retention.
94 * Fully integrated synthesizer with a resolution of 61 Hz.
95 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
96 * Built-in bit synchronizer for clock recovery.
97 * Preamble detection.
98 * 127 dB Dynamic Range RSSI.
99 * Automatic RF Sense and CAD with ultra-fast AFC.
100 * Packet engine up to 256 bytes with CRC.
101
102 == 1.3 Features ==
103
104 * LoRaWAN Class A & Class C modes
105 * Optional Customized LoRa Protocol
106 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
107 * AT Commands to change parameters
108 * Remotely configure parameters via LoRaWAN Downlink
109 * Firmware upgradable via program port
110 * Counting
111
112 == 1.4 Applications ==
113
114 * Smart buildings & home automation
115 * Logistics and supply chain management
116 * Smart metering
117 * Smart agriculture
118 * Smart cities
119 * Smart factory
120
121 == 1.5 Hardware Variants ==
122
123 (% style="width:524px" %)
124 |(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description**
125 |(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)(((
126
127 )))|(% style="width:329px" %)(((
128 * 2 x Digital Input (Bi-direction)
129 * 2 x Digital Output
130 * 2 x Relay Output (5A@250VAC / 30VDC)
131 * 2 x 0~~20mA Analog Input (res:0.01mA)
132 * 2 x 0~~30V Analog Input (res:0.01v)
133 * 1 x Counting Port
134 )))
135
136
137 == 2. Assembling the device ==
138
139 == 2.1 Connecting the antenna ==
140
141 Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
142
143 {{warning}}
144 Warning! Do not power on the device without connecting the antenna.
145 {{/warning}}
146
147 == 2.2 Terminals ==
148
149 The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
150
151 Upper screw terminal block (from left to right):
152
153 (% style="width:634px" %)
154 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
155 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
156 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
157 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
158 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
159 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
160 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
161
162 Lower screw terminal block (from left to right):
163
164 (% style="width:633px" %)
165 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
166 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
167 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
168 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
169 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
170 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
171 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
172 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
173 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
174 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
175 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
176
177 == 2.3 Connecting LT-22222-L to a Power Source ==
178
179 The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
180
181 Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** with the Network Server.
182
183 {{warning}}
184 We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
185 {{/warning}}
186
187
188 [[image:1653297104069-180.png]]
189
190
191 = 3. Registering LT-22222-L with a LoRaWAN Network Server =
192
193 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server.
194
195
196
197 === 3.2.1 Prerequisites ===
198
199 The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
200
201 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
202
203 [[image:image-20230425173427-2.png||height="246" width="530"]]
204
205 {{info}}
206 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
207 {{/info}}
208
209 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
210
211 === 3.2.2 Registering with The Things Stack ===
212
213 {{info}}
214 The Things Stack Sandbox was formally called The Things Stack Community Edition.
215 {{/info}}
216
217
218 The network diagram below shows how the LT-22222-L is connected to The Things Stack and integrates its data with the ThingsEye IoT platform.
219
220 [[image:dragino-ttn-te.jpg]]
221
222
223 * Create a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have a one yet.
224 * Log in to your The Things Stack Sandbox account.
225 * Create an application with The Things Stack if you do not have one yet.
226 * Go to your application page and click on the **End devices** in the left menu.
227 * On the End devices page, click on **+ Register end device**. Two registration options are available:
228
229
230 ==== 3.2.2.1 Using the LoRaWAN Device Repository ====
231
232 * On the **Register end device** page:
233 ** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
234 ** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
235 *** **End device brand**: Dragino Technology Co., Limited
236 *** **Model**: LT22222-L I/O Controller
237 *** **Hardware ver**: Unknown
238 *** **Firmware ver**: 1.6.0
239 *** **Profile (Region)**: Select the region that matches your device.
240 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
241
242
243 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
244
245
246 * Register end device page continued...
247 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
248 ** In the **DevEUI** field, enter the **DevEUI**.
249 ** In the **AppKey** field, enter the **AppKey.**
250 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
251 ** Under **After registration**, select the **View registered end device** option.
252
253 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
254
255 ==== ====
256
257 ==== 3.2.2.2 Adding device manually ====
258
259 * On the **Register end device** page:
260 ** Select the option **Enter end device specifies manually** under **Input method**.
261 ** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
262 ** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
263 ** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
264 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
265 ** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
266 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
267
268 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
269
270
271 * Register end device page continued...
272 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
273 ** In the **DevEUI** field, enter the **DevEUI**.
274 ** In the **AppKey** field, enter the **AppKey**.
275 ** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
276 ** Under **After registration**, select the **View registered end device** option.
277 ** Click the **Register end device** button.
278
279 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
280
281
282 You will be navigated to the **Device overview** page.
283
284
285 [[image:lt-22222-device-overview.png||height="625" width="1000"]]
286
287
288 ==== 3.2.2.3 Joining ====
289
290 On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
291
292 Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
293
294
295 [[image:lt-22222-join-network.png||height="625" width="1000"]]
296
297
298 ==== 3.2.2.4 Uplinks ====
299
300
301 After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
302
303 Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
304
305 [[image:lt-22222-ul-payload-decoded.png]]
306
307
308 If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
309
310 {{info}}
311 The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
312 {{/info}}
313
314 [[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
315
316
317 ==== 3.2.2.4 Uplinks ====
318
319 When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
320
321
322 == 3.3 Working Modes and Uplink Payload formats ==
323
324
325 The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
326
327 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
328
329 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
330
331 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
332
333 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
334
335 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
336
337 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
338
339 The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
340
341 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
342
343 (((
344 This is the default mode.
345
346 The uplink payload is 11 bytes long.
347
348 (% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
349 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
350 It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
351
352 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
353 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
354 |Value|(((
355 AVI1 voltage
356 )))|(((
357 AVI2 voltage
358 )))|(((
359 ACI1 Current
360 )))|(((
361 ACI2 Current
362 )))|**DIDORO***|(((
363 Reserve
364 )))|MOD
365 )))
366
367 (((
368 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
369
370 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
371 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
372 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
373 )))
374
375 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
376 * DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
377 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
378
379 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
380
381 For example, if the payload is: [[image:image-20220523175847-2.png]]
382
383
384 **The interface values can be calculated as follows:  **
385
386 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
387
388 AVI2 channel voltage is 0x04AC/1000=1.196V
389
390 ACI1 channel current is 0x1310/1000=4.880mA
391
392 ACI2 channel current is 0x1300/1000=4.864mA
393
394 The last byte 0xAA= **10101010**(b) means,
395
396 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
397 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
398 * **[1] DI3 - not used for LT-22222-L.**
399 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
400 * [1] DI1 channel input state:
401 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
402 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
403 ** DI1 LED is ON in both cases.
