Version 162.1 by Dilisi S on 2024/11/05 03:38

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 > The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37
38 (((
39 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40
41 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 * Setup your own private LoRaWAN network.
44
45 > You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12v
62 ** 20dB Transmit: 34mA@12v
63 * Operating Temperature: -40 ~~ 85 Degree, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01v)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remote configure parameters via LoRa Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart Buildings & Home Automation
108 * Logistics and Supply Chain Management
109 * Smart Metering
110 * Smart Agriculture
111 * Smart Cities
112 * Smart Factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 (% style="text-align:center" %)
121 [[image:image-20230424115112-1.png||height="106" width="58"]]
122 )))|(% style="width:334px" %)(((
123 * 2 x Digital Input (Bi-direction)
124 * 2 x Digital Output
125 * 2 x Relay Output (5A@250VAC / 30VDC)
126 * 2 x 0~~20mA Analog Input (res:0.01mA)
127 * 2 x 0~~30V Analog Input (res:0.01v)
128 * 1 x Counting Port
129 )))
130
131 = 2. Assembling the Device =
132
133 == 2.1 What is included in the package? ==
134
135 The package includes the following items:
136
137 * 1 x LT-22222-L I/O Controller
138 * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 * 1 x bracket for wall mounting
140 * 1 x programming cable
141
142 Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
143
144 == 2.2 Terminals ==
145
146 Upper screw terminal block (from left to right):
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 Lower screw terminal block (from left to right):
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Powering ==
173
174 The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175
176
177 [[image:1653297104069-180.png]]
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How does it work? ==
183
184 The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185
186 For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
187
188 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189
190 == 3.2 Registering with a LoRaWAN network server ==
191
192 The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
193
194 [[image:image-20220523172350-1.png||height="266" width="864"]]
195
196 === 3.2.1 Prerequisites ===
197
198 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
199
200 [[image:image-20230425173427-2.png||height="246" width="530"]]
201
202 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
203
204 === 3.2.2 The Things Stack Sandbox (TTSS) ===
205
206 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 * Create an application if you do not have one yet.
208 * Register LT-22222-L with that application. Two registration options available:
209
210 ==== Using the LoRaWAN Device Repository: ====
211
212 * Go to your application and click on the **Register end device** button.
213 * On the **Register end device** page:
214 ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 ** Select the **Frequency plan** that matches with your device.
217
218 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219
220 *
221 ** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 ** Enter the **DevEUI** in the **DevEUI** field.
223 ** Enter the **AppKey** in the **AppKey** field.
224 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 ** Under **After registration**, select the **View registered end device** option.
226
227 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
228
229 ==== Entering device information manually: ====
230
231 * On the **Register end device** page:
232 ** Select the **Enter end device specifies manually** option as the input method.
233 ** Select the **Frequency plan** that matches with your device.
234 ** Select the **LoRaWAN version**.
235 ** Select the **Regional Parameters version**.
236 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 ** Select **Over the air activation (OTAA)** option under **Activation mode**
238 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239
240 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241
242
243 * Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 * Enter **DevEUI** in the **DevEUI** field.
245 * Enter **AppKey** in the **AppKey** field.
246 * In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 * Under **After registration**, select the **View registered end device** option.
248
249 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250
251
252 ==== Joining ====
253
254 Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255
256 [[image:1653298044601-602.png||height="405" width="709"]]
257
258
259 == 3.3 Uplink Payload formats ==
260
261
262 The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
263
264 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
265
266 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267
268 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269
270 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271
272 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273
274 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
275
276 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
277
278
279 (((
280 The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
281
282 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
284 |Value|(((
285 AVI1 voltage
286 )))|(((
287 AVI2 voltage
288 )))|(((
289 ACI1 Current
290 )))|(((
291 ACI2 Current
292 )))|DIDORO*|(((
293 Reserve
294 )))|MOD
295 )))
296
297 (((
298 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
299
300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
303 )))
304
305 * RO is for relay. ROx=1 : closed, ROx=0 always open.
306 * DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
308
309 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
310
311 For example, if the payload is: [[image:image-20220523175847-2.png]]
312
313
314 **The interface values can be calculated as follows:  **
315
316 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
317
318 AVI2 channel voltage is 0x04AC/1000=1.196V
319
320 ACI1 channel current is 0x1310/1000=4.880mA
321
322 ACI2 channel current is 0x1300/1000=4.864mA
323
324 The last byte 0xAA= 10101010(b) means,
325
326 * [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 * [0] RO2 relay channel is open, and RO2 LED is OFF.
328 * [1] DI3 - not used for LT-22222-L.
329 * [0] DI2 channel input is low, and the DI2 LED is OFF.
330 * [1] DI1 channel input state:
331 ** DI1 is floating when there is no load between DI1 and V+.
