Version 159.1 by Bei Jinggeng on 2024/11/01 14:02

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20 = 1.Introduction =
21
22 == 1.1 What is the LT-22222-L I/O Controller? ==
23
24 (((
25 (((
26 The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27
28 The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 )))
30 )))
31
32 (((
33 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 )))
35
36 > The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37
38 (((
39 You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40
41 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 * Setup your own private LoRaWAN network.
44
45 > You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
46 )))
47
48 (((
49 [[image:1653295757274-912.png]]
50
51
52 )))
53
54 == 1.2 Specifications ==
55
56 (% style="color:#037691" %)**Hardware System:**
57
58 * STM32L072xxxx MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption:
61 ** Idle: 4mA@12v
62 ** 20dB Transmit: 34mA@12v
63 * Operating Temperature: -40 ~~ 85 Degree, No Dew
64
65 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66
67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 * 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 * 2 x Relay Output (5A@250VAC / 30VDC)
70 * 2 x 0~~20mA Analog Input (res:0.01mA)
71 * 2 x 0~~30V Analog Input (res:0.01v)
72 * Power Input 7~~ 24V DC. 
73
74 (% style="color:#037691" %)**LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC.
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol
98 * Optional Customized LoRa Protocol
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 * AT Commands to change parameters
101 * Remote configure parameters via LoRa Downlink
102 * Firmware upgradable via program port
103 * Counting
104
105 == 1.4 Applications ==
106
107 * Smart Buildings & Home Automation
108 * Logistics and Supply Chain Management
109 * Smart Metering
110 * Smart Agriculture
111 * Smart Cities
112 * Smart Factory
113
114 == 1.5 Hardware Variants ==
115
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 |(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 (% style="text-align:center" %)
121 [[image:image-20230424115112-1.png||height="106" width="58"]]
122 )))|(% style="width:334px" %)(((
123 * 2 x Digital Input (Bi-direction)
124 * 2 x Digital Output
125 * 2 x Relay Output (5A@250VAC / 30VDC)
126 * 2 x 0~~20mA Analog Input (res:0.01mA)
127 * 2 x 0~~30V Analog Input (res:0.01v)
128 * 1 x Counting Port
129 )))
130
131 = 2. Assembling the Device =
132
133 == 2.1 What is included in the package? ==
134
135 The package includes the following items:
136
137 * 1 x LT-22222-L I/O Controller
138 * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 * 1 x bracket for wall mounting
140 * 1 x programming cable
141
142 Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
143
144 == 2.2 Terminals ==
145
146 Upper screw terminal block (from left to right):
147
148 (% style="width:634px" %)
149 |=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 |(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 |(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 |(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 |(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 |(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 |(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156
157 Lower screw terminal block (from left to right):
158
159 (% style="width:633px" %)
160 |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 |(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 |(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 |(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 |(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 |(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 |(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 |(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 |(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171
172 == 2.3 Powering ==
173
174 The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175
176
177 [[image:1653297104069-180.png]]
178
179
180 = 3. Operation Mode =
181
182 == 3.1 How does it work? ==
183
184 The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185
186 For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
187
188 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189
190 == 3.2 Registering with a LoRaWAN network server ==
191
192 The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
193
194 [[image:image-20220523172350-1.png||height="266" width="864"]]
195
196 === 3.2.1 Prerequisites ===
197
198 Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
199
200 [[image:image-20230425173427-2.png||height="246" width="530"]]
201
202 The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
203
204 === 3.2.2 The Things Stack Sandbox (TTSS) ===
205
206 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 * Create an application if you do not have one yet.
208 * Register LT-22222-L with that application. Two registration options available:
209
210 ==== Using the LoRaWAN Device Repository: ====
211
212 * Go to your application and click on the **Register end device** button.
213 * On the **Register end device** page:
214 ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 ** Select the **Frequency plan** that matches with your device.
217
218 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219
220 *
221 ** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 ** Enter the **DevEUI** in the **DevEUI** field.
223 ** Enter the **AppKey** in the **AppKey** field.
224 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 ** Under **After registration**, select the **View registered end device** option.
226
227 [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
228
229 ==== Entering device information manually: ====
230
231 * On the **Register end device** page:
232 ** Select the **Enter end device specifies manually** option as the input method.
233 ** Select the **Frequency plan** that matches with your device.
234 ** Select the **LoRaWAN version**.
235 ** Select the **Regional Parameters version**.
236 ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 ** Select **Over the air activation (OTAA)** option under **Activation mode**
238 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239
240 [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241
242
243 * Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 * Enter **DevEUI** in the **DevEUI** field.
245 * Enter **AppKey** in the **AppKey** field.
246 * In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 * Under **After registration**, select the **View registered end device** option.
