Version 126.7 by Xiaoling on 2023/06/19 15:51

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207
208
209
210 == 1.5 Hardware Variants ==
211
212
213 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
214 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
215 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
216 (% style="text-align:center" %)
217 [[image:image-20230424115112-1.png||height="106" width="58"]]
218 )))|(% style="width:334px" %)(((
219 * 2 x Digital Input (Bi-direction)
220 * 2 x Digital Output
221 * 2 x Relay Output (5A@250VAC / 30VDC)
222 * 2 x 0~~20mA Analog Input (res:0.01mA)
223 * 2 x 0~~30V Analog Input (res:0.01v)
224 * 1 x Counting Port
225 )))
226
227 = 2. Power ON Device =
228
229
230 (((
231 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
232 )))
233
234 (((
235 PWR will on when device is properly powered.
236
237
238 )))
239
240 [[image:1653297104069-180.png]]
241
242
243 = 3. Operation Mode =
244
245 == 3.1 How it works? ==
246
247
248 (((
249 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 )))
251
252 (((
253 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
254 )))
255
256
257 == 3.2 Example to join LoRaWAN network ==
258
259
260 (((
261 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
262
263
264 )))
265
266 [[image:image-20220523172350-1.png||height="266" width="864"]]
267
268
269 (((
270 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
271
272
273 )))
274
275 (((
276 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
277 )))
278
279 (((
280 Each LT is shipped with a sticker with the default device EUI as below:
281 )))
282
283 [[image:image-20230425173427-2.png||height="246" width="530"]]
284
285
286 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
287
288 **Add APP EUI in the application.**
289
290 [[image:1653297955910-247.png||height="321" width="716"]]
291
292
293 **Add APP KEY and DEV EUI**
294
295 [[image:1653298023685-319.png]]
296
297
298
299 (((
300 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
301
302
303 )))
304
305 [[image:1653298044601-602.png||height="405" width="709"]]
306
307
308 == 3.3 Uplink Payload ==
309
310
311 There are five working modes + one interrupt mode on LT for different type application:
312
313 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
314
315 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
316
317 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
318
319 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
320
321 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
322
323 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
324
325 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
326
327
328 (((
329 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
330
331 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
333 |Value|(((
334 AVI1 voltage
335 )))|(((
336 AVI2 voltage
337 )))|(((
338 ACI1 Current
339 )))|(((
340 ACI2 Current
341 )))|DIDORO*|(((
342 Reserve
343 )))|MOD
344 )))
345
346 (((
347 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
348
349 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
351 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
352 )))
353
354 * RO is for relay. ROx=1 : close,ROx=0 always open.
355 * DI is for digital input. DIx=1: high or float, DIx=0: low.
356 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
357
358 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
359
360 For example if payload is: [[image:image-20220523175847-2.png]]
361
362
363 **The value for the interface is:  **
364
365 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366
367 AVI2 channel voltage is 0x04AC/1000=1.196V
368
369 ACI1 channel current is 0x1310/1000=4.880mA
370
371 ACI2 channel current is 0x1300/1000=4.864mA
372
373 The last byte 0xAA= 10101010(B) means
374
375 * [1] RO1 relay channel is close and the RO1 LED is ON.
376 * [0] RO2 relay channel is open and RO2 LED is OFF;
377
378 **LT22222-L:**
379
380 * [1] DI2 channel is high input and DI2 LED is ON;
381 * [0] DI1 channel is low input;
382
383 * [0] DO3 channel output state
384 ** DO3 is float in case no load between DO3 and V+.;
385 ** DO3 is high in case there is load between DO3 and V+.
386 ** DO3 LED is off in both case
387 * [1] DO2 channel output is low and DO2 LED is ON.
388 * [0] DO1 channel output state
389 ** DO1 is float in case no load between DO1 and V+.;
390 ** DO1 is high in case there is load between DO1 and V+.
391 ** DO1 LED is off in both case
392
393
394
395
396 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
397
398
399 (((
400 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
401 )))
402
403 (((
404 Total : 11 bytes payload
405
406 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
407 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
408 |Value|COUNT1|COUNT2 |DIDORO*|(((
409 Reserve
410 )))|MOD
411 )))
412
413 (((
414 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
415
416 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
417 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
418 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
419
420 RO is for relay. ROx=1 : close,ROx=0 always open.
421 )))
422
423 * FIRST: Indicate this is the first packet after join network.