332 ** DI1 is high when there is load between DI1 and V+.
333 ** DI1 LED is ON in both cases.
334 * [0] DO3 channel output state:
335 ** DO3 is float in case no load between DO3 and V+.
336 ** DO3 is high in case there is load between DO3 and V+.
337 ** DO3 LED is OFF in both case
338 * [1] DO2 channel output is low, and the DO2 LED is ON.
339 * [0] DO1 channel output state:
340 ** DO1 is floating when there is no load between DO1 and V+.
341 ** DO1 is high when there is load between DO1 and V+.
342 ** DO1 LED is OFF in both case.
343
344 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
345
346
347 (((
348 **For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
349 )))
350
351 (((
352 The uplink payload is 11 bytes long.
353
354 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
355 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
356 |Value|COUNT1|COUNT2 |DIDORO*|(((
357 Reserve
358 )))|MOD
359 )))
360
361 (((
362 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
363
364 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
365 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
366 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
367
368 * RO is for relay. ROx=1 : closed, ROx=0 always open.
369 )))
370
371 * FIRST: Indicates that this is the first packet after joining the network.
372 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
373
374 (((
375 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
376
377
378 )))
379
380 (((
381 **To activate this mode, please run the following AT command:**
382 )))
383
384 (((
385 (% class="box infomessage" %)
386 (((
387 **AT+MOD=2**
388
389 **ATZ**
390 )))
391 )))
392
393 (((
394
395
396 (% style="color:#4f81bd" %)**AT Commands for counting:**
397 )))
398
399 (((
400 **For LT22222-L:**
401
402 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) **
403
404 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) **
405
406 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) **
407
408 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) **
409
410 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set the COUNT1 value to 60)**
411
412 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set the COUNT2 value to 60)**
413 )))
414
415
416 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
417
418
419 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
420
421 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
422 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
423 |Value|COUNT1|(((
424 ACI1 Current
425 )))|(((
426 ACI2 Current
427 )))|DIDORO*|Reserve|MOD
428
429 (((
430 (% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
431
432 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
433 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
434 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
435 )))
436
437 * RO is for relay. ROx=1 : closed, ROx=0 always open.
438 * FIRST: Indicates that this is the first packet after joining the network.
439 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
440
441 (((
442 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
443 )))
444
445
446 (((
447 **To activate this mode, please run the following AT command:**
448 )))
449
450 (((
451 (% class="box infomessage" %)
452 (((
453 **AT+MOD=3**
454
455 **ATZ**
456 )))
457 )))
458
459 (((
460 AT Commands for counting:
461
462 The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'.
463 )))
464
465
466 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
467
468
469 (((
470 **LT22222-L**: In this mode, the DI1 is used as a counting pin.
471 )))
472
473 (((
474 The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
475
476 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
477 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
478 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
479 Reserve
480 )))|MOD
481 )))
482
483 (((
484 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
485
486 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
487 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
488 |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
489 )))
490
491 * RO is for relay. ROx=1 : closed, ROx=0 always open.
492 * FIRST: Indicates that this is the first packet after joining the network.
493 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
494
495 (((
496 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
497
498
499 )))
500
501 (((
502 **To activate this mode, please run the following AT command:**
503 )))
504
505 (((
506 (% class="box infomessage" %)
507 (((
508 **AT+MOD=4**
509
510 **ATZ**
511 )))
512 )))
513
514 (((
515 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
516 )))
517
518 (((
519 **In addition to that, below are the commands for AVI1 Counting:**
520
521 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
522
523 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
524
525 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
526
527 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
528 )))
529
530
531 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
532
533
534 **LT22222-L**: This mode the DI1 is used as a counting pin.
535
536 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
537 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
538 |Value|(((
539 AVI1 voltage
540 )))|(((
541 AVI2 voltage
542 )))|(((
543 ACI1 Current
544 )))|COUNT1|DIDORO*|(((
545 Reserve
546 )))|MOD
547
548 (((
549 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
550
551 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
552 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
553 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
554 )))
555
556 * RO is for relay. ROx=1 : close, ROx=0 always open.
557 * FIRST: Indicate this is the first packet after join network.
558 * (((
559 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
560 )))
561
562 (((
563 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
564 )))
565
566 (((
567 **To use this mode, please run:**
568 )))
569
570 (((
571 (% class="box infomessage" %)
572 (((
573 **AT+MOD=5**
574
575 **ATZ**
576 )))
577 )))
578
579 (((
580 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
581 )))
582
583
584 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
585
586
587 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
588
589 For example, if user has configured below commands:
590
591 * **AT+MOD=1 ** **~-~->**  The normal working mode
592 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
593
594 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
595
596 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
597 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
598
599 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
600
601
602 (% style="color:#4f81bd" %)**Trigger base on voltage**:
603
604 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
605
606
607 **Example:**
608
609 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
610
611 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
612
613
614
615 (% style="color:#4f81bd" %)**Trigger base on current**:
616
617 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
618
619
620 **Example:**
621
622 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
623
624
625
626 (% style="color:#4f81bd" %)**Trigger base on DI status**:
627
628 DI status trigger Flag.
629
630 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
631
632
633 **Example:**
634
635 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
636
637
638 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
639
640 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
641
642 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
643
644 AA: Code for this downlink Command:
645
646 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
647
648 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
649
650 yy2 yy2: AC1 or AV1 high limit.