248
249 [[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250
251
252 ==== Joining ====
253
254 Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255
256 [[image:1653298044601-602.png||height="405" width="709"]]
257
258
259 == 3.3 Uplink Payload formats ==
260
261
262 The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
263
264 * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
265
266 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267
268 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269
270 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271
272 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273
274 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
275
276 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
277
278
279 (((
280 In working mode MOD1, the uplink payload includes a total of 11 bytes. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
281
282 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
284 |Value|(((
285 AVI1 voltage
286 )))|(((
287 AVI2 voltage
288 )))|(((
289 ACI1 Current
290 )))|(((
291 ACI2 Current
292 )))|DIDORO*|(((
293 Reserve
294 )))|MOD
295 )))
296
297 (((
298 (% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte ,as shown below
299
300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
303 )))
304
305 * RO is for relay. ROx=1 : closed, ROx=0 always open.
306 * DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
308
309 (% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
310
311 For example, if the payload is: [[image:image-20220523175847-2.png]]
312
313
314 **The interface values can be calculated as follows:  **
315
316 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
317
318 AVI2 channel voltage is 0x04AC/1000=1.196V
319
320 ACI1 channel current is 0x1310/1000=4.880mA
321
322 ACI2 channel current is 0x1300/1000=4.864mA
323
324 The last byte 0xAA= 10101010(B) means
325
326 * [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 * [0] RO2 relay channel is open, and RO2 LED is OFF.
328 * [1] DI2 channel is high input and DI2 LED is ON.
329 * [0] DI1 channel is low input.
330 * [0] DO3 channel output state
331 ** DO3 is float in case no load between DO3 and V+.
332 ** DO3 is high in case there is load between DO3 and V+.
333 ** DO3 LED is off in both case
334 * [1] DO2 channel output is low and DO2 LED is ON.
335 * [0] DO1 channel output state
336 ** DO1 is float in case no load between DO1 and V+.
337 ** DO1 is high in case there is load between DO1 and V+.
338 ** DO1 LED is off in both case.
339
340 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
341
342
343 (((
344 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 )))
346
347 (((
348 Total : 11 bytes payload
349
350 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
351 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
352 |Value|COUNT1|COUNT2 |DIDORO*|(((
353 Reserve
354 )))|MOD
355 )))
356
357 (((
358 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
359
360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
361 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
362 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
363
364 RO is for relay. ROx=1 : close , ROx=0 always open.
365 )))
366
367 * FIRST: Indicate this is the first packet after join network.
368 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
369
370 (((
371 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
372
373
374 )))
375
376 (((
377 **To use counting mode, please run:**
378 )))
379
380 (((
381 (% class="box infomessage" %)
382 (((
383 **AT+MOD=2**
384
385 **ATZ**
386 )))
387 )))
388
389 (((
390
391
392 (% style="color:#4f81bd" %)**AT Commands for counting:**
393 )))
394
395 (((
396 **For LT22222-L:**
397
398 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
399
400 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
401
402 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
403
404 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
405
406 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
407
408 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 )))
410
411
412 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
413
414
415 **LT22222-L**: This mode the DI1 is used as a counting pin.
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
418 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
419 |Value|COUNT1|(((
420 ACI1 Current
421 )))|(((
422 ACI2 Current
423 )))|DIDORO*|Reserve|MOD
424
425 (((
426 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
427
428 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
429 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
430 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
431 )))
432
433 * RO is for relay. ROx=1 : close, ROx=0 always open.
434 * FIRST: Indicate this is the first packet after join network.
435 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
436
437 (((
438 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 )))
440
441
442 (((
443 **To use counting mode, please run:**
444 )))
445
446 (((
447 (% class="box infomessage" %)
448 (((
449 **AT+MOD=3**
450
451 **ATZ**
452 )))
453 )))
454
455 (((
456 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
457 )))
458
459
460 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
461
462
463 (((
464 **LT22222-L**: This mode the DI1 is used as a counting pin.
465 )))
466
467 (((
468 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
469
470 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
472 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
473 Reserve
474 )))|MOD
475 )))
476
477 (((
478 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
479
480 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
481 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
482 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
483 )))
484
485 * RO is for relay. ROx=1 : close, ROx=0 always open.
486 * FIRST: Indicate this is the first packet after join network.
487 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
488
489 (((
490 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
491
492
493 )))
494
495 (((
496 **To use this mode, please run:**
497 )))
498
499 (((
500 (% class="box infomessage" %)
501 (((
502 **AT+MOD=4**
503
504 **ATZ**
505 )))
506 )))
507
508 (((
509 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
510 )))
511
512 (((
513 **Plus below command for AVI1 Counting:**
514
515 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
516
517 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
518
519 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
520
521 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
522 )))
523
524
525 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
526
527
528 **LT22222-L**: This mode the DI1 is used as a counting pin.
