Version 126.13 by Xiaoling on 2023/06/19 16:05

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207
208
209 == 1.5 Hardware Variants ==
210
211
212 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
213 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
214 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
215 (% style="text-align:center" %)
216 [[image:image-20230424115112-1.png||height="106" width="58"]]
217 )))|(% style="width:334px" %)(((
218 * 2 x Digital Input (Bi-direction)
219 * 2 x Digital Output
220 * 2 x Relay Output (5A@250VAC / 30VDC)
221 * 2 x 0~~20mA Analog Input (res:0.01mA)
222 * 2 x 0~~30V Analog Input (res:0.01v)
223 * 1 x Counting Port
224 )))
225
226 = 2. Power ON Device =
227
228
229 (((
230 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
231 )))
232
233 (((
234 PWR will on when device is properly powered.
235
236
237 )))
238
239 [[image:1653297104069-180.png]]
240
241
242 = 3. Operation Mode =
243
244 == 3.1 How it works? ==
245
246
247 (((
248 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
249 )))
250
251 (((
252 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
253 )))
254
255
256 == 3.2 Example to join LoRaWAN network ==
257
258
259 (((
260 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
261
262
263 )))
264
265 [[image:image-20220523172350-1.png||height="266" width="864"]]
266
267
268 (((
269 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
270
271
272 )))
273
274 (((
275 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
276 )))
277
278 (((
279 Each LT is shipped with a sticker with the default device EUI as below:
280 )))
281
282 [[image:image-20230425173427-2.png||height="246" width="530"]]
283
284
285 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
286
287 **Add APP EUI in the application.**
288
289 [[image:1653297955910-247.png||height="321" width="716"]]
290
291
292 **Add APP KEY and DEV EUI**
293
294 [[image:1653298023685-319.png]]
295
296
297
298 (((
299 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
300
301
302 )))
303
304 [[image:1653298044601-602.png||height="405" width="709"]]
305
306
307 == 3.3 Uplink Payload ==
308
309
310 There are five working modes + one interrupt mode on LT for different type application:
311
312 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
313
314 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
315
316 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
317
318 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
319
320 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
321
322 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
323
324 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
325
326
327 (((
328 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
329
330 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
331 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
332 |Value|(((
333 AVI1 voltage
334 )))|(((
335 AVI2 voltage
336 )))|(((
337 ACI1 Current
338 )))|(((
339 ACI2 Current
340 )))|DIDORO*|(((
341 Reserve
342 )))|MOD
343 )))
344
345 (((
346 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
347
348 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
349 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
350 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
351 )))
352
353 * RO is for relay. ROx=1 : close,ROx=0 always open.
354 * DI is for digital input. DIx=1: high or float, DIx=0: low.
355 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
356
357 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
358
359 For example if payload is: [[image:image-20220523175847-2.png]]
360
361
362 **The value for the interface is:  **
363
364 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
365
366 AVI2 channel voltage is 0x04AC/1000=1.196V
367
368 ACI1 channel current is 0x1310/1000=4.880mA
369
370 ACI2 channel current is 0x1300/1000=4.864mA
371
372 The last byte 0xAA= 10101010(B) means
373
374 * [1] RO1 relay channel is close and the RO1 LED is ON.
375 * [0] RO2 relay channel is open and RO2 LED is OFF;
376
377 **LT22222-L:**
378
379 * [1] DI2 channel is high input and DI2 LED is ON;
380 * [0] DI1 channel is low input;
381
382 * [0] DO3 channel output state
383 ** DO3 is float in case no load between DO3 and V+.;
384 ** DO3 is high in case there is load between DO3 and V+.
385 ** DO3 LED is off in both case
386 * [1] DO2 channel output is low and DO2 LED is ON.
387 * [0] DO1 channel output state
388 ** DO1 is float in case no load between DO1 and V+.;
389 ** DO1 is high in case there is load between DO1 and V+.
390 ** DO1 LED is off in both case
391
392
393
394 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
395
396
397 (((
398 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
399 )))
400
401 (((
402 Total : 11 bytes payload
403
404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
405 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
406 |Value|COUNT1|COUNT2 |DIDORO*|(((
407 Reserve
408 )))|MOD
409 )))
410
411 (((
412 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
413
414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
415 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
416 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
417
418 RO is for relay. ROx=1 : close,ROx=0 always open.
419 )))
420
421 * FIRST: Indicate this is the first packet after join network.