424 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
425
426 (((
427 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
428 )))
429
430 (((
431 **To use counting mode, please run:**
432 )))
433
434 (% class="box infomessage" %)
435
436 (((
437 **AT+MOD=2**
438 )))
439
440 (((
441 **ATZ**
442 )))
443
444
445 (((
446
447
448 (% style="color:#4f81bd" %)**AT Commands for counting:**
449 )))
450
451 (((
452 **For LT22222-L:**
453
454 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
455
456 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
457
458 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
459
460 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
461
462 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
463
464 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
465 )))
466
467
468 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
469
470
471 **LT22222-L**: This mode the DI1 is used as a counting pin.
472
473 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
475 |Value|COUNT1|(((
476 ACI1 Current
477 )))|(((
478 ACI2 Current
479 )))|DIDORO*|Reserve|MOD
480
481 (((
482 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
483
484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
485 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
486 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
487 )))
488
489 * RO is for relay. ROx=1 : close,ROx=0 always open.
490 * FIRST: Indicate this is the first packet after join network.
491 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
492
493 (((
494 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
495 )))
496
497
498 (((
499 **To use counting mode, please run:**
500 )))
501
502 (% class="box infomessage" %)
503 (((
504 (((
505 (((
506 **AT+MOD=3**
507 )))
508
509 (((
510 **ATZ**
511 )))
512 )))
513 )))
514
515 (((
516 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
517 )))
518
519
520 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
521
522
523 (((
524 **LT22222-L**: This mode the DI1 is used as a counting pin.
525 )))
526
527 (((
528 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
529
530 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
531 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
532 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
533 Reserve
534 )))|MOD
535 )))
536
537 (((
538 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
539
540 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
541 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
542 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
543 )))
544
545 * RO is for relay. ROx=1 : close,ROx=0 always open.
546 * FIRST: Indicate this is the first packet after join network.
547 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
548
549 (((
550 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
551 )))
552
553 (((
554
555
556 **To use this mode, please run:**
557 )))
558
559 (% class="box infomessage" %)
560 (((
561 (((
562 (((
563 **AT+MOD=4**
564 )))
565
566 (((
567 **ATZ**
568 )))
569 )))
570 )))
571
572
573 (((
574 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
575 )))
576
577 (((
578 **Plus below command for AVI1 Counting:**
579
580 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
581
582 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
583
584 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
585
586 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
587 )))
588
589
590 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
591
592
593 **LT22222-L**: This mode the DI1 is used as a counting pin.
594
595 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
596 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
597 |Value|(((
598 AVI1 voltage
599 )))|(((
600 AVI2 voltage
601 )))|(((
602 ACI1 Current
603 )))|COUNT1|DIDORO*|(((
604 Reserve
605 )))|MOD
606
607 (((
608 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
609
610 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
611 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
612 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
613 )))
614
615 * RO is for relay. ROx=1 : close,ROx=0 always open.
616 * FIRST: Indicate this is the first packet after join network.
617 * (((
618 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
619 )))
620
621 (((
622 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
623 )))
624
625 (((
626
627
628 **To use this mode, please run:**
629 )))
630
631 (% class="box infomessage" %)
632 (((
633 (((
634 (((
635 **AT+MOD=5**
636 )))
637
638 (((
639 **ATZ**
640 )))
641 )))
642 )))
643
644 (((
645 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
646 )))
647
648
649 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
650
651
652 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
653
654 For example, if user has configured below commands:
655
656 * **AT+MOD=1 ** **~-~->**  The normal working mode
657 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
658
659 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
660
661 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
662 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
663
664 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
665
666
667 (% style="color:#4f81bd" %)**Trigger base on voltage**:
668
669 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
670
671
672 **Example:**
673
674 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
675
676 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
677
678
679
680 (% style="color:#4f81bd" %)**Trigger base on current**:
681
682 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
683
684
685 **Example:**
686
687 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
688
689
690
691 (% style="color:#4f81bd" %)**Trigger base on DI status**:
692
693 DI status trigger Flag.
694
695 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
696
697
698 **Example:**
699
700 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
701
702
703 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
704
705 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
706
707 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
708
709 AA: Code for this downlink Command:
710
711 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
712
713 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
714
715 yy2 yy2: AC1 or AV1 high limit.
716
717 yy3 yy3: AC2 or AV2 low limit.
