Version 164.1 by Dilisi S on 2024/11/06 05:10

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 > The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37
38 (((
39 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40
41 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 * Setup your own private LoRaWAN network.
44
45 > You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12v
62 ** 20dB Transmit: 34mA@12v
63 * Operating Temperature: -40 ~~ 85 Degrees, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01v)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high-efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remotely configure parameters via LoRaWAN Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart Buildings & Home Automation
108 * Logistics and Supply Chain Management
109 * Smart Metering
110 * Smart Agriculture
111 * Smart Cities
112 * Smart Factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 (% style="text-align:center" %)
121 [[image:image-20230424115112-1.png||height="106" width="58"]]
122 )))|(% style="width:334px" %)(((
123 * 2 x Digital Input (Bi-direction)
124 * 2 x Digital Output
125 * 2 x Relay Output (5A@250VAC / 30VDC)
126 * 2 x 0~~20mA Analog Input (res:0.01mA)
127 * 2 x 0~~30V Analog Input (res:0.01v)
128 * 1 x Counting Port
129 )))
130
131 = 2. Assembling the Device =
132
133 == 2.1 What is included in the package? ==
134
135 The package includes the following items:
136
137 * 1 x LT-22222-L I/O Controller
138 * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 * 1 x bracket for wall mounting
140 * 1 x programming cable
141
142 Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143
144 == 2.2 Terminals ==
145
146 Upper screw terminal block (from left to right):
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 Lower screw terminal block (from left to right):
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Powering the LT-22222-L ==
173
174 The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175
176
177 [[image:1653297104069-180.png]]
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How does it work? ==
183
184 By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185
186 For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
187
188 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189
190 == 3.2 Registering with a LoRaWAN network server ==
191
192 The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
193
194 [[image:image-20220523172350-1.png||height="266" width="864"]]
195
196 === 3.2.1 Prerequisites ===
197
198 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
199
200 [[image:image-20230425173427-2.png||height="246" width="530"]]
201
202 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
203
204 === 3.2.2 The Things Stack Sandbox (TTSS) ===
205
206 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 * Create an application if you do not have one yet.
208 * Register LT-22222-L with that application. Two registration options are available:
209
210 ==== Using the LoRaWAN Device Repository: ====
211
212 * Go to your application and click on the **Register end device** button.
213 * On the **Register end device** page:
214 ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 ** Select the **Frequency plan** that matches your device.
217
218 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219
220 *
221 ** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 ** Enter the **DevEUI** in the **DevEUI** field.
223 ** Enter the **AppKey** in the **AppKey** field.
224 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 ** Under **After registration**, select the **View registered end device** option.
226
227 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
228
229 ==== Entering device information manually: ====
230
231 * On the **Register end device** page:
232 ** Select the **Enter end device specifies manually** option as the input method.
233 ** Select the **Frequency plan** that matches your device.
234 ** Select the **LoRaWAN version**.
235 ** Select the **Regional Parameters version**.
236 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 ** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239
240 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241
242
243 * Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 * Enter **DevEUI** in the **DevEUI** field.
245 * Enter **AppKey** in the **AppKey** field.
246 * In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 * Under **After registration**, select the **View registered end device** option.
248
249 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250
251
252 ==== Joining ====
253
254 Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255
256 [[image:1653298044601-602.png||height="405" width="709"]]
257
258
259 == 3.3 Uplink Payload formats ==
260
261
262 The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
263
264 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
265
266 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267
268 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269
270 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271
272 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273
274 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
275
276 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
277
278
279 (((
280 The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
281
282 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
284 |Value|(((
285 AVI1 voltage
286 )))|(((
287 AVI2 voltage
288 )))|(((
289 ACI1 Current
290 )))|(((
291 ACI2 Current
292 )))|DIDORO*|(((
293 Reserve
294 )))|MOD
295 )))
296
297 (((
298 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
299
300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
303 )))
304
305 * RO is for the relay. ROx=1: closed, ROx=0 always open.
306 * DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
308
309 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
310
311 For example, if the payload is: [[image:image-20220523175847-2.png]]
312
313
314 **The interface values can be calculated as follows:  **
315
316 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
317
318 AVI2 channel voltage is 0x04AC/1000=1.196V
319
320 ACI1 channel current is 0x1310/1000=4.880mA
321
322 ACI2 channel current is 0x1300/1000=4.864mA
323
324 The last byte 0xAA= **10101010**(b) means,
325
326 * [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 * [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 * [1] DI3 - not used for LT-22222-L.
329 * [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 * [1] DI1 channel input state:
331 ** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 ** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 ** DI1 LED is ON in both cases.