422 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
423
424 (((
425 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
426 )))
427
428 (((
429 **To use counting mode, please run:**
430 )))
431
432
433 (((
434 (% class="box infomessage" %)
435 (((
436 **AT+MOD=2**
437
438 **ATZ**
439 )))
440 )))
441
442 (((
443
444
445 (% style="color:#4f81bd" %)**AT Commands for counting:**
446 )))
447
448 (((
449 **For LT22222-L:**
450
451 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
452
453 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
454
455 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
456
457 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
458
459 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
460
461 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
462 )))
463
464
465 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
466
467
468 **LT22222-L**: This mode the DI1 is used as a counting pin.
469
470 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
472 |Value|COUNT1|(((
473 ACI1 Current
474 )))|(((
475 ACI2 Current
476 )))|DIDORO*|Reserve|MOD
477
478 (((
479 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
480
481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
482 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
483 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
484 )))
485
486 * RO is for relay. ROx=1 : close,ROx=0 always open.
487 * FIRST: Indicate this is the first packet after join network.
488 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
489
490 (((
491 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
492 )))
493
494
495 (((
496 **To use counting mode, please run:**
497 )))
498
499 (((
500 (% class="box infomessage" %)
501 (((
502 **AT+MOD=3**
503
504 **ATZ**
505 )))
506 )))
507
508
509 (((
510 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
511 )))
512
513
514 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
515
516
517 (((
518 **LT22222-L**: This mode the DI1 is used as a counting pin.
519 )))
520
521 (((
522 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
523
524 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
525 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
526 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
527 Reserve
528 )))|MOD
529 )))
530
531 (((
532 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
533
534 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
535 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
536 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
537 )))
538
539 * RO is for relay. ROx=1 : close,ROx=0 always open.
540 * FIRST: Indicate this is the first packet after join network.
541 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
542
543 (((
544 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
545 )))
546
547 (((
548 **To use this mode, please run:**
549 )))
550
551 (((
552 (% class="box infomessage" %)
553 (((
554 **AT+MOD=4**
555
556 **ATZ**
557 )))
558 )))
559
560
561 (((
562 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
563 )))
564
565 (((
566 **Plus below command for AVI1 Counting:**
567
568 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
569
570 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
571
572 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
573
574 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
575 )))
576
577
578 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
579
580
581 **LT22222-L**: This mode the DI1 is used as a counting pin.
582
583 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
584 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
585 |Value|(((
586 AVI1 voltage
587 )))|(((
588 AVI2 voltage
589 )))|(((
590 ACI1 Current
591 )))|COUNT1|DIDORO*|(((
592 Reserve
593 )))|MOD
594
595 (((
596 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
597
598 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
599 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
600 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
601 )))
602
603 * RO is for relay. ROx=1 : close,ROx=0 always open.
604 * FIRST: Indicate this is the first packet after join network.
605 * (((
606 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
607 )))
608
609 (((
610 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
611 )))
612
613 (((
614
615
616 **To use this mode, please run:**
617 )))
618
619
620 (((
621 (% class="box infomessage" %)
622 (((
623 **AT+MOD=5**
624
625 **ATZ**
626 )))
627 )))
628
629
630 (((
631 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
632 )))
633
634
635 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
636
637
638 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
639
640 For example, if user has configured below commands:
641
642 * **AT+MOD=1 ** **~-~->**  The normal working mode
643 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
644
645 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
646
647 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
648 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
649
650 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
651
652
653 (% style="color:#4f81bd" %)**Trigger base on voltage**:
654
655 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
656
657
658 **Example:**
659
660 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
661
662 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
663
664
665
666 (% style="color:#4f81bd" %)**Trigger base on current**:
667
668 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
669
670
671 **Example:**
672
673 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
674
675
676
677 (% style="color:#4f81bd" %)**Trigger base on DI status**:
678
679 DI status trigger Flag.
680
681 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
682
683
684 **Example:**
685
686 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
687
688
689 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
690
691 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
692
693 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
694
695 AA: Code for this downlink Command:
696
697 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
698
699 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
700
701 yy2 yy2: AC1 or AV1 high limit.
702
703 yy3 yy3: AC2 or AV2 low limit.