404 * **[0] DO3 - not used for LT-22222-L.**
405 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
406 * [0] DO1 channel output state:
407 ** DO1 is FLOATING when there is no load between DO1 and V+.
408 ** DO1 is HIGH and there is a load between DO1 and V+.
409 ** DO1 LED is OFF in both cases.
410
411 Reserve = 0
412
413 MOD = 1
414
415 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
416
417
418 (((
419 **For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
420 )))
421
422 (((
423 The uplink payload is 11 bytes long.
424
425 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
426 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
427 It starts counting again when it reaches the maximum value.**
428
429 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
430 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
431 |Value|COUNT1|COUNT2 |DIDORO*|(((
432 Reserve
433 )))|MOD
434 )))
435
436 (((
437 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
438
439 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
440 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
441 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
442
443 * RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
444 )))
445
446 * FIRST: Indicates that this is the first packet after joining the network.
447 * DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
448
449 (((
450 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
451
452
453 )))
454
455 (((
456 **To activate this mode, run the following AT commands:**
457 )))
458
459 (((
460 (% class="box infomessage" %)
461 (((
462 **AT+MOD=2**
463
464 **ATZ**
465 )))
466 )))
467
468 (((
469
470
471 (% style="color:#4f81bd" %)**AT Commands for counting:**
472 )))
473
474 (((
475 **For LT22222-L:**
476
477 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
478
479 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
480
481 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
482
483 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
484
485 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
486
487 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
488 )))
489
490
491 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
492
493 (% style="color:red" %)**Note: The maximum count depends on the bytes it is.
494 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
495 It starts counting again when it reaches the maximum value.**
496
497 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
498
499 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
500 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
501 |Value|COUNT1|(((
502 ACI1 Current
503 )))|(((
504 ACI2 Current
505 )))|DIDORO*|Reserve|MOD
506
507 (((
508 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
509
510 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
511 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
512 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
513 )))
514
515 * RO is for the relay. ROx=1: closed, ROx=0 always open.
516 * FIRST: Indicates that this is the first packet after joining the network.
517 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
518
519 (((
520 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
521 )))
522
523
524 (((
525 **To activate this mode, run the following AT commands:**
526 )))
527
528 (((
529 (% class="box infomessage" %)
530 (((
531 **AT+MOD=3**
532
533 **ATZ**
534 )))
535 )))
536
537 (((
538 AT Commands for counting:
539
540 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
541 )))
542
543
544 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
545
546 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
547 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
548 It starts counting again when it reaches the maximum value.**
549
550
551 (((
552 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
553 )))
554
555 (((
556 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
557
558 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
559 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
560 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
561 Reserve
562 )))|MOD
563 )))
564
565 (((
566 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
567
568 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
569 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
570 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
571 )))
572
573 * RO is for the relay. ROx=1: closed, ROx=0 always open.
574 * FIRST: Indicates that this is the first packet after joining the network.
575 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
576
577 (((
578 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
579
580
581 )))
582
583 (((
584 **To activate this mode, run the following AT commands:**
585 )))
586
587 (((
588 (% class="box infomessage" %)
589 (((
590 **AT+MOD=4**
591
592 **ATZ**
593 )))
594 )))
595
596 (((
597 AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
598 )))
599
600 (((
601 **In addition to that, below are the commands for AVI1 Counting:**
602
603 (% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
604
605 (% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
606
607 (% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
608
609 (% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
610 )))
611
612
613 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
614
615 (% style="color:red" %)**Note:The maximum count depends on the bytes it is.
616 The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
617 It starts counting again when it reaches the maximum value.**
618
619
620 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
621
622 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
623 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
624 |Value|(((
625 AVI1 voltage
626 )))|(((
627 AVI2 voltage
628 )))|(((
629 ACI1 Current
630 )))|COUNT1|DIDORO*|(((
631 Reserve
632 )))|MOD
633
634 (((
635 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
636
637 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
638 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
639 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
640 )))
641
642 * RO is for the relay. ROx=1: closed, ROx=0 always open.
643 * FIRST: Indicates that this is the first packet after joining the network.
644 * (((
645 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
646 )))
647
648 (((
649 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
650 )))
651
652 (((
653 **To activate this mode, run the following AT commands:**
654 )))
655
656 (((
657 (% class="box infomessage" %)
658 (((
659 **AT+MOD=5**
660
661 **ATZ**
662 )))
663 )))
664
665 (((
666 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
667 )))
668
669
670 === 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
671
672
673 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
674
675 For example, if you configure the following commands:
676
677 * **AT+MOD=1 ** **~-~->**  Sets the default working mode
678 * **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
679
680 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
681
682 1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
683 1. (((
684 Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
685
686 * The first uplink uses the payload specified in trigger mode (MOD=6).
687 * The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
688 )))
689
690 (% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
691
692 (% style="color:#4f81bd" %)**Trigger based on voltage**:
693
694 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
695
696
697 **Example:**
698
699 AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
700
701 AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
702
703
704 (% style="color:#4f81bd" %)**Trigger based on current**:
705
706 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
707
708
709 **Example:**
710
711 AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
712
713
714 (% style="color:#4f81bd" %)**Trigger based on DI status**:
715
716 DI status triggers Flag.
717
718 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
719
720
721 **Example:**
722
723 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
724
725
726 (% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
727
728 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
729
730 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
731
732 AA: Type Code for this downlink Command:
733
734 xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
735
736 yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
737
738 yy2 yy2: AC1 or AV1 HIGH limit.
739
740 yy3 yy3: AC2 or AV2 LOW limit.
741
742 Yy4 yy4: AC2 or AV2 HIGH limit.
743
744
745 **Example 1**: AA 00 13 88 00 00 00 00 00 00
746
747 Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
748
749
750 **Example 2**: AA 02 01 00
751
752 Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
753
754
755 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
756
757 MOD6 Payload: total of 11 bytes
758
759 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
760 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
761 |Value|(((
762 TRI_A FLAG
763 )))|(((
764 TRI_A Status
765 )))|(((
766 TRI_DI FLAG+STA
767 )))|Reserve|Enable/Disable MOD6|(((
768 MOD(6)
769 )))
770
771 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
772
773 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
774 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
775 |(((
776 AV1_LOW
777 )))|(((
778 AV1_HIGH
779 )))|(((
780 AV2_LOW
781 )))|(((
782 AV2_HIGH
783 )))|(((
784 AC1_LOW
785 )))|(((
786 AC1_HIGH
787 )))|(((
788 AC2_LOW
789 )))|(((
790 AC2_HIGH
791 )))
792
793 * Each bit shows if the corresponding trigger has been configured.