651
652 yy3 yy3: AC2 or AV2 low limit.
653
654 Yy4 yy4: AC2 or AV2 high limit.
655
656
657 **Example1**: AA 00 13 88 00 00 00 00 00 00
658
659 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
660
661
662 **Example2**: AA 02 01 00
663
664 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
665
666
667
668 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
669
670 MOD6 Payload : total 11 bytes payload
671
672 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
673 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
674 |Value|(((
675 TRI_A FLAG
676 )))|(((
677 TRI_A Status
678 )))|(((
679 TRI_DI FLAG+STA
680 )))|Reserve|Enable/Disable MOD6|(((
681 MOD(6)
682 )))
683
684 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
685
686 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
687 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
688 |(((
689 AV1_LOW
690 )))|(((
691 AV1_HIGH
692 )))|(((
693 AV2_LOW
694 )))|(((
695 AV2_HIGH
696 )))|(((
697 AC1_LOW
698 )))|(((
699 AC1_HIGH
700 )))|(((
701 AC2_LOW
702 )))|(((
703 AC2_HIGH
704 )))
705
706 * Each bits shows if the corresponding trigger has been configured.
707
708 **Example:**
709
710 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
711
712
713 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
714
715 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
716 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
717 |(((
718 AV1_LOW
719 )))|(((
720 AV1_HIGH
721 )))|(((
722 AV2_LOW
723 )))|(((
724 AV2_HIGH
725 )))|(((
726 AC1_LOW
727 )))|(((
728 AC1_HIGH
729 )))|(((
730 AC2_LOW
731 )))|(((
732 AC2_HIGH
733 )))
734
735 * Each bits shows which status has been trigger on this uplink.
736
737 **Example:**
738
739 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
740
741
742 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
743
744 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
745 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
746 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
747
748 * Each bits shows which status has been trigger on this uplink.
749
750 **Example:**
751
752 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
753
754 00000101: Means both DI1 and DI2 trigger are enabled.
755
756
757 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
758
759 Downlink command to poll MOD6 status:
760
761 **AB 06**
762
763 When device got this command, it will send the MOD6 payload.
764
765
766 === 3.3.7 Payload Decoder ===
767
768 (((
769
770
771 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
772 )))
773
774
775 == 3.4 ​Configure LT via AT or Downlink ==
776
777
778 (((
779 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
780 )))
781
782 (((
783 (((
784 There are two kinds of Commands:
785 )))
786 )))
787
788 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
789
790 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
791
792 === 3.4.1 Common Commands ===
793
794
795 (((
796 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
797 )))
798
799
800 === 3.4.2 Sensor related commands ===
801
802 ==== 3.4.2.1 Set Transmit Interval ====
803
804
805 Set device uplink interval.
806
807 * (% style="color:#037691" %)**AT Command:**
808
809 (% style="color:blue" %)**AT+TDC=N **
810
811
812 **Example: **AT+TDC=30000. Means set interval to 30 seconds
813
814
815 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
816
817 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
818
819
820
821 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
822
823
824 Set work mode.
825
826 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
827
828 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
829
830 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
831
832 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
833
834
835
836 ==== 3.4.2.3 Poll an uplink ====
837
838
839 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
840
841 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
842
843 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
844
845 **Example**: 0x08FF, ask device to send an Uplink
846
847
848
849 ==== 3.4.2.4 Enable Trigger Mode ====
850
851
852 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
853
854 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
855
856 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
857
858 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
859
860
861 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
862
863 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
864
865
866
867 ==== 3.4.2.5 Poll trigger settings ====
868
869
870 Poll trigger settings
871
872 * (% style="color:#037691" %)**AT Command:**
873
874 There is no AT Command for this feature.
875
876 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
877
878 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
879
880
881
882 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
883
884
885 Enable Disable DI1/DI2/DI2 as trigger,
886
887 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
888
889 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
890
891
892 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
893
894 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
895
896
897
898 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
899
900
901 Set DI1 or DI3(for LT-33222-L) trigger.
902
903 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
904
905 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
906
907 (% style="color:red" %)**b :** (%%)delay timing.