704
705 Yy4 yy4: AC2 or AV2 high limit.
706
707
708 **Example1**: AA 00 13 88 00 00 00 00 00 00
709
710 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
711
712
713 **Example2**: AA 02 01 00
714
715 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
716
717
718
719 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
720
721 MOD6 Payload : total 11 bytes payload
722
723 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
724 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
725 |Value|(((
726 TRI_A FLAG
727 )))|(((
728 TRI_A Status
729 )))|(((
730 TRI_DI FLAG+STA
731 )))|Reserve|Enable/Disable MOD6|(((
732 MOD(6)
733 )))
734
735 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
736
737 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
738 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
739 |(((
740 AV1_LOW
741 )))|(((
742 AV1_HIGH
743 )))|(((
744 AV2_LOW
745 )))|(((
746 AV2_HIGH
747 )))|(((
748 AC1_LOW
749 )))|(((
750 AC1_HIGH
751 )))|(((
752 AC2_LOW
753 )))|(((
754 AC2_HIGH
755 )))
756
757 * Each bits shows if the corresponding trigger has been configured.
758
759 **Example:**
760
761 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
762
763
764 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
765
766 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
767 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
768 |(((
769 AV1_LOW
770 )))|(((
771 AV1_HIGH
772 )))|(((
773 AV2_LOW
774 )))|(((
775 AV2_HIGH
776 )))|(((
777 AC1_LOW
778 )))|(((
779 AC1_HIGH
780 )))|(((
781 AC2_LOW
782 )))|(((
783 AC2_HIGH
784 )))
785
786 * Each bits shows which status has been trigger on this uplink.
787
788 **Example:**
789
790 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
791
792
793 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
794
795 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
796 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
797 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
798
799 * Each bits shows which status has been trigger on this uplink.
800
801 **Example:**
802
803 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
804
805 00000101: Means both DI1 and DI2 trigger are enabled.
806
807
808 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
809
810 Downlink command to poll MOD6 status:
811
812 **AB 06**
813
814 When device got this command, it will send the MOD6 payload.
815
816
817 === 3.3.7 Payload Decoder ===
818
819 (((
820
821
822 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
823 )))
824
825
826 == 3.4 ​Configure LT via AT or Downlink ==
827
828
829 (((
830 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
831 )))
832
833 (((
834 (((
835 There are two kinds of Commands:
836 )))
837 )))
838
839 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
840
841 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
842
843 === 3.4.1 Common Commands ===
844
845
846 (((
847 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
848 )))
849
850
851 === 3.4.2 Sensor related commands ===
852
853 ==== 3.4.2.1 Set Transmit Interval ====
854
855
856 Set device uplink interval.
857
858 * (% style="color:#037691" %)**AT Command:**
859
860 (% style="color:blue" %)**AT+TDC=N **
861
862
863 **Example: **AT+TDC=30000. Means set interval to 30 seconds
864
865
866 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
867
868 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
869
870
871
872 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
873
874
875 Set work mode.
876
877 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
878
879 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
880
881 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
882
883 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
884
885
886
887 ==== 3.4.2.3 Poll an uplink ====
888
889
890 * (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
891
892 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
893
894 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
895
896 **Example**: 0x08FF, ask device to send an Uplink
897
898
899
900 ==== 3.4.2.4 Enable Trigger Mode ====
901
902
903 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
904
905 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
906
907 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
908
909 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
910
911
912 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
913
914 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
915
916
917
918 ==== 3.4.2.5 Poll trigger settings ====
919
920
921 Poll trigger settings
922
923 * (% style="color:#037691" %)**AT Command:**
924
925 There is no AT Command for this feature.
926
927 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
928
929 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
930
931
932
933 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
934
935
936 Enable Disable DI1/DI2/DI2 as trigger,
937
938 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
939
940 **Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
941
942
943 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
944
945 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
946
947
948
949 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
950
951
952 Set DI1 or DI3(for LT-33222-L) trigger.
953
954 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
955
956 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
957
958 (% style="color:red" %)**b :** (%%)delay timing.
959
960 **Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
961
962
963 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
964
965 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
966
967
968
969 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
970
971
972 Set DI2 trigger.
973
974 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
975
976 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
977
978 (% style="color:red" %)**b :** (%%)delay timing.