334 * [0] DO3 - not used for LT-22222-L.
335 * [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 * [0] DO1 channel output state:
337 ** DO1 is FLOATING when there is no load between DO1 and V+.
338 ** DO1 is HIGH when there is a load between DO1 and V+.
339 ** DO1 LED is OFF in both cases.
340
341 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
342
343
344 (((
345 **For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
346 )))
347
348 (((
349 The uplink payload is 11 bytes long.
350
351 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
352 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
353 |Value|COUNT1|COUNT2 |DIDORO*|(((
354 Reserve
355 )))|MOD
356 )))
357
358 (((
359 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
360
361 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
362 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
364
365 * RO is for the relay. ROx=1: closed, ROx=0 always open.
366 )))
367
368 * FIRST: Indicates that this is the first packet after joining the network.
369 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
370
371 (((
372 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
373
374
375 )))
376
377 (((
378 **To activate this mode, run the following AT commands:**
379 )))
380
381 (((
382 (% class="box infomessage" %)
383 (((
384 **AT+MOD=2**
385
386 **ATZ**
387 )))
388 )))
389
390 (((
391
392
393 (% style="color:#4f81bd" %)**AT Commands for counting:**
394 )))
395
396 (((
397 **For LT22222-L:**
398
399 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
400
401 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
402
403 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
404
405 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
406
407 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
408
409 (% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
410 )))
411
412
413 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
414
415
416 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
417
418 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
420 |Value|COUNT1|(((
421 ACI1 Current
422 )))|(((
423 ACI2 Current
424 )))|DIDORO*|Reserve|MOD
425
426 (((
427 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
428
429 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
430 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
432 )))
433
434 * RO is for the relay. ROx=1: closed, ROx=0 always open.
435 * FIRST: Indicates that this is the first packet after joining the network.
436 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
437
438 (((
439 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
440 )))
441
442
443 (((
444 **To activate this mode, run the following AT commands:**
445 )))
446
447 (((
448 (% class="box infomessage" %)
449 (((
450 **AT+MOD=3**
451
452 **ATZ**
453 )))
454 )))
455
456 (((
457 AT Commands for counting:
458
459 The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
460 )))
461
462
463 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
464
465
466 (((
467 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
468 )))
469
470 (((
471 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
472
473 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
475 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
476 Reserve
477 )))|MOD
478 )))
479
480 (((
481 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
482
483 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
484 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
486 )))
487
488 * RO is for the relay. ROx=1: closed, ROx=0 always open.
489 * FIRST: Indicates that this is the first packet after joining the network.
490 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
491
492 (((
493 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
494
495
496 )))
497
498 (((
499 **To activate this mode, run the following AT commands:**
500 )))
501
502 (((
503 (% class="box infomessage" %)
504 (((
505 **AT+MOD=4**
506
507 **ATZ**
508 )))
509 )))
510
511 (((
512 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
513 )))
514
515 (((
516 **In addition to that, below are the commands for AVI1 Counting:**
517
518 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
519
520 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
521
522 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
523
524 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
525 )))
526
527
528 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
529
530
531 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
532
533 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
534 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
535 |Value|(((
536 AVI1 voltage
537 )))|(((
538 AVI2 voltage
539 )))|(((
540 ACI1 Current
541 )))|COUNT1|DIDORO*|(((
542 Reserve
543 )))|MOD
544
545 (((
546 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
547
548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
550 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
551 )))
552
553 * RO is for the relay. ROx=1: closed, ROx=0 always open.
554 * FIRST: Indicates that this is the first packet after joining the network.
555 * (((
556 DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
557 )))
558
559 (((
560 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
561 )))
562
563 (((
564 **To activate this mode, run the following AT commands:**
565 )))
566
567 (((
568 (% class="box infomessage" %)
569 (((
570 **AT+MOD=5**
571
572 **ATZ**
573 )))
574 )))
575
576 (((
577 Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
578 )))
579
580
581 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
582
583
584 (% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
585
586 For example, if you configured the following commands:
587
588 * **AT+MOD=1 ** **~-~->**  The normal working mode
589 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
590
591 The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
592
593 1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
595
596 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
597
598 (% style="color:#4f81bd" %)**Trigger based on voltage**:
599
600 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
601
602
603 **Example:**
604
605 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
606
607 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
608
609
610 (% style="color:#4f81bd" %)**Trigger based on current**:
611
612 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
613
614
615 **Example:**
616
617 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
618
619
620 (% style="color:#4f81bd" %)**Trigger based on DI status**:
621
622 DI status triggers Flag.
623
624 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
625
626
627 **Example:**
628
629 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
630
631
632 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
633
634 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
635
636 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
637
638 AA: Code for this downlink Command:
639
640 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
641
642 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
643
644 yy2 yy2: AC1 or AV1 high limit.