908
909 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
910
911
912 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
913
914 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
915
916
917
918 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
919
920
921 Set DI2 trigger.
922
923 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
924
925 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
926
927 (% style="color:red" %)**b :** (%%)delay timing.
928
929 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
930
931
932 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
933
934 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
935
936
937
938 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
939
940
941 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
942
943 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
944
945 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
946
947 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
948
949
950
951 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
952
953
954 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
955
956 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
957
958 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
959
960 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
961
962
963
964 ==== 3.4.2.11 Trigger – Set minimum interval ====
965
966
967 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
968
969 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
970
971 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
972
973 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
974
975 (((
976 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
977 )))
978
979
980
981 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
982
983
984 * (% style="color:#037691" %)**AT Command**
985
986 There is no AT Command to control Digital Output
987
988
989 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
990
991 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
992
993 (((
994 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
995 )))
996
997 (((
998 01: Low,  00: High ,  11: No action
999
1000 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1001 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1002 |02  01  00  11|Low|High|No Action
1003 |02  00  11  01|High|No Action|Low
1004 |02  11  01  00|No Action|Low|High
1005 )))
1006
1007 (((
1008 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1009 )))
1010
1011 (((
1012 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1013 )))
1014
1015
1016
1017 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1018
1019
1020 * (% style="color:#037691" %)**AT Command**
1021
1022 There is no AT Command to control Digital Output
1023
1024
1025 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1026
1027 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1028
1029
1030 This is to control the digital output time of DO pin. Include four bytes:
1031
1032 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1033
1034 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1035
1036 01: DO pins will change back to original state after timeout.
1037
1038 00: DO pins will change to an inverter state after timeout 
1039
1040
1041 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1042
1043 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1044 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1045 |0x01|DO1 set to low
1046 |0x00|DO1 set to high
1047 |0x11|DO1 NO Action
1048
1049 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1050
1051 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1052 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1053 |0x01|DO2 set to low
1054 |0x00|DO2 set to high
1055 |0x11|DO2 NO Action
1056
1057 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1058
1059 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1060 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1061 |0x01|DO3 set to low
1062 |0x00|DO3 set to high
1063 |0x11|DO3 NO Action
1064
1065 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1066
1067
1068 (% style="color:red" %)**Note: **
1069
1070 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1071
1072 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1073
1074 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1075
1076
1077 **Example payload:**
1078
1079 **~1. A9 01 01 01 01 07 D0**
1080
1081 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1082
1083 **2. A9 01 00 01 11 07 D0**
1084
1085 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1086
1087 **3. A9 00 00 00 00 07 D0**
1088
1089 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1090
1091 **4. A9 00 11 01 00 07 D0**
1092
1093 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1094
1095
1096
1097 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1098
1099
1100 * (% style="color:#037691" %)**AT Command:**
1101
1102 There is no AT Command to control Relay Output
1103
1104
1105 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1106
1107 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1108
1109
1110 (((
1111 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1112 )))
1113
1114 (((
1115 00: Close ,  01: Open , 11: No action
1116
1117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1118 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1119 |03  00  11|Open|No Action
1120 |03  01  11|Close|No Action
1121 |03  11  00|No Action|Open
1122 |03  11  01|No Action|Close
1123 |03  00  00|Open|Open
1124 |03  01  01|Close|Close
1125 |03  01  00|Close|Open
1126 |03  00  01|Open|Close
1127 )))
1128
1129 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1130
1131
1132
1133 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1134
1135
1136 * (% style="color:#037691" %)**AT Command:**
1137
1138 There is no AT Command to control Relay Output
1139
1140
1141 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1142
1143 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1144
1145
1146 This is to control the relay output time of relay. Include four bytes:
1147
1148 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1149
1150 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1151
1152 01: Relays will change back to original state after timeout.