979
980 **Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
981
982
983 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
984
985 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
986
987
988
989 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
990
991
992 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
993
994 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
995
996 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
997
998 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
999
1000
1001
1002 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1003
1004
1005 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1006
1007 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1008
1009 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1010
1011 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1012
1013
1014
1015 ==== 3.4.2.11 Trigger – Set minimum interval ====
1016
1017
1018 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1019
1020 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1021
1022 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1023
1024 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1025
1026 (((
1027 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1028 )))
1029
1030
1031
1032 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1033
1034
1035 * (% style="color:#037691" %)**AT Command**
1036
1037 There is no AT Command to control Digital Output
1038
1039
1040 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1041
1042 (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1043
1044 (((
1045 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1046 )))
1047
1048 (((
1049 01: Low,  00: High ,  11: No action
1050
1051 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1052 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1053 |02  01  00  11|Low|High|No Action
1054 |02  00  11  01|High|No Action|Low
1055 |02  11  01  00|No Action|Low|High
1056 )))
1057
1058 (((
1059 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1060 )))
1061
1062 (((
1063 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1064 )))
1065
1066
1067
1068 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1069
1070
1071 * (% style="color:#037691" %)**AT Command**
1072
1073 There is no AT Command to control Digital Output
1074
1075
1076 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1077
1078 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1079
1080
1081 This is to control the digital output time of DO pin. Include four bytes:
1082
1083 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1084
1085 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1086
1087 01: DO pins will change back to original state after timeout.
1088
1089 00: DO pins will change to an inverter state after timeout 
1090
1091
1092 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1093
1094 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1095 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1096 |0x01|DO1 set to low
1097 |0x00|DO1 set to high
1098 |0x11|DO1 NO Action
1099
1100 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1101
1102 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1103 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1104 |0x01|DO2 set to low
1105 |0x00|DO2 set to high
1106 |0x11|DO2 NO Action
1107
1108 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1109
1110 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1111 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1112 |0x01|DO3 set to low
1113 |0x00|DO3 set to high
1114 |0x11|DO3 NO Action
1115
1116 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1117
1118
1119 (% style="color:red" %)**Note: **
1120
1121 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1122
1123 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1124
1125 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1126
1127
1128 **Example payload:**
1129
1130 **~1. A9 01 01 01 01 07 D0**
1131
1132 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1133
1134 **2. A9 01 00 01 11 07 D0**
1135
1136 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1137
1138 **3. A9 00 00 00 00 07 D0**
1139
1140 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1141
1142 **4. A9 00 11 01 00 07 D0**
1143
1144 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1145
1146
1147
1148 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1149
1150
1151 * (% style="color:#037691" %)**AT Command:**
1152
1153 There is no AT Command to control Relay Output
1154
1155
1156 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1157
1158 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1159
1160
1161 (((
1162 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1163 )))
1164
1165 (((
1166 01: Close ,  00: Open , 11: No action
1167
1168 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1169 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1170 |03  00  11|Open|No Action
1171 |03  01  11|Close|No Action
1172 |03  11  00|No Action|Open
1173 |03  11  01|No Action|Close
1174 |03  00  00|Open|Open
1175 |03  01  01|Close|Close
1176 |03  01  00|Close|Open
1177 |03  00  01|Open|Close
1178 )))
1179
1180 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1181
1182
1183
1184 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1185
1186
1187 * (% style="color:#037691" %)**AT Command:**
1188
1189 There is no AT Command to control Relay Output
1190
1191
1192 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1193
1194 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1195
1196
1197 This is to control the relay output time of relay. Include four bytes:
1198
1199 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1200
1201 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1202
1203 01: Relays will change back to original state after timeout.