645
646 yy3 yy3: AC2 or AV2 low limit.
647
648 Yy4 yy4: AC2 or AV2 high limit.
649
650
651 **Example1**: AA 00 13 88 00 00 00 00 00 00
652
653 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
654
655
656 **Example2**: AA 02 01 00
657
658 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
659
660
661
662 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
663
664 MOD6 Payload: total 11 bytes payload
665
666 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
667 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
668 |Value|(((
669 TRI_A FLAG
670 )))|(((
671 TRI_A Status
672 )))|(((
673 TRI_DI FLAG+STA
674 )))|Reserve|Enable/Disable MOD6|(((
675 MOD(6)
676 )))
677
678 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1byte as below
679
680 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
681 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
682 |(((
683 AV1_LOW
684 )))|(((
685 AV1_HIGH
686 )))|(((
687 AV2_LOW
688 )))|(((
689 AV2_HIGH
690 )))|(((
691 AC1_LOW
692 )))|(((
693 AC1_HIGH
694 )))|(((
695 AC2_LOW
696 )))|(((
697 AC2_HIGH
698 )))
699
700 * Each bits shows if the corresponding trigger has been configured.
701
702 **Example:**
703
704 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
705
706
707 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
708
709 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
710 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
711 |(((
712 AV1_LOW
713 )))|(((
714 AV1_HIGH
715 )))|(((
716 AV2_LOW
717 )))|(((
718 AV2_HIGH
719 )))|(((
720 AC1_LOW
721 )))|(((
722 AC1_HIGH
723 )))|(((
724 AC2_LOW
725 )))|(((
726 AC2_HIGH
727 )))
728
729 * Each bits shows which status has been trigger on this uplink.
730
731 **Example:**
732
733 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
734
735
736 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
737
738 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
739 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
740 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
741
742 * Each bits shows which status has been trigger on this uplink.
743
744 **Example:**
745
746 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
747
748 00000101: Means both DI1 and DI2 trigger are enabled.
749
750
751 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
752
753 Downlink command to poll MOD6 status:
754
755 **AB 06**
756
757 When device got this command, it will send the MOD6 payload.
758
759
760 === 3.3.7 Payload Decoder ===
761
762 (((
763
764
765 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
766 )))
767
768
769 == 3.4 ​Configure LT via AT or Downlink ==
770
771
772 (((
773 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
774 )))
775
776 (((
777 (((
778 There are two kinds of Commands:
779 )))
780 )))
781
782 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
783
784 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
785
786 === 3.4.1 Common Commands ===
787
788
789 (((
790 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
791 )))
792
793
794 === 3.4.2 Sensor related commands ===
795
796 ==== 3.4.2.1 Set Transmit Interval ====
797
798
799 Set device uplink interval.
800
801 * (% style="color:#037691" %)**AT Command:**
802
803 (% style="color:blue" %)**AT+TDC=N **
804
805
806 **Example: **AT+TDC=30000. Means set interval to 30 seconds
807
808
809 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
810
811 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
812
813
814
815 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
816
817
818 Set work mode.
819
820 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
821
822 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
823
824 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
825
826 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
827
828
829
830 ==== 3.4.2.3 Poll an uplink ====
831
832
833 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
834
835 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
836
837 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
838
839 **Example**: 0x08FF, ask device to send an Uplink
840
841
842
843 ==== 3.4.2.4 Enable Trigger Mode ====
844
845
846 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
847
848 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
849
850 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
851
852 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
853
854
855 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
856
857 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
858
859
860
861 ==== 3.4.2.5 Poll trigger settings ====
862
863
864 Poll trigger settings
865
866 * (% style="color:#037691" %)**AT Command:**
867
868 There is no AT Command for this feature.
869
870 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
871
872 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
873
874
875
876 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
877
878
879 Enable Disable DI1/DI2/DI2 as trigger,
880
881 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
882
883 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
884
885
886 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
887
888 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
889
890
891
892 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
893
894
895 Set DI1 or DI3(for LT-33222-L) trigger.
896
897 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
898
899 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
900
901 (% style="color:red" %)**b :** (%%)delay timing.
902
903 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
904
905
906 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
907
908 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
909
910
911
912 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
913
914
915 Set DI2 trigger.
916
917 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
918
919 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
920
921 (% style="color:red" %)**b :** (%%)delay timing.