1153
1154 00: Relays will change to an inverter state after timeout
1155
1156
1157 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1158
1159 [[image:image-20221008095908-1.png||height="364" width="564"]]
1160
1161
1162 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1163
1164
1165 (% style="color:red" %)**Note:**
1166
1167 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1168
1169 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1170
1171
1172 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1173
1174
1175 **Example payload:**
1176
1177 **~1. 05 01 11 07 D0**
1178
1179 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1180
1181 **2. 05 01 10 07 D0**
1182
1183 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1184
1185 **3. 05 00 01 07 D0**
1186
1187 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1188
1189 **4. 05 00 00 07 D0**
1190
1191 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1192
1193
1194
1195 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1196
1197
1198 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1199
1200 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1201
1202 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1203
1204 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1205
1206
1207
1208 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1209
1210
1211 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1212
1213 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1214
1215 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1216
1217
1218 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1219
1220 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1221
1222
1223
1224 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1225
1226
1227 Clear counting for counting mode
1228
1229 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1230
1231 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1232
1233 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1234
1235
1236
1237 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1238
1239
1240 * (% style="color:#037691" %)**AT Command:**
1241
1242 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1243
1244
1245 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1246
1247 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1248
1249 (((
1250 range: aa bb cc:0 to 16777215,  (unit:second)
1251 )))
1252
1253
1254
1255 ==== 3.4.2.20 Reset save RO DO state ====
1256
1257
1258 * (% style="color:#037691" %)**AT Command:**
1259
1260 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1261
1262 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1263
1264
1265 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1266
1267 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1268
1269
1270
1271 ==== 3.4.2.21 Encrypted payload ====
1272
1273
1274 * (% style="color:#037691" %)**AT Command:**
1275
1276 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1277
1278 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1279
1280
1281
1282 ==== 3.4.2.22 Get sensor value ====
1283
1284
1285 * (% style="color:#037691" %)**AT Command:**
1286
1287 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1288
1289 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1290
1291
1292
1293 ==== 3.4.2.23 Resets the downlink packet count ====
1294
1295
1296 * (% style="color:#037691" %)**AT Command:**
1297
1298 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1299
1300 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1301
1302
1303
1304 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1305
1306
1307 * (% style="color:#037691" %)**AT Command:**
1308
1309 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1310
1311 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1312
1313
1314 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1315
1316 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1317
1318
1319
1320 ==== 3.4.2.25 Copy downlink to uplink ====
1321
1322
1323 * (% style="color:#037691" %)**AT Command**(%%)**:**
1324
1325 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1326
1327 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1328
1329
1330 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1331
1332 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1333
1334
1335
1336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1337
1338 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1339
1340
1341
1342 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1343
1344
1345 * (((
1346 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1347
1348 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1349
1350
1351 )))
1352
1353 **Example:**
1354
1355 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1356
1357
1358 == 3.5 Integrating with ThingsEye.io ==
1359
1360 If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1361
1362 === 3.5.1 Configuring The Things Stack Sandbox ===
1363
1364 * Go to your Application and select MQTT under Integrations.
1365 * In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1366 * For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1367
1368 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1369
1370 === 3.5.2 Configuring ThingsEye.io ===
1371
1372 * Login to your thingsEye.io account.
1373 * Under the Integrations center, click Integrations.
1374 * Click the Add integration button (the button with the + symbol).
1375
1376 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1377
1378
1379 On the Add integration page configure the following:
1380
1381 Basic settings:
1382
1383 * Select The Things Stack Community from the Integration type list.
1384 * Enter a suitable name for your integration in the Name box or keep the default name.
1385 * Click the Next button.
1386
1387 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1388
1389 Uplink Data converter:
1390
1391 * Click the Create New button if it is not selected by default.
1392 * Click the JavaScript button.
1393 * Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 * Click the Next button.
1395
1396 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1397
1398 Downlink Data converter (this is an optional step):
1399
1400 * Click the Create new button if it is not selected by default.
1401 * Click the JavaScript button.
1402 * Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1403 * Click the Next button.
1404
1405 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1406
1407 Connection:
1408
1409 * Choose Region from the Host type.
1410 * Enter the cluster of your The Things Stack in the Region textbox.
1411 * Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1412 * Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1413 * Click the Add button.
1414
1415 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1416
1417
1418 Your integration is added to the integrations list and it will display on the Integrations page.
1419
1420 [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1421
1422
1423 == 3.6 Interface Details ==
1424
1425 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1426
1427
1428 Support NPN Type sensor
1429
1430 [[image:1653356991268-289.png]]
1431
1432
1433 === 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1434
1435
1436 (((
1437 The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1438 )))
1439
1440 (((
1441 (((
1442 The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH, and the DI LED status changes.
1443
1444
1445 )))
1446 )))
1447
1448 [[image:1653357170703-587.png]]
1449
1450 (((
1451 (((
1452 (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1453 )))
1454 )))
1455
1456 (((
1457
1458 )))
1459
1460 (((
1461 (% style="color:blue" %)**Example1**(%%): Connecting to a low-active sensor.
1462 )))
1463
1464 (((
1465 This type of sensors outputs a low (GND) signal when active.
1466 )))
1467
1468 * (((
1469 Connect the sensor's output to DI1-
1470 )))
1471 * (((
1472 Connect the sensor's VCC to DI1+.
1473 )))
1474
1475 (((
1476 When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be:
1477 )))
1478
1479 (((
1480 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1481 )))
1482
1483 (((
1484 For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1485 )))
1486
1487 (((
1488
1489 )))
1490
1491 (((
1492 (% style="color:blue" %)**Example2**(%%): Connecting to a high-active sensor.