718
719 Yy4 yy4: AC2 or AV2 high limit.
720
721
722 **Example1**: AA 00 13 88 00 00 00 00 00 00
723
724 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
725
726
727 **Example2**: AA 02 01 00
728
729 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
730
731
732
733 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
734
735 MOD6 Payload : total 11 bytes payload
736
737 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
738 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
739 |Value|(((
740 TRI_A FLAG
741 )))|(((
742 TRI_A Status
743 )))|(((
744 TRI_DI FLAG+STA
745 )))|Reserve|Enable/Disable MOD6|(((
746 MOD(6)
747 )))
748
749 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
750
751 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
752 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
753 |(((
754 AV1_LOW
755 )))|(((
756 AV1_HIGH
757 )))|(((
758 AV2_LOW
759 )))|(((
760 AV2_HIGH
761 )))|(((
762 AC1_LOW
763 )))|(((
764 AC1_HIGH
765 )))|(((
766 AC2_LOW
767 )))|(((
768 AC2_HIGH
769 )))
770
771 * Each bits shows if the corresponding trigger has been configured.
772
773 **Example:**
774
775 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
776
777
778 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
779
780 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
781 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
782 |(((
783 AV1_LOW
784 )))|(((
785 AV1_HIGH
786 )))|(((
787 AV2_LOW
788 )))|(((
789 AV2_HIGH
790 )))|(((
791 AC1_LOW
792 )))|(((
793 AC1_HIGH
794 )))|(((
795 AC2_LOW
796 )))|(((
797 AC2_HIGH
798 )))
799
800 * Each bits shows which status has been trigger on this uplink.
801
802 **Example:**
803
804 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
805
806
807 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
808
809 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
810 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
811 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
812
813 * Each bits shows which status has been trigger on this uplink.
814
815 **Example:**
816
817 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
818
819 00000101: Means both DI1 and DI2 trigger are enabled.
820
821
822 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
823
824 Downlink command to poll MOD6 status:
825
826 **AB 06**
827
828 When device got this command, it will send the MOD6 payload.
829
830
831 === 3.3.7 Payload Decoder ===
832
833 (((
834
835
836 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
837 )))
838
839
840 == 3.4 ​Configure LT via AT or Downlink ==
841
842
843 (((
844 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
845 )))
846
847 (((
848 (((
849 There are two kinds of Commands:
850 )))
851 )))
852
853 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
854
855 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
856
857 === 3.4.1 Common Commands ===
858
859
860 (((
861 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
862 )))
863
864
865 === 3.4.2 Sensor related commands ===
866
867 ==== 3.4.2.1 Set Transmit Interval ====
868
869
870 Set device uplink interval.
871
872 * (% style="color:#037691" %)**AT Command:**
873
874 (% style="color:blue" %)**AT+TDC=N **
875
876
877 **Example: **AT+TDC=30000. Means set interval to 30 seconds
878
879
880 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
881
882 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
883
884
885
886 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
887
888
889 Set work mode.
890
891 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
892
893 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
894
895 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
896
897 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
898
899
900
901 ==== 3.4.2.3 Poll an uplink ====
902
903
904 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
905
906 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
907
908 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
909
910 **Example**: 0x08FF, ask device to send an Uplink
911
912
913
914 ==== 3.4.2.4 Enable Trigger Mode ====
915
916
917 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
918
919 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
920
921 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
922
923 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
924
925
926 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
927
928 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
929
930
931
932 ==== 3.4.2.5 Poll trigger settings ====
933
934
935 Poll trigger settings
936
937 * (% style="color:#037691" %)**AT Command:**
938
939 There is no AT Command for this feature.
940
941 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
942
943 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
944
945
946
947 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
948
949
950 Enable Disable DI1/DI2/DI2 as trigger,
951
952 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
953
954 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
955
956
957 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
958
959 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
960
961
962
963 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
964
965
966 Set DI1 or DI3(for LT-33222-L) trigger.
967
968 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
969
970 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
971
972 (% style="color:red" %)**b :** (%%)delay timing.
973
974 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
975
976
977 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
978
979 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
980
981
982
983 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
984
985
986 Set DI2 trigger.
987
988 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
989
990 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
991
992 (% style="color:red" %)**b :** (%%)delay timing.