529
530 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
531 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
532 |Value|(((
533 AVI1 voltage
534 )))|(((
535 AVI2 voltage
536 )))|(((
537 ACI1 Current
538 )))|COUNT1|DIDORO*|(((
539 Reserve
540 )))|MOD
541
542 (((
543 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
544
545 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
546 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
547 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
548 )))
549
550 * RO is for relay. ROx=1 : close, ROx=0 always open.
551 * FIRST: Indicate this is the first packet after join network.
552 * (((
553 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
554 )))
555
556 (((
557 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
558 )))
559
560 (((
561 **To use this mode, please run:**
562 )))
563
564 (((
565 (% class="box infomessage" %)
566 (((
567 **AT+MOD=5**
568
569 **ATZ**
570 )))
571 )))
572
573 (((
574 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
575 )))
576
577
578 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
579
580
581 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
582
583 For example, if user has configured below commands:
584
585 * **AT+MOD=1 ** **~-~->**  The normal working mode
586 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
587
588 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
589
590 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
591 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
592
593 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
594
595
596 (% style="color:#4f81bd" %)**Trigger base on voltage**:
597
598 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
599
600
601 **Example:**
602
603 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
604
605 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
606
607
608
609 (% style="color:#4f81bd" %)**Trigger base on current**:
610
611 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
612
613
614 **Example:**
615
616 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
617
618
619
620 (% style="color:#4f81bd" %)**Trigger base on DI status**:
621
622 DI status trigger Flag.
623
624 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
625
626
627 **Example:**
628
629 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
630
631
632 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
633
634 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
635
636 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
637
638 AA: Code for this downlink Command:
639
640 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
641
642 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
643
644 yy2 yy2: AC1 or AV1 high limit.
645
646 yy3 yy3: AC2 or AV2 low limit.
647
648 Yy4 yy4: AC2 or AV2 high limit.
649
650
651 **Example1**: AA 00 13 88 00 00 00 00 00 00
652
653 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
654
655
656 **Example2**: AA 02 01 00
657
658 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
659
660
661
662 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
663
664 MOD6 Payload : total 11 bytes payload
665
666 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
667 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
668 |Value|(((
669 TRI_A FLAG
670 )))|(((
671 TRI_A Status
672 )))|(((
673 TRI_DI FLAG+STA
674 )))|Reserve|Enable/Disable MOD6|(((
675 MOD(6)
676 )))
677
678 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
679
680 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
681 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
682 |(((
683 AV1_LOW
684 )))|(((
685 AV1_HIGH
686 )))|(((
687 AV2_LOW
688 )))|(((
689 AV2_HIGH
690 )))|(((
691 AC1_LOW
692 )))|(((
693 AC1_HIGH
694 )))|(((
695 AC2_LOW
696 )))|(((
697 AC2_HIGH
698 )))
699
700 * Each bits shows if the corresponding trigger has been configured.
701
702 **Example:**
703
704 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
705
706
707 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
708
709 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
710 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
711 |(((
712 AV1_LOW
713 )))|(((
714 AV1_HIGH
715 )))|(((
716 AV2_LOW
717 )))|(((
718 AV2_HIGH
719 )))|(((
720 AC1_LOW
721 )))|(((
722 AC1_HIGH
723 )))|(((
724 AC2_LOW
725 )))|(((
726 AC2_HIGH
727 )))
728
729 * Each bits shows which status has been trigger on this uplink.
730
731 **Example:**
732
733 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
734
735
736 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
737
738 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
739 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
740 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
741
742 * Each bits shows which status has been trigger on this uplink.
743
744 **Example:**
745
746 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
747
748 00000101: Means both DI1 and DI2 trigger are enabled.
749
750
751 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
752
753 Downlink command to poll MOD6 status:
754
755 **AB 06**
756
757 When device got this command, it will send the MOD6 payload.
758
759
760 === 3.3.7 Payload Decoder ===
761
762 (((
763
764
765 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
766 )))
767
768
769 == 3.4 ​Configure LT via AT or Downlink ==
770
771
772 (((
773 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
774 )))
775
776 (((
777 (((
778 There are two kinds of Commands:
779 )))
780 )))
781
782 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
783
784 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
785
786 === 3.4.1 Common Commands ===
787
788
789 (((
790 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
791 )))