1493 )))
1494
1495 (((
1496 This type of sensors outputs a high signal (e.g., 24V) when active.
1497 )))
1498
1499 * (((
1500 Connect the sensor's output to DI1+
1501 )))
1502 * (((
1503 Connect the sensor's GND DI1-.
1504 )))
1505
1506 (((
1507 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1508 )))
1509
1510 (((
1511 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1512 )))
1513
1514 (((
1515 If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] 24mA , Therefore, the LT-22222-L will detect this high-active signal.
1516 )))
1517
1518 (((
1519
1520 )))
1521
1522 (((
1523 (% style="color:blue" %)**Example3**(%%): Connecting to a 220V high-active sensor.
1524 )))
1525
1526 (((
1527 Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1528 )))
1529
1530 * (((
1531 Connect the sensor's output to DI1+ with a 50K resistor in series.
1532 )))
1533 * (((
1534 Connect the sensor's GND DI1-.
1535 )))
1536
1537 (((
1538 When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1539 )))
1540
1541 (((
1542 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1543 )))
1544
1545 (((
1546 If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1547 )))
1548
1549
1550 (% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1551
1552 From DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1553
1554 To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1555
1556 [[image:image-20230616235145-1.png]]
1557
1558 (% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1559
1560 [[image:image-20240219115718-1.png]]
1561
1562
1563 === 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1564
1565
1566 (% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1567
1568 (% style="color:red" %)**Note: The DO pins will float when device is powered off.**
1569
1570 [[image:1653357531600-905.png]]
1571
1572
1573 === 3.6.4 Analog Input Interfaces ===
1574
1575
1576 The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1577
1578
1579 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1580
1581 [[image:1653357592296-182.png]]
1582
1583 Example: Connecting a 4~~20mA sensor
1584
1585 We will use the wind speed sensor as an example for reference only.
1586
1587
1588 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1589
1590 (% style="color:red" %)**Red:  12~~24V**
1591
1592 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1593
1594 **Black:  GND**
1595
1596 **Connection diagram:**
1597
1598 [[image:1653357640609-758.png]]
1599
1600 [[image:1653357648330-671.png||height="155" width="733"]]
1601
1602
1603 Example: Connecting to a regulated power supply to measure voltage
1604
1605 [[image:image-20230608101532-1.png||height="606" width="447"]]
1606
1607 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1608
1609 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1610
1611
1612 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1613
1614 (% style="color:red" %)**Red:  12~~24v**
1615
1616 **Black:  GND**
1617
1618
1619 === 3.6.5 Relay Output ===
1620
1621
1622 (((
1623 The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1624
1625 **Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1626 )))
1627
1628 [[image:image-20220524100215-9.png]]
1629
1630
1631 [[image:image-20220524100215-10.png||height="382" width="723"]]
1632
1633
1634 == 3.7 LEDs Indicators ==
1635
1636
1637 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1638 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1639 |**PWR**|Always on if there is power
1640 |**TX**|(((
1641 (((
1642 Device boot: TX blinks 5 times.
1643 )))
1644
1645 (((
1646 Successful join network: TX ON for 5 seconds.
1647 )))
1648
1649 (((
1650 Transmit a LoRa packet: TX blinks once
1651 )))
1652 )))
1653 |**RX**|RX blinks once when receive a packet.
1654 |**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1655 |**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1656 |**DI1**|(((
1657 For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1658 )))
1659 |**DI2**|(((
1660 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1661 )))
1662 |**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1663 |**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1664
1665 = 4. Using AT Command =
1666
1667 == 4.1 Connecting the LT-22222-L to a computer ==
1668
1669
1670 (((
1671 The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1672 )))
1673
1674 [[image:1653358238933-385.png]]
1675
1676
1677 (((
1678 On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1679 )))
1680
1681 [[image:1653358355238-883.png]]
1682
1683
1684 (((
1685 You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1686 )))
1687
1688 (((
1689 The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1690
1691 AT+<CMD>?        : Help on <CMD>
1692 )))
1693
1694 (((
1695 AT+<CMD>         : Run <CMD>
1696 )))
1697
1698 (((
1699 AT+<CMD>=<value> : Set the value
1700 )))
1701
1702 (((
1703 AT+<CMD>=?       :  Get the value
1704 )))
1705
1706 (((
1707 ATZ: Trig a reset of the MCU
1708 )))
1709
1710 (((
1711 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1712 )))
1713
1714 (((
1715 AT+DEUI: Get or Set the Device EUI
1716 )))
1717
1718 (((
1719 AT+DADDR: Get or Set the Device Address
1720 )))
1721
1722 (((
1723 AT+APPKEY: Get or Set the Application Key
1724 )))
1725
1726 (((
1727 AT+NWKSKEY: Get or Set the Network Session Key
1728 )))
1729
1730 (((
1731 AT+APPSKEY:  Get or Set the Application Session Key
1732 )))
1733
1734 (((
1735 AT+APPEUI:  Get or Set the Application EUI
1736 )))
1737
1738 (((
1739 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1740 )))
1741
1742 (((