993
994 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
995
996
997 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
998
999 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1000
1001
1002
1003 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1004
1005
1006 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1007
1008 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1009
1010 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1011
1012 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1013
1014
1015
1016 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1017
1018
1019 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1020
1021 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1022
1023 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1024
1025 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1026
1027
1028
1029 ==== 3.4.2.11 Trigger – Set minimum interval ====
1030
1031
1032 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1033
1034 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1035
1036 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1037
1038 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1039
1040 (((
1041 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1042 )))
1043
1044
1045
1046 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1047
1048
1049 * (% style="color:#037691" %)**AT Command**
1050
1051 There is no AT Command to control Digital Output
1052
1053
1054 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1055
1056 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1057
1058 (((
1059 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1060 )))
1061
1062 (((
1063 01: Low,  00: High ,  11: No action
1064
1065 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1066 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1067 |02  01  00  11|Low|High|No Action
1068 |02  00  11  01|High|No Action|Low
1069 |02  11  01  00|No Action|Low|High
1070 )))
1071
1072 (((
1073 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1074 )))
1075
1076 (((
1077 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1078 )))
1079
1080
1081
1082 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1083
1084
1085 * (% style="color:#037691" %)**AT Command**
1086
1087 There is no AT Command to control Digital Output
1088
1089
1090 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1091
1092 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1093
1094
1095 This is to control the digital output time of DO pin. Include four bytes:
1096
1097 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1098
1099 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1100
1101 01: DO pins will change back to original state after timeout.
1102
1103 00: DO pins will change to an inverter state after timeout 
1104
1105
1106 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1107
1108 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1109 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1110 |0x01|DO1 set to low
1111 |0x00|DO1 set to high
1112 |0x11|DO1 NO Action
1113
1114 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1115
1116 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1117 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1118 |0x01|DO2 set to low
1119 |0x00|DO2 set to high
1120 |0x11|DO2 NO Action
1121
1122 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1123
1124 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1125 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1126 |0x01|DO3 set to low
1127 |0x00|DO3 set to high
1128 |0x11|DO3 NO Action
1129
1130 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1131
1132
1133 (% style="color:red" %)**Note: **
1134
1135 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1136
1137 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1138
1139 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1140
1141
1142 **Example payload:**
1143
1144 **~1. A9 01 01 01 01 07 D0**
1145
1146 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1147
1148 **2. A9 01 00 01 11 07 D0**
1149
1150 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1151
1152 **3. A9 00 00 00 00 07 D0**
1153
1154 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1155
1156 **4. A9 00 11 01 00 07 D0**
1157
1158 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1159
1160
1161
1162 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1163
1164
1165 * (% style="color:#037691" %)**AT Command:**
1166
1167 There is no AT Command to control Relay Output
1168
1169
1170 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1171
1172 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1173
1174
1175 (((
1176 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1177 )))
1178
1179 (((
1180 01: Close ,  00: Open , 11: No action
1181
1182 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1183 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1184 |03  00  11|Open|No Action
1185 |03  01  11|Close|No Action
1186 |03  11  00|No Action|Open
1187 |03  11  01|No Action|Close
1188 |03  00  00|Open|Open
1189 |03  01  01|Close|Close
1190 |03  01  00|Close|Open
1191 |03  00  01|Open|Close
1192 )))
1193
1194 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1195
1196
1197
1198 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1199
1200
1201 * (% style="color:#037691" %)**AT Command:**
1202
1203 There is no AT Command to control Relay Output
1204
1205
1206 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1207
1208 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1209
1210
1211 This is to control the relay output time of relay. Include four bytes:
1212
1213 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1214
1215 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1216
1217 01: Relays will change back to original state after timeout.