922
923 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
924
925
926 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
927
928 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
929
930
931
932 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
933
934
935 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
936
937 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
938
939 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
940
941 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
942
943
944
945 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
946
947
948 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
949
950 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
951
952 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
953
954 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
955
956
957
958 ==== 3.4.2.11 Trigger – Set minimum interval ====
959
960
961 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
962
963 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
964
965 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
966
967 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
968
969 (((
970 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
971 )))
972
973
974
975 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
976
977
978 * (% style="color:#037691" %)**AT Command**
979
980 There is no AT Command to control Digital Output
981
982
983 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
984
985 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
986
987 (((
988 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
989 )))
990
991 (((
992 01: Low,  00: High ,  11: No action
993
994 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
995 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
996 |02  01  00  11|Low|High|No Action
997 |02  00  11  01|High|No Action|Low
998 |02  11  01  00|No Action|Low|High
999 )))
1000
1001 (((
1002 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1003 )))
1004
1005 (((
1006 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1007 )))
1008
1009
1010
1011 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1012
1013
1014 * (% style="color:#037691" %)**AT Command**
1015
1016 There is no AT Command to control Digital Output
1017
1018
1019 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1020
1021 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1022
1023
1024 This is to control the digital output time of DO pin. Include four bytes:
1025
1026 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1027
1028 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1029
1030 01: DO pins will change back to original state after timeout.
1031
1032 00: DO pins will change to an inverter state after timeout 
1033
1034
1035 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1036
1037 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1038 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1039 |0x01|DO1 set to low
1040 |0x00|DO1 set to high
1041 |0x11|DO1 NO Action
1042
1043 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1044
1045 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1046 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1047 |0x01|DO2 set to low
1048 |0x00|DO2 set to high
1049 |0x11|DO2 NO Action
1050
1051 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1052
1053 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1054 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1055 |0x01|DO3 set to low
1056 |0x00|DO3 set to high
1057 |0x11|DO3 NO Action
1058
1059 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1060
1061
1062 (% style="color:red" %)**Note: **
1063
1064 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1065
1066 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1067
1068 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1069
1070
1071 **Example payload:**
1072
1073 **~1. A9 01 01 01 01 07 D0**
1074
1075 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1076
1077 **2. A9 01 00 01 11 07 D0**
1078
1079 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1080
1081 **3. A9 00 00 00 00 07 D0**
1082
1083 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1084
1085 **4. A9 00 11 01 00 07 D0**
1086
1087 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1088
1089
1090
1091 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1092
1093
1094 * (% style="color:#037691" %)**AT Command:**
1095
1096 There is no AT Command to control Relay Output
1097
1098
1099 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1100
1101 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1102
1103
1104 (((
1105 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1106 )))
1107
1108 (((
1109 00: Closed ,  01: Open , 11: No action
1110
1111 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1112 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1113 |03  00  11|Open|No Action
1114 |03  01  11|Close|No Action
1115 |03  11  00|No Action|Open
1116 |03  11  01|No Action|Close
1117 |03  00  00|Open|Open
1118 |03  01  01|Close|Close
1119 |03  01  00|Close|Open
1120 |03  00  01|Open|Close
1121 )))
1122
1123 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1124
1125
1126
1127 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1128
1129
1130 * (% style="color:#037691" %)**AT Command:**
1131
1132 There is no AT Command to control Relay Output
1133
1134
1135 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1136
1137 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1138
1139
1140 This is to control the relay output time of relay. Include four bytes:
1141
1142 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1143
1144 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1145
1146 01: Relays will change back to original state after timeout.