792
793
794 === 3.4.2 Sensor related commands ===
795
796 ==== 3.4.2.1 Set Transmit Interval ====
797
798
799 Set device uplink interval.
800
801 * (% style="color:#037691" %)**AT Command:**
802
803 (% style="color:blue" %)**AT+TDC=N **
804
805
806 **Example: **AT+TDC=30000. Means set interval to 30 seconds
807
808
809 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
810
811 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
812
813
814
815 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
816
817
818 Set work mode.
819
820 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
821
822 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
823
824 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
825
826 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
827
828
829
830 ==== 3.4.2.3 Poll an uplink ====
831
832
833 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
834
835 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
836
837 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
838
839 **Example**: 0x08FF, ask device to send an Uplink
840
841
842
843 ==== 3.4.2.4 Enable Trigger Mode ====
844
845
846 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
847
848 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
849
850 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
851
852 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
853
854
855 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
856
857 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
858
859
860
861 ==== 3.4.2.5 Poll trigger settings ====
862
863
864 Poll trigger settings
865
866 * (% style="color:#037691" %)**AT Command:**
867
868 There is no AT Command for this feature.
869
870 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
871
872 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
873
874
875
876 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
877
878
879 Enable Disable DI1/DI2/DI2 as trigger,
880
881 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
882
883 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
884
885
886 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
887
888 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
889
890
891
892 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
893
894
895 Set DI1 or DI3(for LT-33222-L) trigger.
896
897 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
898
899 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
900
901 (% style="color:red" %)**b :** (%%)delay timing.
902
903 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
904
905
906 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
907
908 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
909
910
911
912 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
913
914
915 Set DI2 trigger.
916
917 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
918
919 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
920
921 (% style="color:red" %)**b :** (%%)delay timing.
922
923 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
924
925
926 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
927
928 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
929
930
931
932 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
933
934
935 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
936
937 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
938
939 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
940
941 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
942
943
944
945 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
946
947
948 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
949
950 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
951
952 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
953
954 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
955
956
957
958 ==== 3.4.2.11 Trigger – Set minimum interval ====
959
960
961 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
962
963 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
964
965 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
966
967 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
968
969 (((
970 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
971 )))
972
973
974
975 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
976
977
978 * (% style="color:#037691" %)**AT Command**
979
980 There is no AT Command to control Digital Output
981
982
983 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
984
985 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
986
987 (((
988 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
989 )))
990
991 (((
992 01: Low,  00: High ,  11: No action
993
994 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
995 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
996 |02  01  00  11|Low|High|No Action
997 |02  00  11  01|High|No Action|Low
998 |02  11  01  00|No Action|Low|High
999 )))
1000
1001 (((
1002 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1003 )))
1004
1005 (((
1006 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1007 )))
1008
1009
1010
1011 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1012
1013
1014 * (% style="color:#037691" %)**AT Command**
1015
1016 There is no AT Command to control Digital Output
1017
1018
1019 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1020
1021 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1022
1023
1024 This is to control the digital output time of DO pin. Include four bytes:
1025
1026 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1027
1028 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1029
1030 01: DO pins will change back to original state after timeout.
1031
1032 00: DO pins will change to an inverter state after timeout 
1033
1034
1035 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1036
1037 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1038 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1039 |0x01|DO1 set to low
1040 |0x00|DO1 set to high
1041 |0x11|DO1 NO Action
1042
1043 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1044
1045 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1046 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1047 |0x01|DO2 set to low
1048 |0x00|DO2 set to high
1049 |0x11|DO2 NO Action
1050
1051 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1052
1053 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1054 |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1055 |0x01|DO3 set to low
1056 |0x00|DO3 set to high
1057 |0x11|DO3 NO Action
1058
1059 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1060
1061
1062 (% style="color:red" %)**Note: **
1063
1064 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1065
1066 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1067
1068 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1069
1070
1071 **Example payload:**
1072
1073 **~1. A9 01 01 01 01 07 D0**
1074
1075 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1076
1077 **2. A9 01 00 01 11 07 D0**
1078
1079 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1080
1081 **3. A9 00 00 00 00 07 D0**
1082
1083 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1084
1085 **4. A9 00 11 01 00 07 D0**
1086
1087 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1088
1089
1090
1091 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1092
1093
1094 * (% style="color:#037691" %)**AT Command:**
1095
1096 There is no AT Command to control Relay Output
1097
1098
1099 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1100
1101 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1102
1103
1104 (((
1105 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1106 )))
1107
1108 (((
1109 00: Close ,  01: Open , 11: No action
1110
1111 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1112 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1113 |03  00  11|Open|No Action
1114 |03  01  11|Close|No Action
1115 |03  11  00|No Action|Open
1116 |03  11  01|No Action|Close
1117 |03  00  00|Open|Open
1118 |03  01  01|Close|Close
1119 |03  01  00|Close|Open
1120 |03  00  01|Open|Close
1121 )))
1122
1123 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1124
1125
1126
1127 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1128
1129
1130 * (% style="color:#037691" %)**AT Command:**
1131
1132 There is no AT Command to control Relay Output
1133
1134
1135 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1136
1137 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1138
1139
1140 This is to control the relay output time of relay. Include four bytes:
1141
1142 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1143
1144 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1145
1146 01: Relays will change back to original state after timeout.