794
795 **Example:**
796
797 10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
798
799
800 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
801
802 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
803 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
804 |(((
805 AV1_LOW
806 )))|(((
807 AV1_HIGH
808 )))|(((
809 AV2_LOW
810 )))|(((
811 AV2_HIGH
812 )))|(((
813 AC1_LOW
814 )))|(((
815 AC1_HIGH
816 )))|(((
817 AC2_LOW
818 )))|(((
819 AC2_HIGH
820 )))
821
822 * Each bit shows which status has been triggered on this uplink.
823
824 **Example:**
825
826 10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
827
828
829 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
830
831 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %)
832 |(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0**
833 |(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG
834
835 * Each bits shows which status has been triggered on this uplink.
836
837 **Example:**
838
839 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
840
841 00000101: Means both DI1 and DI2 trigger are enabled.
842
843
844 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
845
846 Downlink command to poll MOD6 status:
847
848 **AB 06**
849
850 When device got this command, it will send the MOD6 payload.
851
852
853 === 3.3.7 Payload Decoder ===
854
855 (((
856
857
858 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
859 )))
860
861
862 == 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
863
864 (((
865 You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
866 )))
867
868 (((
869 (((
870 There are two tytes of commands:
871 )))
872 )))
873
874 * (% style="color:blue" %)**Common commands**(%%):
875
876 * (% style="color:blue" %)**Sensor-related commands**(%%):
877
878 === 3.4.1 Common commands ===
879
880 (((
881 These are available for each sensors and include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
882 )))
883
884 === 3.4.2 Sensor-related commands ===
885
886 These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
887
888
889 ==== 3.4.2.1 Set Transmit Interval ====
890
891 Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
892
893 (% style="color:#037691" %)**AT command**
894
895 (% border="2" style="width:500px" %)
896 |**Command**|AT+TDC=<time>
897 |**Response**|
898 |**Parameters**|**time** : uplink interval is in milliseconds
899 |**Example**|(((
900 AT+TDC=30000
901
902 Sets the uplink interval to 30,000 milliseconds (30 seconds)
903 )))
904
905 (% style="color:#037691" %)**Downlink payload**
906
907 (% border="2" style="width:500px" %)
908 |**Payload**|(((
909 <prefix><time>
910 )))
911 |**Parameters**|(((
912 **prefix** : 0x01
913
914 **time** : uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
915 )))
916 |**Example**|(((
917 01 **00 75 30**
918
919 Sets the uplink interval to 30,000 milliseconds (30 seconds)
920
921 Conversion: 30000 (dec) = 00 75 30 (hex)
922
923 See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
924 )))
925
926 ==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
927
928 Sets the working mode.
929
930 (% style="color:#037691" %)**AT command**
931
932 (% border="2" style="width:500px" %)
933 |(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MODE=<working_mode>
934 |(% style="width:97px" %)**Response**|(% style="width:413px" %)
935 |(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
936 **working_mode** :
937
938 1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
939
940 2 = Double DI Counting + DO + RO
941
942 3 = Single DI Counting + 2 x ACI + DO + RO
943
944 4 = Single DI Counting + 1 x Voltage Counting + DO + RO
945
946 5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
947
948 6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
949 )))
950 |(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
951 AT+MOD=2
952
953 Sets the device to working mode 2 (Double DI Counting + DO + RO)
954 )))
955
956 (% class="wikigeneratedid" %)
957 (% style="color:#037691" %)**Downlink payload**
958
959 (% border="2" style="width:500px" %)
960 |(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
961 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
962 **prefix** : 0x0A
963
964 **working_mode** : Working mode, represented by 1 byte in hexadecimal.
965 )))
966 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
967 0A **02**
968
969 Sets the device to working mode 2 (Double DI Counting + DO + RO)
970 )))
971
972 ==== 3.4.2.3 Poll an uplink ====
973
974 Requests an uplink from LT-22222-L.
975
976 (% style="color:#037691" %)**AT command**
977
978 There is no AT Command to request an uplink from LT-22222-L
979
980 (% style="color:#037691" %)**Downlink payload**
981
982 (% border="2" style="width:500px" %)
983 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
984 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
985 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
986 08 FF
987
988 Requests an uplink from LT-22222-L.
989 )))
990
991 ==== 3.4.2.4 Enable/Disable Trigger Mode ====
992
993 Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
994
995 (% style="color:#037691" %)**AT Command**
996
997 (% border="2" style="width:500px" %)
998 |(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
999 |(% style="width:95px" %)**Response**|(% style="width:403px" %)
1000 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
1001 **enable/disable trigger_mode** :
1002
1003 1 = enable trigger mode
1004
1005 0 = disable trigger mode
1006 )))
1007 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1008 AT+ADDMOD6=1
1009
1010 Enable trigger mode for the current working mode
1011 )))
1012
1013 (% style="color:#037691" %)**Downlink payload**
1014
1015 (% border="2" style="width:500px" %)
1016 |(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1017 |(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1018 **prefix** : 0x0A 06 (two bytes in hexadecimal)
1019
1020 **working mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1021 )))
1022 |(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1023 0A 06 **01**
1024
1025 Enable trigger mode for the current working mode
1026 )))
1027
1028 ==== 3.4.2.5 Poll trigger settings ====
1029
1030 Polls the trigger settings.
1031
1032 (% style="color:#037691" %)**AT Command:**
1033
1034 There is no AT Command for this feature.
1035
1036 (% style="color:#037691" %)**Downlink Payload**
1037
1038 (% border="2" style="width:500px" %)
1039 |(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1040 |(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1041 |(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1042 AB 06
1043
1044 Uplinks the trigger settings.
1045 )))