1204
1205 00: Relays will change to an inverter state after timeout
1206
1207
1208 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1209
1210 [[image:image-20221008095908-1.png||height="364" width="564"]]
1211
1212
1213 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1214
1215
1216 (% style="color:red" %)**Note:**
1217
1218 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1219
1220 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1221
1222
1223 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1224
1225
1226 **Example payload:**
1227
1228 **~1. 05 01 11 07 D0**
1229
1230 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1231
1232 **2. 05 01 10 07 D0**
1233
1234 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1235
1236 **3. 05 00 01 07 D0**
1237
1238 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1239
1240 **4. 05 00 00 07 D0**
1241
1242 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1243
1244
1245
1246 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1247
1248
1249 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1250
1251 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1252
1253 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1254
1255 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1256
1257
1258
1259 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1260
1261
1262 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1263
1264 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1265
1266 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1267
1268
1269 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1270
1271 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1272
1273
1274
1275 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1276
1277
1278 Clear counting for counting mode
1279
1280 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1281
1282 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1283
1284 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1285
1286
1287
1288 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1289
1290
1291 * (% style="color:#037691" %)**AT Command:**
1292
1293 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1294
1295
1296 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1297
1298 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1299
1300 (((
1301 range: aa bb cc:0 to 16777215,  (unit:second)
1302 )))
1303
1304
1305
1306 ==== 3.4.2.20 Reset save RO DO state ====
1307
1308
1309 * (% style="color:#037691" %)**AT Command:**
1310
1311 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1312
1313 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1314
1315
1316 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1317
1318 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1319
1320
1321
1322 ==== 3.4.2.21 Encrypted payload ====
1323
1324
1325 * (% style="color:#037691" %)**AT Command:**
1326
1327 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1328
1329 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1330
1331
1332
1333 ==== 3.4.2.22 Get sensor value ====
1334
1335
1336 * (% style="color:#037691" %)**AT Command:**
1337
1338 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1339
1340 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1341
1342
1343
1344 ==== 3.4.2.23 Resets the downlink packet count ====
1345
1346
1347 * (% style="color:#037691" %)**AT Command:**
1348
1349 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1350
1351 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1352
1353
1354
1355 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1356
1357
1358 * (% style="color:#037691" %)**AT Command:**
1359
1360 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1361
1362 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1363
1364
1365 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1366
1367 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1368
1369
1370
1371 ==== 3.4.2.25 Copy downlink to uplink ====
1372
1373
1374 * (% style="color:#037691" %)**AT Command**(%%)**:**
1375
1376 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1377
1378 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1379
1380
1381 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1382
1383 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1384
1385
1386
1387 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1388
1389 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1390
1391
1392
1393 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1394
1395
1396 * (((
1397 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1398
1399 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1400
1401
1402 )))
1403
1404 **Example:**
1405
1406 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1407
1408
1409 == 3.5 Integrate with Mydevice ==
1410
1411
1412 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1413
1414 (((
1415 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1416 )))
1417
1418 (((
1419 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1420
1421
1422 )))
1423
1424 [[image:image-20220719105525-1.png||height="377" width="677"]]
1425
1426
1427
1428 [[image:image-20220719110247-2.png||height="388" width="683"]]
1429
1430
1431 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1432
1433 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1434
1435 Search under The things network
1436
1437 [[image:1653356838789-523.png||height="337" width="740"]]
1438
1439
1440
1441 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1442
1443 [[image:image-20220524094909-1.png||height="335" width="729"]]
1444
1445
1446 [[image:image-20220524094909-2.png||height="337" width="729"]]
1447
1448
1449 [[image:image-20220524094909-3.png||height="338" width="727"]]
1450
1451
1452 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1453
1454
1455 [[image:image-20220524094909-5.png||height="341" width="734"]]
1456
1457
1458 == 3.6 Interface Detail ==
1459
1460 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1461
1462
1463 Support NPN Type sensor
1464
1465 [[image:1653356991268-289.png]]
1466
1467
1468 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1469
1470
1471 (((
1472 The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1473 )))
1474
1475 (((
1476 (((
1477 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1478
1479
1480 )))
1481 )))
1482
1483 [[image:1653357170703-587.png]]
1484
1485 (((
1486 (((
1487 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1488 )))
1489 )))
1490
1491 (((
1492
1493 )))
1494
1495 (((
1496 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1497 )))
1498
1499 (((
1500 This type of sensor will output a low signal GND when active.
1501 )))
1502
1503 * (((
1504 Connect sensor's output to DI1-
1505 )))
1506 * (((
1507 Connect sensor's VCC to DI1+.
1508 )))
1509
1510 (((
1511 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1512 )))
1513
1514 (((
1515 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1516 )))
1517
1518 (((
1519 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1520 )))
1521
1522 (((
1523
1524 )))
1525
1526 (((
1527 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1528 )))
1529
1530 (((
1531 This type of sensor will output a high signal (example 24v) when active.
1532 )))
1533
1534 * (((
1535 Connect sensor's output to DI1+
1536 )))
1537 * (((
1538 Connect sensor's GND DI1-.
1539 )))
1540
1541 (((
1542 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1543 )))
1544
1545 (((
1546 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1547 )))
1548
1549 (((
1550 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1551 )))
1552
1553 (((
1554
1555 )))
1556
1557 (((
1558 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1559 )))
1560
1561 (((
1562 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1563 )))
1564
1565 * (((
1566 Connect sensor's output to DI1+ with a serial 50K resistor
1567 )))