1218
1219 00: Relays will change to an inverter state after timeout
1220
1221
1222 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1223
1224 [[image:image-20221008095908-1.png||height="364" width="564"]]
1225
1226
1227 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1228
1229
1230 (% style="color:red" %)**Note:**
1231
1232 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1233
1234 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1235
1236
1237 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1238
1239
1240 **Example payload:**
1241
1242 **~1. 05 01 11 07 D0**
1243
1244 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1245
1246 **2. 05 01 10 07 D0**
1247
1248 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1249
1250 **3. 05 00 01 07 D0**
1251
1252 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1253
1254 **4. 05 00 00 07 D0**
1255
1256 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1257
1258
1259
1260 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1261
1262
1263 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1264
1265 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1266
1267 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1268
1269 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1270
1271
1272
1273 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1274
1275
1276 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1277
1278 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1279
1280 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1281
1282
1283 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1284
1285 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1286
1287
1288
1289 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1290
1291
1292 Clear counting for counting mode
1293
1294 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1295
1296 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1297
1298 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1299
1300
1301
1302 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1303
1304
1305 * (% style="color:#037691" %)**AT Command:**
1306
1307 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1308
1309
1310 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1311
1312 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1313
1314 (((
1315 range: aa bb cc:0 to 16777215,  (unit:second)
1316 )))
1317
1318
1319
1320 ==== 3.4.2.20 Reset save RO DO state ====
1321
1322
1323 * (% style="color:#037691" %)**AT Command:**
1324
1325 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1326
1327 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1328
1329
1330 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1331
1332 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1333
1334
1335
1336 ==== 3.4.2.21 Encrypted payload ====
1337
1338
1339 * (% style="color:#037691" %)**AT Command:**
1340
1341 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1342
1343 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1344
1345
1346
1347 ==== 3.4.2.22 Get sensor value ====
1348
1349
1350 * (% style="color:#037691" %)**AT Command:**
1351
1352 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1353
1354 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1355
1356
1357
1358 ==== 3.4.2.23 Resets the downlink packet count ====
1359
1360
1361 * (% style="color:#037691" %)**AT Command:**
1362
1363 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1364
1365 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1366
1367
1368
1369 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1370
1371
1372 * (% style="color:#037691" %)**AT Command:**
1373
1374 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1375
1376 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1377
1378
1379 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1380
1381 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1382
1383
1384
1385 ==== 3.4.2.25 Copy downlink to uplink ====
1386
1387
1388 * (% style="color:#037691" %)**AT Command**(%%)**:**
1389
1390 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1391
1392 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1393
1394
1395 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1396
1397 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1398
1399
1400
1401 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1402
1403 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1404
1405
1406
1407 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1408
1409
1410 * (((
1411 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1412
1413 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1414
1415
1416 )))
1417
1418 **Example:**
1419
1420 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1421
1422
1423 == 3.5 Integrate with Mydevice ==
1424
1425
1426 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1427
1428 (((
1429 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1430 )))
1431
1432 (((
1433 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1434
1435
1436 )))
1437
1438 [[image:image-20220719105525-1.png||height="377" width="677"]]
1439
1440
1441
1442 [[image:image-20220719110247-2.png||height="388" width="683"]]
1443
1444
1445 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1446
1447 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1448
1449 Search under The things network
1450
1451 [[image:1653356838789-523.png||height="337" width="740"]]
1452
1453
1454
1455 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1456
1457 [[image:image-20220524094909-1.png||height="335" width="729"]]
1458
1459
1460 [[image:image-20220524094909-2.png||height="337" width="729"]]
1461
1462
1463 [[image:image-20220524094909-3.png||height="338" width="727"]]
1464
1465
1466 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1467
1468
1469 [[image:image-20220524094909-5.png||height="341" width="734"]]
1470
1471
1472 == 3.6 Interface Detail ==
1473
1474 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1475
1476
1477 Support NPN Type sensor
1478
1479 [[image:1653356991268-289.png]]
1480
1481
1482 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1483
1484
1485 (((
1486 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1487 )))
1488
1489 (((
1490 (((
1491 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1492
1493
1494 )))
1495 )))
1496
1497 [[image:1653357170703-587.png]]
1498
1499 (((
1500 (((
1501 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1502 )))
1503 )))
1504
1505 (((
1506
1507 )))
1508
1509 (((
1510 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1511 )))
1512
1513 (((
1514 This type of sensor will output a low signal GND when active.
1515 )))
1516
1517 * (((
1518 Connect sensor's output to DI1-
1519 )))
1520 * (((
1521 Connect sensor's VCC to DI1+.
1522 )))
1523
1524 (((
1525 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1526 )))
1527
1528 (((
1529 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1530 )))
1531
1532 (((
1533 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1534 )))
1535
1536 (((
1537
1538 )))
1539
1540 (((
1541 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1542 )))
1543
1544 (((
1545 This type of sensor will output a high signal (example 24v) when active.
1546 )))
1547
1548 * (((
1549 Connect sensor's output to DI1+
1550 )))
1551 * (((
1552 Connect sensor's GND DI1-.
1553 )))
1554
1555 (((
1556 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1557 )))
1558
1559 (((
1560 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1561 )))
1562
1563 (((
1564 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1565 )))
1566
1567 (((
1568
1569 )))
1570
1571 (((
1572 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1573 )))
1574
1575 (((
1576 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1577 )))
1578
1579 * (((
1580 Connect sensor's output to DI1+ with a serial 50K resistor
1581 )))