1147
1148 00: Relays will change to an inverter state after timeout
1149
1150
1151 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1152
1153 [[image:image-20221008095908-1.png||height="364" width="564"]]
1154
1155
1156 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1157
1158
1159 (% style="color:red" %)**Note:**
1160
1161 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1162
1163 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1164
1165
1166 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1167
1168
1169 **Example payload:**
1170
1171 **~1. 05 01 11 07 D0**
1172
1173 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1174
1175 **2. 05 01 10 07 D0**
1176
1177 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1178
1179 **3. 05 00 01 07 D0**
1180
1181 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1182
1183 **4. 05 00 00 07 D0**
1184
1185 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1186
1187
1188
1189 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1190
1191
1192 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1193
1194 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1195
1196 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1197
1198 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1199
1200
1201
1202 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1203
1204
1205 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1206
1207 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1208
1209 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1210
1211
1212 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1213
1214 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1215
1216
1217
1218 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1219
1220
1221 Clear counting for counting mode
1222
1223 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1224
1225 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1226
1227 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1228
1229
1230
1231 ==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1232
1233
1234 * (% style="color:#037691" %)**AT Command:**
1235
1236 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1237
1238
1239 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1240
1241 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1242
1243 (((
1244 range: aa bb cc:0 to 16777215,  (unit:second)
1245 )))
1246
1247
1248
1249 ==== 3.4.2.20 Reset save RO DO state ====
1250
1251
1252 * (% style="color:#037691" %)**AT Command:**
1253
1254 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1255
1256 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1257
1258
1259 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1260
1261 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1262
1263
1264
1265 ==== 3.4.2.21 Encrypted payload ====
1266
1267
1268 * (% style="color:#037691" %)**AT Command:**
1269
1270 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1271
1272 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1273
1274
1275
1276 ==== 3.4.2.22 Get sensor value ====
1277
1278
1279 * (% style="color:#037691" %)**AT Command:**
1280
1281 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1282
1283 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1284
1285
1286
1287 ==== 3.4.2.23 Resets the downlink packet count ====
1288
1289
1290 * (% style="color:#037691" %)**AT Command:**
1291
1292 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1293
1294 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1295
1296
1297
1298 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1299
1300
1301 * (% style="color:#037691" %)**AT Command:**
1302
1303 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1304
1305 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1306
1307
1308 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1309
1310 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1311
1312
1313
1314 ==== 3.4.2.25 Copy downlink to uplink ====
1315
1316
1317 * (% style="color:#037691" %)**AT Command**(%%)**:**
1318
1319 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1320
1321 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1322
1323
1324 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1325
1326 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1327
1328
1329
1330 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1331
1332 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1333
1334
1335
1336 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1337
1338
1339 * (((
1340 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1341
1342 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1343
1344
1345 )))
1346
1347 **Example:**
1348
1349 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1350
1351
1352 == 3.5 Integrating with ThingsEye.io ==
1353
1354 If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1355
1356 === 3.5.1 Configuring The Things Stack Sandbox ===
1357
1358 * Go to your Application and select MQTT under Integrations.
1359 * In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1360 * For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1361
1362 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1363
1364 === 3.5.2 Configuring ThingsEye.io ===
1365
1366 * Login to your thingsEye.io account.
1367 * Under the Integrations center, click Integrations.
1368 * Click the Add integration button (the button with the + symbol).
1369
1370 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1371
1372
1373 On the Add integration page configure the following:
1374
1375 Basic settings:
1376
1377 * Select The Things Stack Community from the Integration type list.
1378 * Enter a suitable name for your integration in the Name box or keep the default name.
1379 * Click the Next button.
1380
1381 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1382
1383 Uplink Data converter:
1384
1385 * Click the Create New button if it is not selected by default.
1386 * Click the JavaScript button.
1387 * Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1388 * Click the Next button.
1389
1390 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1391
1392 Downlink Data converter (this is an optional step):
1393
1394 * Click the Create new button if it is not selected by default.
1395 * Click the JavaScript button.
1396 * Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1397 * Click the Next button.
1398
1399 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1400
1401 Connection:
1402
1403 * Choose Region from the Host type.
1404 * Enter the cluster of your The Things Stack in the Region textbox.
1405 * Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1406 * Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1407 * Click the Add button.
1408
1409 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1410
1411
1412 Your integration is added to the integrations list and it will display on the Integrations page.
1413
1414 [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1415
1416
1417 == 3.6 Interface Details ==
1418
1419 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1420
1421
1422 Support NPN-type sensor
1423
1424 [[image:1653356991268-289.png]]
1425
1426
1427 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1428
1429
1430 (((
1431 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1432 )))
1433
1434 (((
1435 (((
1436 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1437
1438
1439 )))
1440 )))
1441
1442 [[image:1653357170703-587.png]]
1443
1444 (((
1445 (((
1446 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1447 )))
1448 )))
1449
1450 (((
1451
1452 )))
1453
1454 (((
1455 (% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1456 )))
1457
1458 (((
1459 This type of sensor outputs a low (GND) signal when active.
1460 )))
1461
1462 * (((
1463 Connect the sensor's output to DI1-
1464 )))
1465 * (((
1466 Connect the sensor's VCC to DI1+.
1467 )))
1468
1469 (((
1470 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1471 )))
1472
1473 (((
1474 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1475 )))
1476
1477 (((
1478 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1479 )))
1480
1481 (((
1482
1483 )))
1484
1485 (((
1486 (% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1487 )))
1488
1489 (((
1490 This type of sensor outputs a high signal (e.g., 24V) when active.
1491 )))
1492
1493 * (((
1494 Connect the sensor's output to DI1+
1495 )))