1046
1047 ==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
1048
1049 Enable or disable DI1/DI2/DI3 as a trigger.
1050
1051 (% style="color:#037691" %)**AT Command**
1052
1053 (% border="2" style="width:500px" %)
1054 |(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1055 |(% style="width:98px" %)**Response**|(% style="width:400px" %)
1056 |(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1057 **DI1_trigger:**
1058
1059 1 = enable DI1 trigger
1060
1061 0 = disable DI1 trigger
1062
1063 **DI2 _trigger**
1064
1065 1 = enable DI2 trigger
1066
1067 0 = disable DI2 trigger
1068 )))
1069 |(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1070 AT+DTRI=1,0
1071
1072 Enable DI1 trigger, disable DI2 trigger
1073 )))
1074
1075 (% class="wikigeneratedid" %)
1076 (% style="color:#037691" %)**Downlink Payload**
1077
1078 (% border="2" style="width:500px" %)
1079 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1080 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1081 **prefix :** AA 02 (two bytes in hexadecimal)
1082
1083 **DI1_trigger:**
1084
1085 1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1086
1087 0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1088
1089 **DI2 _trigger**
1090
1091 1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1092
1093 0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1094 )))
1095 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1096 AA 02 **01 00**
1097
1098 Enable DI1 trigger, disable DI2 trigger
1099 )))
1100
1101 ==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1102
1103 Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1104
1105
1106 (% style="color:#037691" %)**AT Command**
1107
1108 (% border="2" style="width:500px" %)
1109 |(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1110 |(% style="width:101px" %)**Response**|(% style="width:397px" %)
1111 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1112 **interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1113
1114 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1115 )))
1116 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1117 AT+TRIG1=1,100
1118
1119 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1120 )))
1121
1122 (% class="wikigeneratedid" %)
1123 (% style="color:#037691" %)**Downlink Payload**
1124
1125 (% border="2" style="width:500px" %)
1126 |(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1127 |(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1128 **prefix** : 09 01 (hexadecimal)
1129
1130 **interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1131
1132 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1133 )))
1134 |(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1135 09 01 **01 00 64**
1136
1137 Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1138 )))
1139
1140 ==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1141
1142 Sets DI2 as a trigger.
1143
1144
1145 (% style="color:#037691" %)**AT Command**
1146
1147 (% border="2" style="width:500px" %)
1148 |(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1149 |(% style="width:94px" %)**Response**|(% style="width:404px" %)
1150 |(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1151 **interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1152
1153 **minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1154 )))
1155 |(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1156 AT+TRIG2=0,100
1157
1158 Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1159 )))
1160
1161 (% style="color:#037691" %)**Downlink Payload**
1162
1163 (% border="2" style="width:500px" %)
1164 |(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1165 |(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1166 **prefix** : 09 02 (hexadecimal)
1167
1168 **interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1169
1170 **minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1171 )))
1172 |(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1173
1174 ==== ====
1175
1176 ==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1177
1178 Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1179
1180 (% style="color:#037691" %)**AT Command**
1181
1182 (% border="2" style="width:500px" %)
1183 |(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1184 AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1185 )))
1186 |(% style="width:104px" %)**Response**|(% style="width:394px" %)
1187 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1188 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1189
1190 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1191
1192 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1193
1194 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1195 )))
1196 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1197 AT+ACLIM=10000,15000,0,0
1198
1199 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1200 )))
1201 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1202
1203 (% style="color:#037691" %)**Downlink Payload**
1204
1205 (% border="2" style="width:500px" %)
1206 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1207 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1208 **prefix **: AA 01 (hexadecimal)
1209
1210 **AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1211
1212 **AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1213
1214 **AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1215
1216 **AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1217 )))
1218 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1219 AA 01 **27** **10 3A** **98** 00 00 00 00
1220
1221 Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1222 )))
1223 |(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1224
1225 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1226
1227 Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1228
1229 (% style="color:#037691" %)**AT Command**
1230
1231 (% border="2" style="width:500px" %)
1232 |(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1233 |(% style="width:104px" %)**Response**|(% style="width:387px" %)
1234 |(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1235 **AC1_LIMIT_LOW** : lower limit of the current to be checked
1236
1237 **AC1_LIMIT_HIGH **: higher limit of the current to be checked
1238
1239 **AC2_LIMIT_HIGH **: lower limit of the current to be checked
1240
1241 **AC2_LIMIT_LOW** : higher limit of the current to be checked
1242 )))
1243 |(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1244 AT+AVLIM=3000,6000,0,2000
1245
1246 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1247 )))
1248 |(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1249
1250 (% style="color:#037691" %)**Downlink Payload**
1251
1252 (% border="2" style="width:500px" %)
1253 |(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1254 |(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1255 **prefix **: AA 00 (hexadecimal)
1256
1257 **AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1258
1259 **AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1260
1261 **AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1262
1263 **AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1264 )))
1265 |(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1266 AA 00 **0B B8 17 70 00 00 07 D0**
1267
1268 Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1269 )))
1270 |(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1271
1272 ==== 3.4.2.11 Trigger – Set minimum interval ====
1273
1274 Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1275
1276 (% style="color:#037691" %)**AT Command**
1277
1278 (% border="2" style="width:500px" %)
1279 |(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1280 |(% style="width:113px" %)**Response**|(% style="width:385px" %)
1281 |(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1282 **time** : in minutes
1283 )))
1284 |(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1285 AT+ATDC=5
1286
1287 The device won't respond to the second trigger within 5 minutes after the first trigger.
1288 )))
1289 |(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1290
1291 (% style="color:#037691" %)**Downlink Payload**
1292
1293 (% border="2" style="width:500px" %)
1294 |(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1295 |(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1296 **prefix** : AC (hexadecimal)
1297
1298 **time **: in minutes (two bytes in hexadecimal)
1299 )))
1300 |(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1301 AC **00 05**
1302
1303 The device won't respond to the second trigger within 5 minutes after the first trigger.
1304 )))
1305 |(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1306
1307 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1308
1309 Controls the digital outputs DO1, DO2, and DO3
1310
1311 (% style="color:#037691" %)**AT Command**
1312
1313 There is no AT Command to control the Digital Output.
1314
1315
1316 (% style="color:#037691" %)**Downlink Payload**
1317
1318 (% border="2" style="width:500px" %)
1319 |(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1320 |(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1321 **prefix** : 02 (hexadecimal)
1322
1323 **DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1324
1325 **DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1326
1327 **DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1328 )))
1329 |(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1330 02 **01 00 01**
1331
1332 If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1333
1334 **More examples:**
1335
1336 (((
1337 01: Low,  00: High,  11: No action
1338
1339 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1340 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1341 |02  01  00  11|Low|High|No Action
1342 |02  00  11  01|High|No Action|Low
1343 |02  11  01  00|No Action|Low|High
1344 )))
1345
1346 (((
1347 (((
1348 (% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1349 )))
1350
1351 (((
1352 (% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1353 )))
1354 )))
1355 )))
1356
1357 ==== ====
1358
1359 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1360
1361
1362 * (% style="color:#037691" %)**AT Command**
1363
1364 There is no AT Command to control Digital Output
1365
1366
1367 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1368
1369 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1370
1371
1372 This is to control the digital output time of DO pin. Include four bytes:
1373
1374 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1375
1376 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1377
1378 01: DO pins will change back to original state after timeout.