1568 * (((
1569 Connect sensor's GND DI1-.
1570 )))
1571
1572 (((
1573 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1574 )))
1575
1576 (((
1577 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1578 )))
1579
1580 (((
1581 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1582 )))
1583
1584
1585 (% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1586
1587 From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1588
1589 To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1590
1591 [[image:image-20230616235145-1.png]]
1592
1593
1594
1595 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1596
1597
1598 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1599
1600 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1601
1602 [[image:1653357531600-905.png]]
1603
1604
1605 === 3.6.4 Analog Input Interface ===
1606
1607
1608 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1609
1610
1611 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1612
1613 [[image:1653357592296-182.png]]
1614
1615 Example to connect a 4~~20mA sensor
1616
1617 We take the wind speed sensor as an example for reference only.
1618
1619
1620 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1621
1622 (% style="color:red" %)**Red:  12~~24v**
1623
1624 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1625
1626 **Black:  GND**
1627
1628 **Connection diagram:**
1629
1630 [[image:1653357640609-758.png]]
1631
1632 [[image:1653357648330-671.png||height="155" width="733"]]
1633
1634
1635 Example connected to a regulated power supply to measure voltage
1636
1637 [[image:image-20230608101532-1.png||height="606" width="447"]]
1638
1639 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1640
1641 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1642
1643
1644 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1645
1646 (% style="color:red" %)**Red:  12~~24v**
1647
1648 **Black:  GND**
1649
1650
1651 === 3.6.5 Relay Output ===
1652
1653
1654 (((
1655 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1656
1657 **Note**: RO pins go to Open(NO) when device is power off.
1658 )))
1659
1660 [[image:image-20220524100215-9.png]]
1661
1662
1663 [[image:image-20220524100215-10.png||height="382" width="723"]]
1664
1665
1666 == 3.7 LEDs Indicators ==
1667
1668
1669 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1670 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1671 |**PWR**|Always on if there is power
1672 |**SYS**|(((
1673 After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1674 )))
1675 |**TX**|(((
1676 (((
1677 Device boot: TX blinks 5 times.
1678 )))
1679
1680 (((
1681 Successful join network: TX ON for 5 seconds.
1682 )))
1683
1684 (((
1685 Transmit a LoRa packet: TX blinks once
1686 )))
1687 )))
1688 |**RX**|RX blinks once when receive a packet.
1689 |**DO1**|
1690 |**DO2**|
1691 |**DO3**|
1692 |**DI2**|(((
1693 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1694 )))
1695 |**DI2**|(((
1696 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1697 )))
1698 |**DI2**|(((
1699 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1700 )))
1701 |**RO1**|
1702 |**RO2**|
1703
1704 = 4. Use AT Command =
1705
1706 == 4.1 Access AT Command ==
1707
1708
1709 (((
1710 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1711 )))
1712
1713 (((
1714
1715 )))
1716
1717 [[image:1653358238933-385.png]]
1718
1719
1720 (((
1721 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1722 )))
1723
1724 [[image:1653358355238-883.png]]
1725
1726
1727 (((
1728 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1729 )))
1730
1731 (((
1732 AT+<CMD>?        : Help on <CMD>
1733 )))
1734
1735 (((
1736 AT+<CMD>         : Run <CMD>
1737 )))
1738
1739 (((
1740 AT+<CMD>=<value> : Set the value
1741 )))
1742
1743 (((
1744 AT+<CMD>=?       :  Get the value
1745 )))
1746
1747 (((
1748 ATZ: Trig a reset of the MCU
1749 )))
1750
1751 (((
1752 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1753 )))
1754
1755 (((
1756 AT+DEUI: Get or Set the Device EUI
1757 )))
1758
1759 (((
1760 AT+DADDR: Get or Set the Device Address
1761 )))
1762
1763 (((
1764 AT+APPKEY: Get or Set the Application Key
1765 )))
1766
1767 (((
1768 AT+NWKSKEY: Get or Set the Network Session Key
1769 )))
1770
1771 (((
1772 AT+APPSKEY:  Get or Set the Application Session Key
1773 )))
1774
1775 (((
1776 AT+APPEUI:  Get or Set the Application EUI
1777 )))
1778
1779 (((
1780 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1781 )))
1782
1783 (((
1784 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1785 )))
1786
1787 (((
1788 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1789 )))
1790
1791 (((
1792 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1793 )))
1794
1795 (((
1796 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1797 )))
1798
1799 (((
1800 AT+RX2FQ: Get or Set the Rx2 window frequency
1801 )))
1802
1803 (((
1804 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1805 )))
1806
1807 (((
1808 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1809 )))
1810
1811 (((