1743 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1744 )))
1745
1746 (((
1747 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1748 )))
1749
1750 (((
1751 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1752 )))
1753
1754 (((
1755 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1756 )))
1757
1758 (((
1759 AT+RX2FQ: Get or Set the Rx2 window frequency
1760 )))
1761
1762 (((
1763 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1764 )))
1765
1766 (((
1767 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1768 )))
1769
1770 (((
1771 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1772 )))
1773
1774 (((
1775 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1776 )))
1777
1778 (((
1779 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1780 )))
1781
1782 (((
1783 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1784 )))
1785
1786 (((
1787 AT+NWKID: Get or Set the Network ID
1788 )))
1789
1790 (((
1791 AT+FCU: Get or Set the Frame Counter Uplink
1792 )))
1793
1794 (((
1795 AT+FCD: Get or Set the Frame Counter Downlink
1796 )))
1797
1798 (((
1799 AT+CLASS: Get or Set the Device Class
1800 )))
1801
1802 (((
1803 AT+JOIN: Join network
1804 )))
1805
1806 (((
1807 AT+NJS: Get OTAA Join Status
1808 )))
1809
1810 (((
1811 AT+SENDB: Send hexadecimal data along with the application port
1812 )))
1813
1814 (((
1815 AT+SEND: Send text data along with the application port
1816 )))
1817
1818 (((
1819 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1820 )))
1821
1822 (((
1823 AT+RECV: Print last received data in raw format
1824 )))
1825
1826 (((
1827 AT+VER:  Get current image version and Frequency Band
1828 )))
1829
1830 (((
1831 AT+CFM: Get or Set the confirmation mode (0-1)
1832 )))
1833
1834 (((
1835 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1836 )))
1837
1838 (((
1839 AT+SNR: Get the SNR of the last received packet
1840 )))
1841
1842 (((
1843 AT+RSSI: Get the RSSI of the last received packet
1844 )))
1845
1846 (((
1847 AT+TDC: Get or set the application data transmission interval in ms
1848 )))
1849
1850 (((
1851 AT+PORT: Get or set the application port
1852 )))
1853
1854 (((
1855 AT+DISAT: Disable AT commands
1856 )))
1857
1858 (((
1859 AT+PWORD: Set password, max 9 digits
1860 )))
1861
1862 (((
1863 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1864 )))
1865
1866 (((
1867 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1868 )))
1869
1870 (((
1871 AT+CFG: Print all settings
1872 )))
1873
1874
1875 == 4.2 Common AT Command Sequence ==
1876
1877 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1878
1879 (((
1880
1881
1882 (((
1883 (% style="color:blue" %)**If device has not joined network yet:**
1884 )))
1885 )))
1886
1887 (((
1888 (% style="background-color:#dcdcdc" %)**123456**
1889 )))
1890
1891 (((
1892 (% style="background-color:#dcdcdc" %)**AT+FDR**
1893 )))
1894
1895 (((
1896 (% style="background-color:#dcdcdc" %)**123456**
1897 )))
1898
1899 (((
1900 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1901 )))
1902
1903 (((
1904 (% style="background-color:#dcdcdc" %)**ATZ**
1905 )))
1906
1907
1908 (((
1909 (% style="color:blue" %)**If device already joined network:**
1910 )))
1911
1912 (((
1913 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1914 )))
1915
1916 (((
1917 (% style="background-color:#dcdcdc" %)**ATZ**
1918 )))
1919
1920
1921 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1922
1923 (((
1924
1925
1926 (((
1927 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1928 )))
1929 )))
1930
1931 (((
1932 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1933 )))
1934
1935 (((
1936 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1937 )))
1938
1939 (((
1940 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1941 )))
1942
1943 (((
1944 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1945 )))
1946
1947 (((
1948 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1949 )))
1950
1951 (((
1952 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1953 )))
1954
1955 (((
1956 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1957 )))
1958
1959 (((
1960 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1961 )))
1962
1963 (((
1964 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1965 )))
1966
1967 (((
1968 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1969 )))
1970
1971 (((
1972 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1973 )))
1974
1975 (((
1976 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1977
1978
1979 )))
1980
1981 (((
1982 (% style="color:red" %)**Note:**
1983 )))
1984
1985 (((
1986 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1987
1988 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1989
1990 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1991 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1992
1993 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1994 )))
1995
1996 (((
1997 [[image:1653359097980-169.png||height="188" width="729"]]
1998 )))
1999
2000
2001 === 4.2.3 Change to Class A ===
2002
2003
2004 (((
2005 (% style="color:blue" %)**If sensor JOINED:**
2006
2007 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2008
2009 (% style="background-color:#dcdcdc" %)**ATZ**
2010 )))
2011
2012
2013 = 5. Case Study =
2014
2015 == 5.1 Counting how many objects pass in Flow Line ==
2016
2017
2018 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2019
2020
2021 = 6. FAQ =
2022
2023 == 6.1 How to upgrade the image? ==
2024
2025
2026 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2027
2028 * Support new features
2029 * For bug fix
2030 * Change LoRaWAN bands.