1379
1380 00: DO pins will change to an inverter state after timeout 
1381
1382
1383 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1384
1385 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1386 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1387 |0x01|DO1 set to low
1388 |0x00|DO1 set to high
1389 |0x11|DO1 NO Action
1390
1391 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port status:
1392
1393 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1394 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1395 |0x01|DO2 set to low
1396 |0x00|DO2 set to high
1397 |0x11|DO2 NO Action
1398
1399 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port status:
1400
1401 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1402 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1403 |0x01|DO3 set to low
1404 |0x00|DO3 set to high
1405 |0x11|DO3 NO Action
1406
1407 (% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth Bytes**:(%%) Latching time (Unit: ms)
1408
1409
1410 (% style="color:red" %)**Note: **
1411
1412 Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1413
1414 Before firmware v1.6.0, the latch time only supported 2 bytes.
1415
1416 (% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1417
1418
1419 **Example payload:**
1420
1421 **~1. A9 01 01 01 01 07 D0**
1422
1423 DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1424
1425 **2. A9 01 00 01 11 07 D0**
1426
1427 DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1428
1429 **3. A9 00 00 00 00 07 D0**
1430
1431 DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1432
1433 **4. A9 00 11 01 00 07 D0**
1434
1435 DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1436
1437
1438 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1439
1440
1441 * (% style="color:#037691" %)**AT Command:**
1442
1443 There is no AT Command to control Relay Output
1444
1445
1446 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1447
1448 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1449
1450
1451 (((
1452 If payload is 0x030100, it means setting RO1 to close and RO2 to open.
1453 )))
1454
1455 (((
1456 00: Close ,  01: Open , 11: No action
1457
1458 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1459 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1460 |03  00  11|Open|No Action
1461 |03  01  11|Close|No Action
1462 |03  11  00|No Action|Open
1463 |03  11  01|No Action|Close
1464 |03  00  00|Open|Open
1465 |03  01  01|Close|Close
1466 |03  01  00|Close|Open
1467 |03  00  01|Open|Close
1468 )))
1469
1470 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1471
1472
1473 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1474
1475 Controls the relay output time.
1476
1477 * (% style="color:#037691" %)**AT Command:**
1478
1479 There is no AT Command to control Relay Output
1480
1481
1482 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1483
1484 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1485
1486
1487 This is to control the relay output time. It includes four bytes:
1488
1489 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1490
1491 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1492
1493 01: Relays will change back to their original state after timeout.
1494
1495 00: Relays will change to the inverter state after timeout.
1496
1497
1498 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1499
1500 [[image:image-20221008095908-1.png||height="364" width="564"]]
1501
1502
1503 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1504
1505
1506 (% style="color:red" %)**Note:**
1507
1508 Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1509
1510 Before firmware v1.6.0, the latch time only supported 2 bytes.
1511
1512
1513 (% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1514
1515
1516 **Example payload:**
1517
1518 **~1. 05 01 11 07 D0**
1519
1520 Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1521
1522 **2. 05 01 10 07 D0**
1523
1524 Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1525
1526 **3. 05 00 01 07 D0**
1527
1528 Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1529
1530 **4. 05 00 00 07 D0**
1531
1532 Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1533
1534
1535
1536 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1537
1538
1539 When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1540
1541 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1542
1543 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1544
1545 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1546
1547
1548 (% style="color:#037691" %)**AT Command**
1549
1550 (% border="2" style="width:500px" %)
1551 |(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage><logic>
1552 |(% style="width:137px" %)**Response**|(% style="width:361px" %)
1553 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1554 **voltage** : voltage threshold in mV
1555
1556 **logic**:
1557
1558 0 : lower than
1559
1560 1: higher than
1561
1562 if you leave logic parameter blank, it is considered 0
1563 )))
1564 |(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1565 AT+VOLMAX=20000
1566
1567 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1568
1569 AT+VOLMAX=20000,0
1570
1571 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1572
1573 AT+VOLMAX=20000,1
1574
1575 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1576 )))
1577
1578 (% style="color:#037691" %)**Downlink Payload**
1579
1580 (% border="2" style="width:500px" %)
1581 |(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1582 |(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1583 **prefix** : A5 (hex)
1584
1585 **voltage** : voltage threshold in mV (2 bytes in hex)
1586
1587 **logic**: (1 byte in hexadecimal)
1588
1589 0 : lower than
1590
1591 1: higher than
1592
1593 if you leave logic parameter blank, it is considered 1 (higher than)
1594 )))
1595 |(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1596 A5 **4E 20**
1597
1598 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1599
1600 A5 **4E 20 00**
1601
1602 If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1603
1604 A5 **4E 20 01**
1605
1606 If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1607 )))
1608
1609 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1610
1611 This feature allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1612
1613 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1614
1615 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1616
1617 (% style="color:red" %)**bb cc dd ee: **(%%)The number to be set
1618
1619
1620 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1621
1622 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1623
1624
1625 (% style="color:#037691" %)**AT Command**
1626
1627 (% border="2" style="width:500px" %)
1628 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter><number>
1629 |(% style="width:134px" %)**Response**|(% style="width:364px" %)
1630 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1631 **counting_parameter** :
1632
1633 1: COUNT1
1634
1635 2: COUNT2
1636
1637 3: AVI1 Count
1638
1639 **number** : Start number
1640 )))
1641 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1642 AT+SETCNT=1,10
1643
1644 Sets the COUNT1 to 10.
1645 )))
1646
1647 (% style="color:#037691" %)**Downlink Payload**
1648
1649 (% border="2" style="width:500px" %)
1650 |(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1651 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1652 prefix : A8 (hex)
1653
1654 **counting_parameter** : (1 byte in hexadecimal)
1655
1656 1: COUNT1
1657
1658 2: COUNT2
1659
1660 3: AVI1 Count
1661
1662 **number** : Start number, 4 bytes in hexadecimal
1663 )))
1664 |(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1665 A8 **01 00 00 00 0A**