1812 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1813 )))
1814
1815 (((
1816 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1817 )))
1818
1819 (((
1820 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1821 )))
1822
1823 (((
1824 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1825 )))
1826
1827 (((
1828 AT+NWKID: Get or Set the Network ID
1829 )))
1830
1831 (((
1832 AT+FCU: Get or Set the Frame Counter Uplink
1833 )))
1834
1835 (((
1836 AT+FCD: Get or Set the Frame Counter Downlink
1837 )))
1838
1839 (((
1840 AT+CLASS: Get or Set the Device Class
1841 )))
1842
1843 (((
1844 AT+JOIN: Join network
1845 )))
1846
1847 (((
1848 AT+NJS: Get OTAA Join Status
1849 )))
1850
1851 (((
1852 AT+SENDB: Send hexadecimal data along with the application port
1853 )))
1854
1855 (((
1856 AT+SEND: Send text data along with the application port
1857 )))
1858
1859 (((
1860 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1861 )))
1862
1863 (((
1864 AT+RECV: Print last received data in raw format
1865 )))
1866
1867 (((
1868 AT+VER:  Get current image version and Frequency Band
1869 )))
1870
1871 (((
1872 AT+CFM: Get or Set the confirmation mode (0-1)
1873 )))
1874
1875 (((
1876 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1877 )))
1878
1879 (((
1880 AT+SNR: Get the SNR of the last received packet
1881 )))
1882
1883 (((
1884 AT+RSSI: Get the RSSI of the last received packet
1885 )))
1886
1887 (((
1888 AT+TDC: Get or set the application data transmission interval in ms
1889 )))
1890
1891 (((
1892 AT+PORT: Get or set the application port
1893 )))
1894
1895 (((
1896 AT+DISAT: Disable AT commands
1897 )))
1898
1899 (((
1900 AT+PWORD: Set password, max 9 digits
1901 )))
1902
1903 (((
1904 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1905 )))
1906
1907 (((
1908 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1909 )))
1910
1911 (((
1912 AT+CFG: Print all settings
1913 )))
1914
1915
1916 == 4.2 Common AT Command Sequence ==
1917
1918 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1919
1920 (((
1921
1922
1923 (((
1924 (% style="color:blue" %)**If device has not joined network yet:**
1925 )))
1926 )))
1927
1928 (((
1929 (% style="background-color:#dcdcdc" %)**123456**
1930 )))
1931
1932 (((
1933 (% style="background-color:#dcdcdc" %)**AT+FDR**
1934 )))
1935
1936 (((
1937 (% style="background-color:#dcdcdc" %)**123456**
1938 )))
1939
1940 (((
1941 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1942 )))
1943
1944 (((
1945 (% style="background-color:#dcdcdc" %)**ATZ**
1946 )))
1947
1948
1949 (((
1950 (% style="color:blue" %)**If device already joined network:**
1951 )))
1952
1953 (((
1954 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1955 )))
1956
1957 (((
1958 (% style="background-color:#dcdcdc" %)**ATZ**
1959 )))
1960
1961
1962 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1963
1964 (((
1965
1966
1967 (((
1968 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1969 )))
1970 )))
1971
1972 (((
1973 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1974 )))
1975
1976 (((
1977 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1978 )))
1979
1980 (((
1981 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1982 )))
1983
1984 (((
1985 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1986 )))
1987
1988 (((
1989 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1990 )))
1991
1992 (((
1993 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1994 )))
1995
1996 (((
1997 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1998 )))
1999
2000 (((
2001 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2002 )))
2003
2004 (((
2005 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2006 )))
2007
2008 (((
2009 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2010 )))
2011
2012 (((
2013 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2014 )))
2015
2016 (((
2017 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2018
2019
2020 )))
2021
2022 (((
2023 (% style="color:red" %)**Note:**
2024 )))
2025
2026 (((
2027 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2028
2029 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2030
2031 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2032 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2033
2034 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2035
2036
2037 )))
2038
2039 (((
2040 [[image:1653359097980-169.png||height="188" width="729"]]
2041 )))
2042
2043 (((
2044
2045 )))
2046
2047 === 4.2.3 Change to Class A ===
2048
2049
2050 (((
2051 (% style="color:blue" %)**If sensor JOINED:**
2052
2053 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2054 ATZ**
2055 )))
2056
2057
2058 = 5. Case Study =
2059
2060 == 5.1 Counting how many objects pass in Flow Line ==
2061
2062
2063 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2064
2065
2066 = 6. FAQ =
2067
2068 == 6.1 How to upgrade the image? ==
2069
2070
2071 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2072
2073 * Support new features
2074 * For bug fix
2075 * Change LoRaWAN bands.