1582 * (((
1583 Connect sensor's GND DI1-.
1584 )))
1585
1586 (((
1587 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1588 )))
1589
1590 (((
1591 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1592 )))
1593
1594 (((
1595 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1596 )))
1597
1598
1599 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1600
1601 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1602
1603 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1604
1605 [[image:image-20230616235145-1.png]]
1606
1607
1608
1609 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1610
1611
1612 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1613
1614 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1615
1616 [[image:1653357531600-905.png]]
1617
1618
1619 === 3.6.4 Analog Input Interface ===
1620
1621
1622 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1623
1624
1625 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1626
1627 [[image:1653357592296-182.png]]
1628
1629 Example to connect a 4~~20mA sensor
1630
1631 We take the wind speed sensor as an example for reference only.
1632
1633
1634 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1635
1636 (% style="color:red" %)**Red:  12~~24v**
1637
1638 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1639
1640 **Black:  GND**
1641
1642 **Connection diagram:**
1643
1644 [[image:1653357640609-758.png]]
1645
1646 [[image:1653357648330-671.png||height="155" width="733"]]
1647
1648
1649 Example connected to a regulated power supply to measure voltage
1650
1651 [[image:image-20230608101532-1.png||height="606" width="447"]]
1652
1653 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1654
1655 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1656
1657
1658 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1659
1660 (% style="color:red" %)**Red:  12~~24v**
1661
1662 **Black:  GND**
1663
1664
1665 === 3.6.5 Relay Output ===
1666
1667
1668 (((
1669 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1670
1671 **Note**: RO pins go to Open(NO) when device is power off.
1672 )))
1673
1674 [[image:image-20220524100215-9.png]]
1675
1676
1677 [[image:image-20220524100215-10.png||height="382" width="723"]]
1678
1679
1680 == 3.7 LEDs Indicators ==
1681
1682
1683 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1684 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1685 |**PWR**|Always on if there is power
1686 |**SYS**|(((
1687 After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1688 )))
1689 |**TX**|(((
1690 (((
1691 Device boot: TX blinks 5 times.
1692 )))
1693
1694 (((
1695 Successful join network: TX ON for 5 seconds.
1696 )))
1697
1698 (((
1699 Transmit a LoRa packet: TX blinks once
1700 )))
1701 )))
1702 |**RX**|RX blinks once when receive a packet.
1703 |**DO1**|
1704 |**DO2**|
1705 |**DO3**|
1706 |**DI2**|(((
1707 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1708 )))
1709 |**DI2**|(((
1710 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1711 )))
1712 |**DI2**|(((
1713 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1714 )))
1715 |**RO1**|
1716 |**RO2**|
1717
1718 = 4. Use AT Command =
1719
1720 == 4.1 Access AT Command ==
1721
1722
1723 (((
1724 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1725 )))
1726
1727 (((
1728
1729 )))
1730
1731 [[image:1653358238933-385.png]]
1732
1733
1734 (((
1735 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1736 )))
1737
1738 [[image:1653358355238-883.png]]
1739
1740
1741 (((
1742 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1743 )))
1744
1745 (((
1746 AT+<CMD>?        : Help on <CMD>
1747 )))
1748
1749 (((
1750 AT+<CMD>         : Run <CMD>
1751 )))
1752
1753 (((
1754 AT+<CMD>=<value> : Set the value
1755 )))
1756
1757 (((
1758 AT+<CMD>=?       :  Get the value
1759 )))
1760
1761 (((
1762 ATZ: Trig a reset of the MCU
1763 )))
1764
1765 (((
1766 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1767 )))
1768
1769 (((
1770 AT+DEUI: Get or Set the Device EUI
1771 )))
1772
1773 (((
1774 AT+DADDR: Get or Set the Device Address
1775 )))
1776
1777 (((
1778 AT+APPKEY: Get or Set the Application Key
1779 )))
1780
1781 (((
1782 AT+NWKSKEY: Get or Set the Network Session Key
1783 )))
1784
1785 (((
1786 AT+APPSKEY:  Get or Set the Application Session Key
1787 )))
1788
1789 (((
1790 AT+APPEUI:  Get or Set the Application EUI
1791 )))
1792
1793 (((
1794 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1795 )))
1796
1797 (((
1798 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1799 )))
1800
1801 (((
1802 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1803 )))
1804
1805 (((
1806 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1807 )))
1808
1809 (((
1810 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1811 )))
1812
1813 (((
1814 AT+RX2FQ: Get or Set the Rx2 window frequency
1815 )))
1816
1817 (((
1818 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1819 )))
1820
1821 (((
1822 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1823 )))
1824
1825 (((