1147
1148 00: Relays will change to an inverter state after timeout
1149
1150
1151 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1152
1153 [[image:image-20221008095908-1.png||height="364" width="564"]]
1154
1155
1156 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1157
1158
1159 (% style="color:red" %)**Note:**
1160
1161 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1162
1163 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1164
1165
1166 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1167
1168
1169 **Example payload:**
1170
1171 **~1. 05 01 11 07 D0**
1172
1173 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1174
1175 **2. 05 01 10 07 D0**
1176
1177 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1178
1179 **3. 05 00 01 07 D0**
1180
1181 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1182
1183 **4. 05 00 00 07 D0**
1184
1185 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1186
1187
1188
1189 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1190
1191
1192 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1193
1194 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1195
1196 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1197
1198 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1199
1200
1201
1202 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1203
1204
1205 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1206
1207 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1208
1209 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1210
1211
1212 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1213
1214 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1215
1216
1217
1218 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1219
1220
1221 Clear counting for counting mode
1222
1223 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1224
1225 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1226
1227 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1228
1229
1230
1231 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1232
1233
1234 * (% style="color:#037691" %)**AT Command:**
1235
1236 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1237
1238
1239 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1240
1241 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1242
1243 (((
1244 range: aa bb cc:0 to 16777215,  (unit:second)
1245 )))
1246
1247
1248
1249 ==== 3.4.2.20 Reset save RO DO state ====
1250
1251
1252 * (% style="color:#037691" %)**AT Command:**
1253
1254 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1255
1256 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1257
1258
1259 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1260
1261 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1262
1263
1264
1265 ==== 3.4.2.21 Encrypted payload ====
1266
1267
1268 * (% style="color:#037691" %)**AT Command:**
1269
1270 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1271
1272 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1273
1274
1275
1276 ==== 3.4.2.22 Get sensor value ====
1277
1278
1279 * (% style="color:#037691" %)**AT Command:**
1280
1281 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1282
1283 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1284
1285
1286
1287 ==== 3.4.2.23 Resets the downlink packet count ====
1288
1289
1290 * (% style="color:#037691" %)**AT Command:**
1291
1292 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1293
1294 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1295
1296
1297
1298 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1299
1300
1301 * (% style="color:#037691" %)**AT Command:**
1302
1303 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1304
1305 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1306
1307
1308 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1309
1310 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1311
1312
1313
1314 ==== 3.4.2.25 Copy downlink to uplink ====
1315
1316
1317 * (% style="color:#037691" %)**AT Command**(%%)**:**
1318
1319 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1320
1321 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1322
1323
1324 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1325
1326 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1327
1328
1329
1330 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1331
1332 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1333
1334
1335
1336 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1337
1338
1339 * (((
1340 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1341
1342 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1343
1344
1345 )))
1346
1347 **Example:**
1348
1349 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1350
1351
1352 == 3.5 Integrating with ThingsEye.io ==
1353
1354 If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1355
1356 === 3.5.1 Configuring The Things Stack Sandbox ===
1357
1358 * Go to your Application and select MQTT under Integrations.
1359 * In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1360 * For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1361
1362 [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1363
1364 === 3.5.2 Configuring ThingsEye.io ===
1365
1366 * Login to your thingsEye.io account.
1367 * Under the Integrations center, click Integrations.
1368 * Click the Add integration button (the button with the + symbol).
1369
1370 [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1371
1372
1373 On the Add integration page configure the following:
1374
1375 Basic settings:
1376
1377 * Select The Things Stack Community from the Integration type list.
1378 * Enter a suitable name for your integration in the Name box or keep the default name.
1379 * Click the Next button.
1380
1381 [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1382
1383 Uplink Data converter:
1384
1385 * Click the Create New button if it is not selected by default.
1386 * Click the JavaScript button.
1387 * Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1388 * Click the Next button.
1389
1390 [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1391
1392 Downlink Data converter (this is an optional step):
1393
1394 * Click the Create new button if it is not selected by default.
1395 * Click the JavaScript button.
1396 * Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1397 * Click the Next button.
1398
1399 [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1400
1401 Connection:
1402
1403 * Choose Region from the Host type.
1404 * Enter the cluster of your The Things Stack in the Region textbox.
1405 * Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1406 * Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1407 * Click the Add button.
1408
1409 [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1410
1411
1412 Your integration is added to the integrations list and it will display on the Integrations page.
1413
1414 [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1415
1416
1417 == 3.6 Interface Detail ==
1418
1419 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1420
1421
1422 Support NPN Type sensor
1423
1424 [[image:1653356991268-289.png]]
1425
1426
1427 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1428
1429
1430 (((
1431 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1432 )))
1433
1434 (((
1435 (((
1436 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1437
1438
1439 )))
1440 )))
1441
1442 [[image:1653357170703-587.png]]
1443
1444 (((
1445 (((
1446 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1447 )))
1448 )))
1449
1450 (((
1451
1452 )))
1453
1454 (((
1455 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1456 )))