1666
1667 Sets the COUNT1 to 10.
1668 )))
1669
1670 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1671
1672 This feature clears the counting in counting mode.
1673
1674 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1675
1676 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1677
1678 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1679
1680 (% style="color:#037691" %)**AT Command**
1681
1682 (% border="2" style="width:500px" %)
1683 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1684 |(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1685
1686 (% style="color:#037691" %)**Downlink Payload**
1687
1688 (% border="2" style="width:500px" %)
1689 |(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1690 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1691 prefix : A6 (hex)
1692
1693 clear? : 01 (hex)
1694 )))
1695 |(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1696
1697 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1698
1699 This feature allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1700
1701 * (% style="color:#037691" %)**AT Command:**
1702
1703 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Sets the save time to 60 seconds. The device will save the counting result in internal flash every 60 seconds. (Min value: 30 seconds)
1704
1705
1706 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1707
1708 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1709
1710 (((
1711 Range: aa bb cc:0 to 16777215,  (unit: seconds)
1712 )))
1713
1714
1715
1716 ==== 3.4.2.20 Reset save RO DO state ====
1717
1718 This feature allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1719
1720 * (% style="color:#037691" %)**AT Command:**
1721
1722 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1723
1724 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state will not change when the device reconnects to the network.
1725
1726
1727 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1728
1729 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1730
1731
1732
1733 ==== 3.4.2.21 Encrypted payload ====
1734
1735 This feature allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1736
1737 * (% style="color:#037691" %)**AT Command:**
1738
1739 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1740
1741 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1742
1743
1744
1745 ==== 3.4.2.22 Get sensor value ====
1746
1747
1748 * (% style="color:#037691" %)**AT Command:**
1749
1750 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port retrieves the reading of the current sensor.
1751
1752 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port retrieves the current sensor reading and uploads it.
1753
1754
1755
1756 ==== 3.4.2.23 Resets the downlink packet count ====
1757
1758
1759 * (% style="color:#037691" %)**AT Command:**
1760
1761 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1762
1763 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1764
1765
1766
1767 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1768
1769
1770 * (% style="color:#037691" %)**AT Command:**
1771
1772 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1773
1774 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1775
1776
1777 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1778
1779 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1780
1781
1782
1783 ==== 3.4.2.25 Copy downlink to uplink ====
1784
1785
1786 * (% style="color:#037691" %)**AT Command**(%%)**:**
1787
1788 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1789
1790 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1791
1792
1793 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1794
1795 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1796
1797
1798
1799 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1800
1801 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1802
1803
1804
1805 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1806
1807
1808 * (((
1809 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1810
1811 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1812
1813
1814 )))
1815
1816 **Example:**
1817
1818 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1819
1820
1821 == 3.5 Integrating with ThingsEye.io ==
1822
1823 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1824
1825 === 3.5.1 Configuring The Things Stack ===
1826
1827 We use The Things Stack Sandbox in this example:
1828
1829 * In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1830 * Select **MQTT** under **Integrations** in the left menu.
1831 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1832 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1833
1834 {{info}}
1835 The username and  password (API key) you created here are required in the next section.
1836 {{/info}}
1837
1838 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1839
1840 === 3.5.2 Configuring ThingsEye.io ===
1841
1842 * Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1843 * Under the **Integrations center**, click **Integrations**.
1844 * Click the **Add integration** button (the button with the **+** symbol).
1845
1846 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1847
1848
1849 On the **Add integration** window, configure the following:
1850
1851 **Basic settings:**
1852
1853 * Select **The Things Stack Community** from the **Integration type** list.
1854 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1855 * Ensure the following options are turned on.
1856 ** Enable integration
1857 ** Debug mode
1858 ** Allow create devices or assets
1859 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1860
1861 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1862
1863
1864 **Uplink data converter:**
1865
1866 * Click the **Create new** button if it is not selected by default.
1867 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1868 * Click the **JavaScript** button.
1869 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1870 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1871
1872 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1873
1874
1875 **Downlink data converter (this is an optional step):**
1876
1877 * Click the **Create new** button if it is not selected by default.
1878 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1879 * Click the **JavaScript** button.
1880 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1881 * Click the **Next** button. You will be navigated to the **Connection** tab.
1882
1883 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1884
1885
1886 **Connection:**
1887
1888 * Choose **Region** from the **Host type**.
1889 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1890 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1891 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1892
1893 [[image:message-1.png]]
1894
1895
1896 * Click the **Add** button.
1897
1898 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1899
1900
1901 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1902
1903
1904 [[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1905
1906
1907 ==== 3.5.2.1 Viewing integration details ====
1908
1909 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1910
1911 [[image:integration-details.png||height="686" width="1000"]]
1912
1913
1914 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1915
1916 {{info}}
1917 See also ThingsEye documentation.
1918 {{/info}}
1919
1920 ==== **3.5.2.2 Viewing events** ====
1921
1922 The **Events **tab displays all the uplink messages from the LT-22222-L.
1923
1924 * Select **Debug **from the **Event type** dropdown.
1925 * Select the** time frame** from the **time window**.
1926
1927 [[image:thingseye-events.png||height="686" width="1000"]]
1928
1929
1930 * To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1931
1932 [[image:thingseye-json.png||width="1000"]]
1933
1934
1935 ==== **3.5.2.3 Deleting an integration** ====
1936
1937 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
1938
1939
1940 == 3.6 Interface Details ==
1941
1942 === 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
1943
1944
1945 Supports NPN-type sensors.
1946
1947 [[image:1653356991268-289.png]]
1948
1949
1950 === 3.6.2 Digital Input Ports: DI1/DI2 ===
1951
1952
1953 (((
1954 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1955 )))
1956
1957 (((
1958 (((
1959 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1960
1961
1962 )))
1963 )))
1964
1965 [[image:1653357170703-587.png]]
1966
1967 (((
1968 (((
1969 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1970 )))
1971 )))
1972
1973 (((
1974
1975 )))
1976
1977 (((
1978 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1979 )))
1980
1981 (((
1982 This type of sensor outputs a low (GND) signal when active.
1983 )))
1984
1985 * (((
1986 Connect the sensor's output to DI1-
1987 )))
1988 * (((
1989 Connect the sensor's VCC to DI1+.
1990 )))
1991
1992 (((
1993 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1994 )))
1995
1996 (((
1997 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1998 )))
1999
2000 (((
2001 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
2002 )))
2003
2004 (((
2005
2006 )))
2007
2008 (((
2009 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
2010 )))