1826 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1827 )))
1828
1829 (((
1830 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1831 )))
1832
1833 (((
1834 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1835 )))
1836
1837 (((
1838 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1839 )))
1840
1841 (((
1842 AT+NWKID: Get or Set the Network ID
1843 )))
1844
1845 (((
1846 AT+FCU: Get or Set the Frame Counter Uplink
1847 )))
1848
1849 (((
1850 AT+FCD: Get or Set the Frame Counter Downlink
1851 )))
1852
1853 (((
1854 AT+CLASS: Get or Set the Device Class
1855 )))
1856
1857 (((
1858 AT+JOIN: Join network
1859 )))
1860
1861 (((
1862 AT+NJS: Get OTAA Join Status
1863 )))
1864
1865 (((
1866 AT+SENDB: Send hexadecimal data along with the application port
1867 )))
1868
1869 (((
1870 AT+SEND: Send text data along with the application port
1871 )))
1872
1873 (((
1874 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1875 )))
1876
1877 (((
1878 AT+RECV: Print last received data in raw format
1879 )))
1880
1881 (((
1882 AT+VER:  Get current image version and Frequency Band
1883 )))
1884
1885 (((
1886 AT+CFM: Get or Set the confirmation mode (0-1)
1887 )))
1888
1889 (((
1890 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1891 )))
1892
1893 (((
1894 AT+SNR: Get the SNR of the last received packet
1895 )))
1896
1897 (((
1898 AT+RSSI: Get the RSSI of the last received packet
1899 )))
1900
1901 (((
1902 AT+TDC: Get or set the application data transmission interval in ms
1903 )))
1904
1905 (((
1906 AT+PORT: Get or set the application port
1907 )))
1908
1909 (((
1910 AT+DISAT: Disable AT commands
1911 )))
1912
1913 (((
1914 AT+PWORD: Set password, max 9 digits
1915 )))
1916
1917 (((
1918 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1919 )))
1920
1921 (((
1922 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1923 )))
1924
1925 (((
1926 AT+CFG: Print all settings
1927 )))
1928
1929
1930 == 4.2 Common AT Command Sequence ==
1931
1932 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1933
1934 (((
1935
1936
1937 (((
1938 (% style="color:blue" %)**If device has not joined network yet:**
1939 )))
1940 )))
1941
1942 (((
1943 (% style="background-color:#dcdcdc" %)**123456**
1944 )))
1945
1946 (((
1947 (% style="background-color:#dcdcdc" %)**AT+FDR**
1948 )))
1949
1950 (((
1951 (% style="background-color:#dcdcdc" %)**123456**
1952 )))
1953
1954 (((
1955 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1956 )))
1957
1958 (((
1959 (% style="background-color:#dcdcdc" %)**ATZ**
1960 )))
1961
1962
1963 (((
1964 (% style="color:blue" %)**If device already joined network:**
1965 )))
1966
1967 (((
1968 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1969 )))
1970
1971 (((
1972 (% style="background-color:#dcdcdc" %)**ATZ**
1973 )))
1974
1975
1976 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1977
1978 (((
1979
1980
1981 (((
1982 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1983 )))
1984 )))
1985
1986 (((
1987 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1988 )))
1989
1990 (((
1991 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1992 )))
1993
1994 (((
1995 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1996 )))
1997
1998 (((
1999 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2000 )))
2001
2002 (((
2003 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2004 )))
2005
2006 (((
2007 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2008 )))
2009
2010 (((
2011 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2012 )))
2013
2014 (((
2015 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2016 )))
2017
2018 (((
2019 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2020 )))
2021
2022 (((
2023 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2024 )))
2025
2026 (((
2027 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2028 )))
2029
2030 (((
2031 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2032
2033
2034 )))
2035
2036 (((
2037 (% style="color:red" %)**Note:**
2038 )))
2039
2040 (((
2041 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2042
2043 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2044
2045 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2046 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2047
2048 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2049
2050
2051 )))
2052
2053 (((
2054 [[image:1653359097980-169.png||height="188" width="729"]]
2055 )))
2056
2057 (((
2058
2059 )))
2060
2061 === 4.2.3 Change to Class A ===
2062
2063
2064 (((
2065 (% style="color:blue" %)**If sensor JOINED:**
2066
2067 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2068 ATZ**
2069 )))
2070
2071
2072 = 5. Case Study =
2073
2074 == 5.1 Counting how many objects pass in Flow Line ==
2075
2076
2077 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2078
2079
2080 = 6. FAQ =
2081
2082 == 6.1 How to upgrade the image? ==
2083
2084
2085 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2086
2087 * Support new features
2088 * For bug fix
2089 * Change LoRaWAN bands.