1457
1458 (((
1459 This type of sensor will output a low signal GND when active.
1460 )))
1461
1462 * (((
1463 Connect sensor's output to DI1-
1464 )))
1465 * (((
1466 Connect sensor's VCC to DI1+.
1467 )))
1468
1469 (((
1470 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1471 )))
1472
1473 (((
1474 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1475 )))
1476
1477 (((
1478 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1479 )))
1480
1481 (((
1482
1483 )))
1484
1485 (((
1486 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1487 )))
1488
1489 (((
1490 This type of sensor will output a high signal (example 24v) when active.
1491 )))
1492
1493 * (((
1494 Connect sensor's output to DI1+
1495 )))
1496 * (((
1497 Connect sensor's GND DI1-.
1498 )))
1499
1500 (((
1501 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1502 )))
1503
1504 (((
1505 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1506 )))
1507
1508 (((
1509 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1510 )))
1511
1512 (((
1513
1514 )))
1515
1516 (((
1517 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1518 )))
1519
1520 (((
1521 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1522 )))
1523
1524 * (((
1525 Connect sensor's output to DI1+ with a serial 50K resistor
1526 )))
1527 * (((
1528 Connect sensor's GND DI1-.
1529 )))
1530
1531 (((
1532 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1533 )))
1534
1535 (((
1536 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1537 )))
1538
1539 (((
1540 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1541 )))
1542
1543
1544 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1545
1546 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1547
1548 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1549
1550 [[image:image-20230616235145-1.png]]
1551
1552 (% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1553
1554 [[image:image-20240219115718-1.png]]
1555
1556
1557 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1558
1559
1560 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1561
1562 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1563
1564 [[image:1653357531600-905.png]]
1565
1566
1567 === 3.6.4 Analog Input Interface ===
1568
1569
1570 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1571
1572
1573 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1574
1575 [[image:1653357592296-182.png]]
1576
1577 Example to connect a 4~~20mA sensor
1578
1579 We take the wind speed sensor as an example for reference only.
1580
1581
1582 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1583
1584 (% style="color:red" %)**Red:  12~~24v**
1585
1586 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1587
1588 **Black:  GND**
1589
1590 **Connection diagram:**
1591
1592 [[image:1653357640609-758.png]]
1593
1594 [[image:1653357648330-671.png||height="155" width="733"]]
1595
1596
1597 Example connected to a regulated power supply to measure voltage
1598
1599 [[image:image-20230608101532-1.png||height="606" width="447"]]
1600
1601 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1602
1603 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1604
1605
1606 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1607
1608 (% style="color:red" %)**Red:  12~~24v**
1609
1610 **Black:  GND**
1611
1612
1613 === 3.6.5 Relay Output ===
1614
1615
1616 (((
1617 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1618
1619 **Note**: RO pins go to Open(NO) when device is power off.
1620 )))
1621
1622 [[image:image-20220524100215-9.png]]
1623
1624
1625 [[image:image-20220524100215-10.png||height="382" width="723"]]
1626
1627
1628 == 3.7 LEDs Indicators ==
1629
1630
1631 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1632 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1633 |**PWR**|Always on if there is power
1634 |**TX**|(((
1635 (((
1636 Device boot: TX blinks 5 times.
1637 )))
1638
1639 (((
1640 Successful join network: TX ON for 5 seconds.
1641 )))
1642
1643 (((
1644 Transmit a LoRa packet: TX blinks once
1645 )))
1646 )))
1647 |**RX**|RX blinks once when receive a packet.