1496 * (((
1497 Connect the sensor's GND DI1-.
1498 )))
1499
1500 (((
1501 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1502 )))
1503
1504 (((
1505 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1506 )))
1507
1508 (((
1509 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1510 )))
1511
1512 (((
1513
1514 )))
1515
1516 (((
1517 (% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1518 )))
1519
1520 (((
1521 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1522 )))
1523
1524 * (((
1525 Connect the sensor's output to DI1+ with a 50K resistor in series.
1526 )))
1527 * (((
1528 Connect the sensor's GND DI1-.
1529 )))
1530
1531 (((
1532 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1533 )))
1534
1535 (((
1536 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1537 )))
1538
1539 (((
1540 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1541 )))
1542
1543
1544 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1545
1546 From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1547
1548 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1549
1550 [[image:image-20230616235145-1.png]]
1551
1552 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1553
1554 [[image:image-20240219115718-1.png]]
1555
1556
1557 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1558
1559
1560 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1561
1562 (% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1563
1564 [[image:1653357531600-905.png]]
1565
1566
1567 === 3.6.4 Analog Input Interfaces ===
1568
1569
1570 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1571
1572
1573 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1574
1575 [[image:1653357592296-182.png]]
1576
1577 Example: Connecting a 4~~20mA sensor
1578
1579 We will use the wind speed sensor as an example for reference only.
1580
1581
1582 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1583
1584 (% style="color:red" %)**Red:  12~~24V**
1585
1586 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1587
1588 **Black:  GND**
1589
1590 **Connection diagram:**
1591
1592 [[image:1653357640609-758.png]]
1593
1594 [[image:1653357648330-671.png||height="155" width="733"]]
1595
1596
1597 Example: Connecting to a regulated power supply to measure voltage
1598
1599 [[image:image-20230608101532-1.png||height="606" width="447"]]
1600
1601 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1602
1603 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1604
1605
1606 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1607
1608 (% style="color:red" %)**Red:  12~~24v**
1609
1610 **Black:  GND**
1611
1612
1613 === 3.6.5 Relay Output ===
1614
1615
1616 (((
1617 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1618
1619 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1620 )))
1621
1622 [[image:image-20220524100215-9.png]]
1623
1624
1625 [[image:image-20220524100215-10.png||height="382" width="723"]]
1626
1627
1628 == 3.7 LEDs Indicators ==
1629
1630
1631 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1632 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1633 |**PWR**|Always on if there is power
1634 |**TX**|(((
1635 (((
1636 Device boot: TX blinks 5 times.
1637 )))
1638
1639 (((
1640 Successful join network: TX ON for 5 seconds.
1641 )))
1642
1643 (((
1644 Transmit a LoRa packet: TX blinks once
1645 )))
1646 )))
1647 |**RX**|RX blinks once when receiving a packet.
1648 |**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1649 |**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1650 |**DI1**|(((
1651 For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1652 )))
1653 |**DI2**|(((
1654 For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1655 )))
1656 |**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1657 |**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1658
1659 = 4. Using AT Command =
1660
1661 == 4.1 Connecting the LT-22222-L to a computer ==
1662
1663
1664 (((
1665 The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1666 )))
1667
1668 [[image:1653358238933-385.png]]
1669
1670
1671 (((
1672 On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1673 )))
1674
1675 [[image:1653358355238-883.png]]
1676
1677
1678 (((
1679 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1680 )))
1681
1682 (((
1683 The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1684
1685 AT+<CMD>?        : Help on <CMD>
1686 )))
1687
1688 (((
1689 AT+<CMD>         : Run <CMD>
1690 )))
1691
1692 (((
1693 AT+<CMD>=<value> : Set the value
1694 )))
1695
1696 (((
1697 AT+<CMD>=?       :  Get the value
1698 )))
1699
1700 (((
1701 ATZ: Trig a reset of the MCU
1702 )))
1703
1704 (((
1705 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1706 )))
1707
1708 (((
1709 AT+DEUI: Get or Set the Device EUI
1710 )))
1711
1712 (((
1713 AT+DADDR: Get or Set the Device Address
1714 )))
1715
1716 (((
1717 AT+APPKEY: Get or Set the Application Key
1718 )))
1719
1720 (((
1721 AT+NWKSKEY: Get or Set the Network Session Key
1722 )))
1723
1724 (((
1725 AT+APPSKEY:  Get or Set the Application Session Key
1726 )))
1727
1728 (((
1729 AT+APPEUI:  Get or Set the Application EUI
1730 )))
1731
1732 (((
1733 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1734 )))
1735
1736 (((
1737 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1738 )))
1739
1740 (((
1741 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1742 )))