2090
2091 Below shows the hardware connection for how to upload an image to the LT:
2092
2093 [[image:1653359603330-121.png]]
2094
2095
2096 (((
2097 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2098 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2099 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2100
2101
2102 (((
2103 (% style="color:blue" %)**For LT-22222-L**(%%):
2104 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2105 )))
2106
2107
2108 )))
2109
2110 [[image:image-20220524103407-12.png]]
2111
2112
2113 [[image:image-20220524103429-13.png]]
2114
2115
2116 [[image:image-20220524104033-15.png]]
2117
2118
2119 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2120
2121
2122 [[image:1653360054704-518.png||height="186" width="745"]]
2123
2124
2125 (((
2126 (((
2127 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2128
2129
2130 )))
2131 )))
2132
2133 (((
2134 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2135 )))
2136
2137 (((
2138
2139
2140 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2141
2142
2143 )))
2144
2145 (((
2146 (((
2147 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2148 )))
2149 )))
2150
2151 (((
2152 (((
2153 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2154
2155
2156 )))
2157 )))
2158
2159 (((
2160 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2161
2162
2163 )))
2164
2165 (((
2166 [[image:1653360231087-571.png||height="401" width="727"]]
2167
2168
2169 )))
2170
2171 (((
2172 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2173 )))
2174
2175
2176
2177 (((
2178 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2179
2180
2181 )))
2182
2183 (((
2184 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2185 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2186 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2187 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2188 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2189 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2190 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2191 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2192 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2193 )))
2194
2195
2196 (((
2197 As shown in below:
2198 )))
2199
2200 [[image:1653360498588-932.png||height="485" width="726"]]
2201
2202
2203 == 6.4 How to change the uplink interval? ==
2204
2205
2206 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2207
2208
2209 == 6.5 Can I see counting event in Serial? ==
2210
2211
2212 (((
2213 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2214
2215
2216 == 6.6 Can i use point to point communication for LT-22222-L? ==
2217
2218
2219 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2220
2221
2222 )))
2223
2224 (((
2225 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2226
2227
2228 If the device is not shut down, but directly powered off.
2229
2230 It will default that this is a power-off state.
2231
2232 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2233
2234 After restart, the status before power failure will be read from flash.
2235
2236
2237 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2238
2239
2240 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2241
2242
2243 [[image:image-20221006170630-1.png||height="610" width="945"]]
2244
2245
2246 == 6.9 Can LT22222-L save RO state? ==
2247
2248
2249 Firmware version needs to be no less than 1.6.0.
2250
2251
2252 = 7. Trouble Shooting =
2253 )))
2254
2255 (((
2256 (((
2257 == 7.1 Downlink doesn't work, how to solve it? ==
2258
2259
2260 )))
2261 )))
2262
2263 (((
2264 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2265 )))
2266
2267 (((
2268
2269
2270 == 7.2 Have trouble to upload image. ==
2271
2272
2273 )))
2274
2275 (((
2276 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2277 )))
2278
2279 (((
2280
2281
2282 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2283
2284
2285 )))
2286
2287 (((
2288 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2289 )))
2290
2291
2292 = 8. Order Info =
2293
2294
2295 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2296
2297 (% style="color:#4f81bd" %)**XXX:**
2298
2299 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2300 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2301 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2302 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2303 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2304 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2305 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2306 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2307 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2308
2309 = 9. Packing Info =
2310
2311
2312 **Package Includes**:
2313
2314 * LT-22222-L I/O Controller x 1
2315 * Stick Antenna for LoRa RF part x 1
2316 * Bracket for controller x1
2317 * Program cable x 1
2318
2319 **Dimension and weight**:
2320
2321 * Device Size: 13.5 x 7 x 3 cm
2322 * Device Weight: 105g
2323 * Package Size / pcs : 14.5 x 8 x 5 cm
2324 * Weight / pcs : 170g
2325
2326 = 10. Support =
2327
2328
2329 * (((
2330 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2331 )))
2332 * (((
2333 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2334
2335
2336
2337 )))
2338
2339 = 11. Reference​​​​​ =
2340
2341
2342 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2343 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2344 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2345
2346