1648 |**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1649 |**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1650 |**DI1**|(((
1651 For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1652 )))
1653 |**DI2**|(((
1654 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1655 )))
1656 |**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1657 |**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1658
1659 = 4. Use AT Command =
1660
1661 == 4.1 Access AT Command ==
1662
1663
1664 (((
1665 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1666 )))
1667
1668 [[image:1653358238933-385.png]]
1669
1670
1671 (((
1672 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1673 )))
1674
1675 [[image:1653358355238-883.png]]
1676
1677
1678 (((
1679 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1680 )))
1681
1682 (((
1683 AT+<CMD>?        : Help on <CMD>
1684 )))
1685
1686 (((
1687 AT+<CMD>         : Run <CMD>
1688 )))
1689
1690 (((
1691 AT+<CMD>=<value> : Set the value
1692 )))
1693
1694 (((
1695 AT+<CMD>=?       :  Get the value
1696 )))
1697
1698 (((
1699 ATZ: Trig a reset of the MCU
1700 )))
1701
1702 (((
1703 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1704 )))
1705
1706 (((
1707 AT+DEUI: Get or Set the Device EUI
1708 )))
1709
1710 (((
1711 AT+DADDR: Get or Set the Device Address
1712 )))
1713
1714 (((
1715 AT+APPKEY: Get or Set the Application Key
1716 )))
1717
1718 (((
1719 AT+NWKSKEY: Get or Set the Network Session Key
1720 )))
1721
1722 (((
1723 AT+APPSKEY:  Get or Set the Application Session Key
1724 )))
1725
1726 (((
1727 AT+APPEUI:  Get or Set the Application EUI
1728 )))
1729
1730 (((
1731 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1732 )))
1733
1734 (((
1735 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1736 )))
1737
1738 (((
1739 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1740 )))
1741
1742 (((
1743 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1744 )))
1745
1746 (((
1747 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1748 )))
1749
1750 (((
1751 AT+RX2FQ: Get or Set the Rx2 window frequency
1752 )))
1753
1754 (((
1755 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1756 )))
1757
1758 (((
1759 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1760 )))
1761
1762 (((
1763 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1764 )))
1765
1766 (((
1767 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1768 )))
1769
1770 (((
1771 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1772 )))
1773
1774 (((
1775 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1776 )))
1777
1778 (((
1779 AT+NWKID: Get or Set the Network ID
1780 )))
1781
1782 (((
1783 AT+FCU: Get or Set the Frame Counter Uplink
1784 )))
1785
1786 (((
1787 AT+FCD: Get or Set the Frame Counter Downlink
1788 )))
1789
1790 (((
1791 AT+CLASS: Get or Set the Device Class
1792 )))
1793
1794 (((
1795 AT+JOIN: Join network
1796 )))
1797
1798 (((
1799 AT+NJS: Get OTAA Join Status
1800 )))
1801
1802 (((
1803 AT+SENDB: Send hexadecimal data along with the application port
1804 )))
1805
1806 (((
1807 AT+SEND: Send text data along with the application port
1808 )))
1809
1810 (((
1811 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1812 )))
1813
1814 (((
1815 AT+RECV: Print last received data in raw format
1816 )))
1817
1818 (((
1819 AT+VER:  Get current image version and Frequency Band
1820 )))
1821
1822 (((
1823 AT+CFM: Get or Set the confirmation mode (0-1)
1824 )))
1825
1826 (((
1827 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1828 )))
1829
1830 (((
1831 AT+SNR: Get the SNR of the last received packet
1832 )))
1833
1834 (((
1835 AT+RSSI: Get the RSSI of the last received packet
1836 )))
1837
1838 (((
1839 AT+TDC: Get or set the application data transmission interval in ms
1840 )))
1841
1842 (((
1843 AT+PORT: Get or set the application port
1844 )))
1845
1846 (((
1847 AT+DISAT: Disable AT commands
1848 )))
1849
1850 (((
1851 AT+PWORD: Set password, max 9 digits
1852 )))
1853
1854 (((
1855 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1856 )))
1857
1858 (((
1859 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1860 )))
1861
1862 (((
1863 AT+CFG: Print all settings
1864 )))
1865
1866
1867 == 4.2 Common AT Command Sequence ==
1868
1869 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1870
1871 (((
1872
1873
1874 (((
1875 (% style="color:blue" %)**If device has not joined network yet:**
1876 )))
1877 )))
1878
1879 (((
1880 (% style="background-color:#dcdcdc" %)**123456**
1881 )))
1882
1883 (((
1884 (% style="background-color:#dcdcdc" %)**AT+FDR**
1885 )))
1886
1887 (((
1888 (% style="background-color:#dcdcdc" %)**123456**
1889 )))
1890
1891 (((
1892 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1893 )))
1894
1895 (((
1896 (% style="background-color:#dcdcdc" %)**ATZ**
1897 )))
1898
1899
1900 (((
1901 (% style="color:blue" %)**If device already joined network:**
1902 )))
1903
1904 (((
1905 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1906 )))
1907
1908 (((
1909 (% style="background-color:#dcdcdc" %)**ATZ**
1910 )))
1911
1912
1913 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1914
1915 (((
1916
1917
1918 (((
1919 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1920 )))
1921 )))
1922
1923 (((
1924 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1925 )))
1926
1927 (((
1928 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1929 )))
1930
1931 (((
1932 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1933 )))
1934
1935 (((
1936 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1937 )))
1938
1939 (((
1940 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1941 )))
1942
1943 (((
1944 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1945 )))
1946
1947 (((
1948 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1949 )))
1950
1951 (((
1952 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1953 )))
1954
1955 (((
1956 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1957 )))
1958
1959 (((
1960 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1961 )))
1962
1963 (((
1964 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1965 )))
1966
1967 (((
1968 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1969
1970
1971 )))
1972
1973 (((
1974 (% style="color:red" %)**Note:**
1975 )))
1976
1977 (((
1978 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1979
1980 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1981
1982 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1983 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1984
1985 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1986 )))
1987
1988 (((
1989 [[image:1653359097980-169.png||height="188" width="729"]]
1990 )))
1991
1992
1993 === 4.2.3 Change to Class A ===
1994
1995
1996 (((
1997 (% style="color:blue" %)**If sensor JOINED:**
1998
1999 (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2000
2001 (% style="background-color:#dcdcdc" %)**ATZ**
2002 )))
2003
2004
2005 = 5. Case Study =
2006
2007 == 5.1 Counting how many objects pass in Flow Line ==
2008
2009
2010 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2011
2012
2013 = 6. FAQ =
2014
2015 == 6.1 How to upgrade the image? ==
2016
2017
2018 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2019
2020 * Support new features
2021 * For bug fix
2022 * Change LoRaWAN bands.