2011
2012 (((
2013 This type of sensor outputs a high signal (e.g., 24V) when active.
2014 )))
2015
2016 * (((
2017 Connect the sensor's output to DI1+
2018 )))
2019 * (((
2020 Connect the sensor's GND DI1-.
2021 )))
2022
2023 (((
2024 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2025 )))
2026
2027 (((
2028 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
2029 )))
2030
2031 (((
2032 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
2033 )))
2034
2035 (((
2036
2037 )))
2038
2039 (((
2040 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
2041 )))
2042
2043 (((
2044 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
2045 )))
2046
2047 * (((
2048 Connect the sensor's output to DI1+ with a 50K resistor in series.
2049 )))
2050 * (((
2051 Connect the sensor's GND DI1-.
2052 )))
2053
2054 (((
2055 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
2056 )))
2057
2058 (((
2059 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
2060 )))
2061
2062 (((
2063 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
2064 )))
2065
2066
2067 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
2068
2069 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
2070
2071 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
2072
2073 [[image:image-20230616235145-1.png]]
2074
2075 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
2076
2077 [[image:image-20240219115718-1.png]]
2078
2079
2080 === 3.6.3 Digital Output Ports: DO1/DO2 ===
2081
2082
2083 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2084
2085 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2086
2087 [[image:1653357531600-905.png]]
2088
2089
2090 === 3.6.4 Analog Input Interfaces ===
2091
2092
2093 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
2094
2095
2096 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
2097
2098 [[image:1653357592296-182.png]]
2099
2100 Example: Connecting a 4~~20mA sensor
2101
2102 We will use the wind speed sensor as an example for reference only.
2103
2104
2105 (% style="color:blue" %)**Specifications of the wind speed sensor:**
2106
2107 (% style="color:red" %)**Red:  12~~24V**
2108
2109 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
2110
2111 **Black:  GND**
2112
2113 **Connection diagram:**
2114
2115 [[image:1653357640609-758.png]]
2116
2117 [[image:1653357648330-671.png||height="155" width="733"]]
2118
2119
2120 Example: Connecting to a regulated power supply to measure voltage
2121
2122 [[image:image-20230608101532-1.png||height="606" width="447"]]
2123
2124 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
2125
2126 [[image:image-20230608101722-3.png||height="102" width="1139"]]
2127
2128
2129 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
2130
2131 (% style="color:red" %)**Red:  12~~24v**
2132
2133 **Black:  GND**
2134
2135
2136 === 3.6.5 Relay Output ===
2137
2138
2139 (((
2140 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
2141
2142 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
2143 )))
2144
2145 [[image:image-20220524100215-9.png]]
2146
2147
2148 [[image:image-20220524100215-10.png||height="382" width="723"]]
2149
2150
2151 == 3.7 LEDs Indicators ==
2152
2153 The table below lists the behavior of LED indicators for each port function.
2154
2155 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2156 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2157 |**PWR**|Always on when there is power
2158 |**TX**|(((
2159 (((
2160 Device boot: TX blinks 5 times.
2161 )))
2162
2163 (((
2164 Successful network join: TX remains ON for 5 seconds.
2165 )))
2166
2167 (((
2168 Transmit a LoRa packet: TX blinks once
2169 )))
2170 )))
2171 |**RX**|RX blinks once when a packet is received.
2172 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2173 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2174 |**DI1**|(((
2175 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
2176 )))
2177 |**DI2**|(((
2178 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
2179 )))
2180 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2181 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
2182
2183 = 4. Using AT Commands =
2184
2185 The LT-22222-L supports programming using AT Commands.
2186
2187 == 4.1 Connecting the LT-22222-L to a PC ==
2188
2189 (((
2190 You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
2191
2192 [[image:usb-ttl-programming.png]]
2193 )))
2194
2195
2196
2197 (((
2198 On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
2199 )))
2200
2201 [[image:1653358355238-883.png]]
2202
2203
2204 (((
2205 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
2206
2207 == 4.2 LT-22222-L related AT commands ==
2208 )))
2209
2210 (((
2211 The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
2212
2213 * **##AT##+<CMD>?** : Help on <CMD>
2214 * **##AT##+<CMD>** : Run <CMD>
2215 * **##AT##+<CMD>=<value>** : Set the value
2216 * **##AT##+<CMD>=?** : Get the value
2217 * ##**ATZ**##: Trigger a reset of the MCU
2218 * ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2219 * **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2220 * **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2221 * **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2222 * ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2223 * **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2224 * **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2225 * **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2226 * AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2227 * AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2228 * AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2229 * AT+PNM: Get or set the public network mode. (0: off, 1: on)
2230 * AT+RX2FQ: Get or set the Rx2 window frequency
2231 * AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2232 * AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2233 * AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2234 * AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2235 * AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2236 * AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2237 * AT+NWKID: Get or set the Network ID
2238 * AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
2239 * AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
2240 * AT+CLASS: Get or set the Device Class
2241 * AT+JOIN: Join network
2242 * AT+NJS: Get OTAA Join Status
2243 * AT+SENDB: Send hexadecimal data along with the application port
2244 * AT+SEND: Send text data along with the application port
2245 * AT+RECVB: Print last received data in binary format (with hexadecimal values)
2246 * AT+RECV: Print last received data in raw format
2247 * AT+VER: Get current image version and Frequency Band
2248 * AT+CFM: Get or Set the confirmation mode (0-1)
2249 * AT+CFS: Get confirmation status of the last AT+SEND (0-1)
2250 * AT+SNR: Get the SNR of the last received packet
2251 * AT+RSSI: Get the RSSI of the last received packet
2252 * AT+TDC: Get or set the application data transmission interval in ms
2253 * AT+PORT: Get or set the application port
2254 * AT+DISAT: Disable AT commands
2255 * AT+PWORD: Set password, max 9 digits
2256 * AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2257 * AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
2258 * AT+CFG: Print all settings
2259 )))
2260
2261
2262 == 4.2 Common AT Command Sequence ==
2263
2264 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2265
2266 (((
2267
2268
2269 (((
2270 (% style="color:blue" %)**If the device has not yet joined the network:**
2271 )))
2272 )))
2273
2274 (((
2275 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2276 )))
2277
2278 (((
2279 (% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
2280 )))
2281
2282 (((
2283 (% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
2284 )))
2285
2286 (((
2287 (% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
2288 )))
2289
2290 (((
2291 (% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
2292 )))
2293
2294
2295 (((
2296 (% style="color:blue" %)**If the device has already joined the network:**
2297 )))
2298
2299 (((
2300 (% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2301 )))
2302
2303 (((
2304 (% style="background-color:#dcdcdc" %)##**ATZ**##
2305 )))
2306
2307
2308 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2309
2310 (((
2311
2312
2313 (((
2314 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2315 )))
2316 )))
2317
2318 (((
2319 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2320 )))
2321
2322 (((