1743
1744 (((
1745 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1746 )))
1747
1748 (((
1749 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1750 )))
1751
1752 (((
1753 AT+RX2FQ: Get or Set the Rx2 window frequency
1754 )))
1755
1756 (((
1757 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1758 )))
1759
1760 (((
1761 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1762 )))
1763
1764 (((
1765 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1766 )))
1767
1768 (((
1769 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1770 )))
1771
1772 (((
1773 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1774 )))
1775
1776 (((
1777 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1778 )))
1779
1780 (((
1781 AT+NWKID: Get or Set the Network ID
1782 )))
1783
1784 (((
1785 AT+FCU: Get or Set the Frame Counter Uplink
1786 )))
1787
1788 (((
1789 AT+FCD: Get or Set the Frame Counter Downlink
1790 )))
1791
1792 (((
1793 AT+CLASS: Get or Set the Device Class
1794 )))
1795
1796 (((
1797 AT+JOIN: Join network
1798 )))
1799
1800 (((
1801 AT+NJS: Get OTAA Join Status
1802 )))
1803
1804 (((
1805 AT+SENDB: Send hexadecimal data along with the application port
1806 )))
1807
1808 (((
1809 AT+SEND: Send text data along with the application port
1810 )))
1811
1812 (((
1813 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1814 )))
1815
1816 (((
1817 AT+RECV: Print last received data in raw format
1818 )))
1819
1820 (((
1821 AT+VER:  Get current image version and Frequency Band
1822 )))
1823
1824 (((
1825 AT+CFM: Get or Set the confirmation mode (0-1)
1826 )))
1827
1828 (((
1829 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1830 )))
1831
1832 (((
1833 AT+SNR: Get the SNR of the last received packet
1834 )))
1835
1836 (((
1837 AT+RSSI: Get the RSSI of the last received packet
1838 )))
1839
1840 (((
1841 AT+TDC: Get or set the application data transmission interval in ms
1842 )))
1843
1844 (((
1845 AT+PORT: Get or set the application port
1846 )))
1847
1848 (((
1849 AT+DISAT: Disable AT commands
1850 )))
1851
1852 (((
1853 AT+PWORD: Set password, max 9 digits
1854 )))
1855
1856 (((
1857 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1858 )))
1859
1860 (((
1861 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1862 )))
1863
1864 (((
1865 AT+CFG: Print all settings
1866 )))
1867
1868
1869 == 4.2 Common AT Command Sequence ==
1870
1871 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1872
1873 (((
1874
1875
1876 (((
1877 (% style="color:blue" %)**If device has not joined network yet:**
1878 )))
1879 )))
1880
1881 (((
1882 (% style="background-color:#dcdcdc" %)**123456**
1883 )))
1884
1885 (((
1886 (% style="background-color:#dcdcdc" %)**AT+FDR**
1887 )))
1888
1889 (((
1890 (% style="background-color:#dcdcdc" %)**123456**
1891 )))
1892
1893 (((
1894 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1895 )))
1896
1897 (((
1898 (% style="background-color:#dcdcdc" %)**ATZ**
1899 )))
1900
1901
1902 (((
1903 (% style="color:blue" %)**If device already joined network:**
1904 )))
1905
1906 (((
1907 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)**ATZ**
1912 )))
1913
1914
1915 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1916
1917 (((
1918
1919
1920 (((
1921 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1922 )))
1923 )))
1924
1925 (((
1926 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1927 )))
1928
1929 (((
1930 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1931 )))
1932
1933 (((
1934 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1935 )))
1936
1937 (((
1938 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1939 )))
1940
1941 (((
1942 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1943 )))
1944
1945 (((
1946 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1947 )))
1948
1949 (((
1950 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1951 )))
1952
1953 (((
1954 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1955 )))
1956
1957 (((
1958 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1959 )))
1960
1961 (((
1962 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1963 )))
1964
1965 (((
1966 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1967 )))
1968
1969 (((
1970 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1971
1972
1973 )))
1974
1975 (((
1976 (% style="color:red" %)**Note:**
1977 )))
1978
1979 (((
1980 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1981
1982 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1983
1984 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1985 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1986
1987 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1988 )))
1989
1990 (((
1991 [[image:1653359097980-169.png||height="188" width="729"]]
1992 )))
1993
1994
1995 === 4.2.3 Change to Class A ===
1996
1997
1998 (((
1999 (% style="color:blue" %)**If sensor JOINED:**
2000
2001 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2002
2003 (% style="background-color:#dcdcdc" %)**ATZ**
2004 )))
2005
2006
2007 = 5. Case Study =
2008
2009 == 5.1 Counting how many objects pass through the flow Line ==
2010
2011
2012 Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2013
2014
2015 = 6. FAQ =
2016
2017 == 6.1 How to upgrade the image? ==
2018
2019
2020 The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2021
2022 * Support new features.