2031
2032 Below shows the hardware connection for how to upload an image to the LT:
2033
2034 [[image:1653359603330-121.png]]
2035
2036
2037 (((
2038 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2039 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2040 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2041
2042
2043 (((
2044 (% style="color:blue" %)**For LT-22222-L**(%%):
2045 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2046 )))
2047
2048
2049 )))
2050
2051 [[image:image-20220524103407-12.png]]
2052
2053
2054 [[image:image-20220524103429-13.png]]
2055
2056
2057 [[image:image-20220524104033-15.png]]
2058
2059
2060 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2061
2062 [[image:1653360054704-518.png||height="186" width="745"]]
2063
2064
2065 (((
2066 (((
2067 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2068
2069
2070 )))
2071 )))
2072
2073 (((
2074 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2075 )))
2076
2077 (((
2078
2079
2080 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2081
2082
2083 )))
2084
2085 (((
2086 (((
2087 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2088 )))
2089 )))
2090
2091 (((
2092 (((
2093 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2094
2095
2096 )))
2097 )))
2098
2099 (((
2100 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2101
2102
2103 )))
2104
2105 (((
2106 [[image:1653360231087-571.png||height="401" width="727"]]
2107
2108
2109 )))
2110
2111 (((
2112 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2113 )))
2114
2115
2116
2117 (((
2118 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2119
2120
2121 )))
2122
2123 (((
2124 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2125
2126 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2127
2128 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2129
2130 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2131
2132 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2133
2134 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2135
2136 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2137
2138 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2139
2140 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2141 )))
2142
2143
2144 (((
2145 As shown in below:
2146 )))
2147
2148 [[image:1653360498588-932.png||height="485" width="726"]]
2149
2150
2151 == 6.4 How to change the uplink interval? ==
2152
2153
2154 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2155
2156
2157 == 6.5 Can I see counting event in Serial? ==
2158
2159
2160 (((
2161 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2162
2163
2164 == 6.6 Can i use point to point communication for LT-22222-L? ==
2165
2166
2167 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2168
2169
2170 )))
2171
2172 (((
2173 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2174
2175
2176 If the device is not shut down, but directly powered off.
2177
2178 It will default that this is a power-off state.
2179
2180 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2181
2182 After restart, the status before power failure will be read from flash.
2183
2184
2185 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2186
2187
2188 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2189
2190
2191 [[image:image-20221006170630-1.png||height="610" width="945"]]
2192
2193
2194 == 6.9 Can LT22222-L save RO state? ==
2195
2196
2197 Firmware version needs to be no less than 1.6.0.
2198
2199
2200 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2201
2202
2203 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2204
2205
2206 = 7. Trouble Shooting =
2207 )))
2208
2209 (((
2210 (((
2211 == 7.1 Downlink doesn't work, how to solve it? ==
2212
2213
2214 )))
2215 )))
2216
2217 (((
2218 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2219 )))
2220
2221 (((
2222
2223
2224 == 7.2 Have trouble to upload image. ==
2225
2226
2227 )))
2228
2229 (((
2230 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2231 )))
2232
2233 (((
2234
2235
2236 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2237
2238
2239 )))
2240
2241 (((
2242 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2243 )))
2244
2245
2246 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2247
2248
2249 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2250 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2251
2252
2253 = 8. Order Info =
2254
2255
2256 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2257
2258 (% style="color:#4f81bd" %)**XXX:**
2259
2260 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2261 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2262 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2263 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2264 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2265 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2266 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2267 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2268 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2269
2270 = 9. Packing Info =
2271
2272
2273 **Package Includes**:
2274
2275 * LT-22222-L I/O Controller x 1
2276 * Stick Antenna for LoRa RF part x 1
2277 * Bracket for controller x1
2278 * Program cable x 1
2279
2280 **Dimension and weight**:
2281
2282 * Device Size: 13.5 x 7 x 3 cm
2283 * Device Weight: 105g
2284 * Package Size / pcs : 14.5 x 8 x 5 cm
2285 * Weight / pcs : 170g
2286
2287 = 10. Support =
2288
2289
2290 * (((
2291 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2292 )))
2293 * (((
2294 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2295
2296
2297
2298 )))
2299
2300 = 11. Reference​​​​​ =
2301
2302
2303 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2304 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2305 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]