2076
2077 Below shows the hardware connection for how to upload an image to the LT:
2078
2079 [[image:1653359603330-121.png]]
2080
2081
2082 (((
2083 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2084 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2085 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2086
2087
2088 (((
2089 (% style="color:blue" %)**For LT-22222-L**(%%):
2090 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2091 )))
2092
2093
2094 )))
2095
2096 [[image:image-20220524103407-12.png]]
2097
2098
2099 [[image:image-20220524103429-13.png]]
2100
2101
2102 [[image:image-20220524104033-15.png]]
2103
2104
2105 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2106
2107
2108 [[image:1653360054704-518.png||height="186" width="745"]]
2109
2110
2111 (((
2112 (((
2113 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2114
2115
2116 )))
2117 )))
2118
2119 (((
2120 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2121 )))
2122
2123 (((
2124
2125
2126 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2127
2128
2129 )))
2130
2131 (((
2132 (((
2133 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2134 )))
2135 )))
2136
2137 (((
2138 (((
2139 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2140
2141
2142 )))
2143 )))
2144
2145 (((
2146 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2147
2148
2149 )))
2150
2151 (((
2152 [[image:1653360231087-571.png||height="401" width="727"]]
2153
2154
2155 )))
2156
2157 (((
2158 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2159 )))
2160
2161
2162
2163 (((
2164 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2165
2166
2167 )))
2168
2169 (((
2170 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2171 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2172 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2173 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2174 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2175 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2176 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2177 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2178 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2179 )))
2180
2181
2182 (((
2183 As shown in below:
2184 )))
2185
2186 [[image:1653360498588-932.png||height="485" width="726"]]
2187
2188
2189 == 6.4 How to change the uplink interval? ==
2190
2191
2192 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2193
2194
2195 == 6.5 Can I see counting event in Serial? ==
2196
2197
2198 (((
2199 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2200
2201
2202 == 6.6 Can i use point to point communication for LT-22222-L? ==
2203
2204
2205 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2206
2207
2208 )))
2209
2210 (((
2211 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2212
2213
2214 If the device is not shut down, but directly powered off.
2215
2216 It will default that this is a power-off state.
2217
2218 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2219
2220 After restart, the status before power failure will be read from flash.
2221
2222
2223 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2224
2225
2226 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2227
2228
2229 [[image:image-20221006170630-1.png||height="610" width="945"]]
2230
2231
2232 == 6.9 Can LT22222-L save RO state? ==
2233
2234
2235 Firmware version needs to be no less than 1.6.0.
2236
2237
2238 = 7. Trouble Shooting =
2239 )))
2240
2241 (((
2242 (((
2243 == 7.1 Downlink doesn't work, how to solve it? ==
2244
2245
2246 )))
2247 )))
2248
2249 (((
2250 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2251 )))
2252
2253 (((
2254
2255
2256 == 7.2 Have trouble to upload image. ==
2257
2258
2259 )))
2260
2261 (((
2262 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2263 )))
2264
2265 (((
2266
2267
2268 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2269
2270
2271 )))
2272
2273 (((
2274 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2275 )))
2276
2277
2278 = 8. Order Info =
2279
2280
2281 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2282
2283 (% style="color:#4f81bd" %)**XXX:**
2284
2285 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2286 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2287 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2288 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2289 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2290 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2291 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2292 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2293 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2294
2295 = 9. Packing Info =
2296
2297
2298 **Package Includes**:
2299
2300 * LT-22222-L I/O Controller x 1
2301 * Stick Antenna for LoRa RF part x 1
2302 * Bracket for controller x1
2303 * Program cable x 1
2304
2305 **Dimension and weight**:
2306
2307 * Device Size: 13.5 x 7 x 3 cm
2308 * Device Weight: 105g
2309 * Package Size / pcs : 14.5 x 8 x 5 cm
2310 * Weight / pcs : 170g
2311
2312 = 10. Support =
2313
2314
2315 * (((
2316 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2317 )))
2318 * (((
2319 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2320
2321
2322
2323 )))
2324
2325 = 11. Reference​​​​​ =
2326
2327
2328 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2329 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2330 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2331
2332