2023 * Fix bugs.
2024 * Change LoRaWAN bands.
2025
2026 Below is the hardware connection setup for uploading an image to the LT:
2027
2028 [[image:1653359603330-121.png]]
2029
2030
2031 (((
2032 (% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2033 (% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2034 (% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2035
2036
2037 (((
2038 (% style="color:blue" %)**For LT-22222-L**(%%):
2039 Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2040 )))
2041
2042
2043 )))
2044
2045 [[image:image-20220524103407-12.png]]
2046
2047
2048 [[image:image-20220524103429-13.png]]
2049
2050
2051 [[image:image-20220524104033-15.png]]
2052
2053
2054 (% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2055
2056 [[image:1653360054704-518.png||height="186" width="745"]]
2057
2058
2059 (((
2060 (((
2061 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2062
2063
2064 )))
2065 )))
2066
2067 (((
2068 You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2069 )))
2070
2071 (((
2072
2073
2074 == 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2075
2076
2077 )))
2078
2079 (((
2080 (((
2081 In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2082 )))
2083 )))
2084
2085 (((
2086 (((
2087 Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2088
2089
2090 )))
2091 )))
2092
2093 (((
2094 (% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2095
2096
2097 )))
2098
2099 (((
2100 [[image:1653360231087-571.png||height="401" width="727"]]
2101
2102
2103 )))
2104
2105 (((
2106 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2107 )))
2108
2109
2110
2111 (((
2112 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2113
2114
2115 )))
2116
2117 (((
2118 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2119
2120 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2121
2122 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2123
2124 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2125
2126 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2127
2128 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2129
2130 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2131
2132 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2133
2134 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2135 )))
2136
2137
2138 (((
2139 As shown in below:
2140 )))
2141
2142 [[image:1653360498588-932.png||height="485" width="726"]]
2143
2144
2145 == 6.4 How to change the uplink interval? ==
2146
2147
2148 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2149
2150
2151 == 6.5 Can I see the counting event in Serial? ==
2152
2153
2154 (((
2155 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2156
2157
2158 == 6.6 Can I use point-to-point communication with LT-22222-L? ==
2159
2160
2161 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2162
2163
2164 )))
2165
2166 (((
2167 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2168
2169
2170 If the device is not shut down, but directly powered off.
2171
2172 It will default that this is a power-off state.
2173
2174 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2175
2176 After restart, the status before power failure will be read from flash.
2177
2178
2179 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2180
2181
2182 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2183
2184
2185 [[image:image-20221006170630-1.png||height="610" width="945"]]
2186
2187
2188 == 6.9 Can LT22222-L save RO state? ==
2189
2190
2191 Firmware version needs to be no less than 1.6.0.
2192
2193
2194 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2195
2196
2197 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2198
2199
2200 = 7. Trouble Shooting =
2201 )))
2202
2203 (((
2204 (((
2205 == 7.1 Downlink doesn't work, how to solve it? ==
2206
2207
2208 )))
2209 )))
2210
2211 (((
2212 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2213 )))
2214
2215 (((
2216
2217
2218 == 7.2 Have trouble to upload image. ==
2219
2220
2221 )))
2222
2223 (((
2224 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2225 )))
2226
2227 (((
2228
2229
2230 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2231
2232
2233 )))
2234
2235 (((
2236 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2237 )))
2238
2239
2240 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2241
2242
2243 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2244 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2245
2246
2247 = 8. Order Info =
2248
2249
2250 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2251
2252 (% style="color:#4f81bd" %)**XXX:**
2253
2254 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2255 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2256 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2257 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2258 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2259 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2260 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2261 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2262 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2263
2264 = 9. Packing Info =
2265
2266
2267 **Package Includes**:
2268
2269 * LT-22222-L I/O Controller x 1
2270 * Stick Antenna for LoRa RF part x 1
2271 * Bracket for controller x1
2272 * Program cable x 1
2273
2274 **Dimension and weight**:
2275
2276 * Device Size: 13.5 x 7 x 3 cm
2277 * Device Weight: 105g
2278 * Package Size / pcs : 14.5 x 8 x 5 cm
2279 * Weight / pcs : 170g
2280
2281 = 10. Support =
2282
2283
2284 * (((
2285 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2286 )))
2287 * (((
2288 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2289
2290
2291
2292 )))
2293
2294 = 11. Reference​​​​​ =
2295
2296
2297 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2298 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2299 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]