2023
2024 Below shows the hardware connection for how to upload an image to the LT:
2025
2026 [[image:1653359603330-121.png]]
2027
2028
2029 (((
2030 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2031 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2032 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2033
2034
2035 (((
2036 (% style="color:blue" %)**For LT-22222-L**(%%):
2037 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2038 )))
2039
2040
2041 )))
2042
2043 [[image:image-20220524103407-12.png]]
2044
2045
2046 [[image:image-20220524103429-13.png]]
2047
2048
2049 [[image:image-20220524104033-15.png]]
2050
2051
2052 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2053
2054 [[image:1653360054704-518.png||height="186" width="745"]]
2055
2056
2057 (((
2058 (((
2059 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2060
2061
2062 )))
2063 )))
2064
2065 (((
2066 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2067 )))
2068
2069 (((
2070
2071
2072 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2073
2074
2075 )))
2076
2077 (((
2078 (((
2079 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2080 )))
2081 )))
2082
2083 (((
2084 (((
2085 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2086
2087
2088 )))
2089 )))
2090
2091 (((
2092 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2093
2094
2095 )))
2096
2097 (((
2098 [[image:1653360231087-571.png||height="401" width="727"]]
2099
2100
2101 )))
2102
2103 (((
2104 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2105 )))
2106
2107
2108
2109 (((
2110 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2111
2112
2113 )))
2114
2115 (((
2116 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2117
2118 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2119
2120 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2121
2122 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2123
2124 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2125
2126 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2127
2128 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2129
2130 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2131
2132 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2133 )))
2134
2135
2136 (((
2137 As shown in below:
2138 )))
2139
2140 [[image:1653360498588-932.png||height="485" width="726"]]
2141
2142
2143 == 6.4 How to change the uplink interval? ==
2144
2145
2146 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2147
2148
2149 == 6.5 Can I see counting event in Serial? ==
2150
2151
2152 (((
2153 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2154
2155
2156 == 6.6 Can i use point to point communication for LT-22222-L? ==
2157
2158
2159 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2160
2161
2162 )))
2163
2164 (((
2165 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2166
2167
2168 If the device is not shut down, but directly powered off.
2169
2170 It will default that this is a power-off state.
2171
2172 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2173
2174 After restart, the status before power failure will be read from flash.
2175
2176
2177 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2178
2179
2180 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2181
2182
2183 [[image:image-20221006170630-1.png||height="610" width="945"]]
2184
2185
2186 == 6.9 Can LT22222-L save RO state? ==
2187
2188
2189 Firmware version needs to be no less than 1.6.0.
2190
2191
2192 == 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2193
2194
2195 It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2196
2197
2198 = 7. Trouble Shooting =
2199 )))
2200
2201 (((
2202 (((
2203 == 7.1 Downlink doesn't work, how to solve it? ==
2204
2205
2206 )))
2207 )))
2208
2209 (((
2210 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2211 )))
2212
2213 (((
2214
2215
2216 == 7.2 Have trouble to upload image. ==
2217
2218
2219 )))
2220
2221 (((
2222 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2223 )))
2224
2225 (((
2226
2227
2228 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2229
2230
2231 )))
2232
2233 (((
2234 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2235 )))
2236
2237
2238 == 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2239
2240
2241 The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2242 Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2243
2244
2245 = 8. Order Info =
2246
2247
2248 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2249
2250 (% style="color:#4f81bd" %)**XXX:**
2251
2252 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2253 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2254 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2255 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2256 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2257 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2258 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2259 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2260 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2261
2262 = 9. Packing Info =
2263
2264
2265 **Package Includes**:
2266
2267 * LT-22222-L I/O Controller x 1
2268 * Stick Antenna for LoRa RF part x 1
2269 * Bracket for controller x1
2270 * Program cable x 1
2271
2272 **Dimension and weight**:
2273
2274 * Device Size: 13.5 x 7 x 3 cm
2275 * Device Weight: 105g
2276 * Package Size / pcs : 14.5 x 8 x 5 cm
2277 * Weight / pcs : 170g
2278
2279 = 10. Support =
2280
2281
2282 * (((
2283 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2284 )))
2285 * (((
2286 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2287
2288
2289
2290 )))
2291
2292 = 11. Reference​​​​​ =
2293
2294
2295 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2296 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2297 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]