2323 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2324 )))
2325
2326 (((
2327 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2328 )))
2329
2330 (((
2331 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2332 )))
2333
2334 (((
2335 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2336 )))
2337
2338 (((
2339 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2340 )))
2341
2342 (((
2343 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2344 )))
2345
2346 (((
2347 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2348 )))
2349
2350 (((
2351 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2352 )))
2353
2354 (((
2355 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2356 )))
2357
2358 (((
2359 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2360 )))
2361
2362 (((
2363 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2364
2365
2366 )))
2367
2368 (((
2369 (% style="color:red" %)**Note:**
2370 )))
2371
2372 (((
2373 **~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2374
2375 **2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2376
2377 **3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2378 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2379
2380 **4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2381 )))
2382
2383 (((
2384 [[image:1653359097980-169.png||height="188" width="729"]]
2385 )))
2386
2387
2388 === 4.2.3 Change to Class A ===
2389
2390
2391 (((
2392 (% style="color:blue" %)**If the sensor has JOINED:**
2393
2394 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2395
2396 (% style="background-color:#dcdcdc" %)**ATZ**
2397 )))
2398
2399
2400 = 5. Case Study =
2401
2402 == 5.1 Counting how many objects pass through the flow line ==
2403
2404 See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2405
2406
2407 = 6. FAQ =
2408
2409 This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2410
2411
2412 == 6.1 How to update the firmware? ==
2413
2414 Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2415
2416 * Support new features
2417 * Fix bugs
2418 * Change LoRaWAN frequency bands
2419
2420 You will need the following things before proceeding:
2421
2422 * 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2423 * USB to TTL adapter
2424 * Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2425 * Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2426
2427 {{info}}
2428 As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2429 {{/info}}
2430
2431 Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2432
2433 [[image:usb-ttl-programming.png]]
2434
2435
2436
2437 Start the STM32 Flash Loader and choose the correct COM port to update.
2438
2439 (((
2440 (((
2441 (% style="color:blue" %)**For LT-22222-L**(%%):
2442
2443 Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2444 )))
2445
2446
2447 )))
2448
2449 [[image:image-20220524103407-12.png]]
2450
2451
2452 [[image:image-20220524103429-13.png]]
2453
2454
2455 [[image:image-20220524104033-15.png]]
2456
2457
2458 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2459
2460 [[image:1653360054704-518.png||height="186" width="745"]]
2461
2462
2463 (((
2464 (((
2465 == 6.2 How to change the LoRaWAN frequency band/region? ==
2466 )))
2467 )))
2468
2469 (((
2470 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2471 )))
2472
2473 (((
2474
2475
2476 == 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2477 )))
2478
2479 (((
2480 (((
2481 In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2482 )))
2483 )))
2484
2485 (((
2486 (((
2487 We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2488
2489
2490 )))
2491 )))
2492
2493 (((
2494 (% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2495
2496 [[image:lt-22222-l-abp.png||height="686" width="1000"]]
2497 )))
2498
2499 (((
2500
2501 )))
2502
2503 {{warning}}
2504 Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2505 {{/warning}}
2506
2507
2508 (((
2509 (% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2510
2511
2512 )))
2513
2514 (((
2515 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2516
2517 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2518
2519 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2520
2521 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2522
2523 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2524
2525 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2526
2527 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2528
2529 (% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2530
2531 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2532
2533 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2534
2535 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2536
2537 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2538 )))
2539
2540
2541 (((
2542 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2543 )))
2544
2545 [[image:1653360498588-932.png||height="485" width="726"]]
2546
2547
2548 == 6.4 How to change the uplink interval? ==
2549
2550 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2551
2552
2553 == 6.5 Can I see the counting event in the serial output? ==
2554
2555 (((
2556 You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2557
2558
2559 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2560
2561 Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2562
2563
2564 )))
2565
2566 (((
2567 == 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2568
2569 * If the device is not properly shut down and is directly powered off.
2570 * It will default to a power-off state.
2571 * In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2572 * After a restart, the status before the power failure will be read from flash.
2573
2574 == 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2575
2576 The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2577
2578
2579 [[image:image-20221006170630-1.png||height="610" width="945"]]
2580
2581
2582 == 6.9 Can the LT-22222-L save the RO state? ==
2583
2584 To enable this feature, the firmware version must be 1.6.0 or higher.
2585
2586
2587 == 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2588
2589 It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2590
2591
2592 = 7. Troubleshooting =
2593
2594 This section provides some known troubleshooting tips.
2595
2596
2597 )))
2598
2599 (((
2600 (((
2601 == 7.1 Downlink isn't working. How can I solve this? ==
2602 )))
2603 )))
2604
2605 (((
2606 Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2607 )))
2608
2609 (((
2610
2611
2612 == 7.2 Having trouble uploading an image? ==
2613 )))
2614
2615 (((
2616 Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2617 )))
2618
2619 (((
2620
2621
2622 == 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2623 )))
2624
2625 (((
2626 It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2627 )))
2628
2629
2630 == 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2631
2632 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2633 Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2634
2635
2636 = 8. Ordering information =
2637
2638 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2639
2640 (% style="color:#4f81bd" %)**XXX:**
2641
2642 * (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2643 * (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2644 * (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2645 * (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2646 * (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2647 * (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2648 * (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2649 * (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2650 * (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2651
2652 = 9. Package information =
2653
2654 **Package includes**:
2655
2656 * 1 x LT-22222-L I/O Controller
2657 * 1 x LoRa antenna matched to the frequency of the LT-22222-L
2658 * 1 x bracket for DIN rail mounting
2659 * 1 x 3.5 mm programming cable
2660
2661 **Dimension and weight**:
2662
2663 * Device Size: 13.5 x 7 x 3 cm
2664 * Device Weight: 105 g
2665 * Package Size / pcs : 14.5 x 8 x 5 cm
2666 * Weight / pcs : 170 g
2667
2668 = 10. Support =
2669
2670 * (((
2671 Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2672 )))
2673 * (((
2674 Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2675
2676
2677 )))
2678
2679 = 11. Reference​​​​​ =
2680
2681 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2682 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2683 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]