Version 122.2 by Xiaoling on 2023/06/08 17:10

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192
193
194 == 1.4  Applications ==
195
196
197 * Smart Buildings & Home Automation
198
199 * Logistics and Supply Chain Management
200
201 * Smart Metering
202
203 * Smart Agriculture
204
205 * Smart Cities
206
207 * Smart Factory
208
209
210
211 == 1.5 Hardware Variants ==
212
213
214 (% border="1" style="background-color:#f2f2f2; width:500px" %)
215 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
216 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
217 (% style="text-align:center" %)
218 [[image:image-20230424115112-1.png||height="106" width="58"]]
219 )))|(% style="width:334px" %)(((
220 * 2 x Digital Input (Bi-direction)
221 * 2 x Digital Output
222 * 2 x Relay Output (5A@250VAC / 30VDC)
223 * 2 x 0~~20mA Analog Input (res:0.01mA)
224 * 2 x 0~~30V Analog Input (res:0.01v)
225 * 1 x Counting Port
226 )))
227
228
229
230 = 2. Power ON Device =
231
232
233 (((
234 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
235 )))
236
237 (((
238 PWR will on when device is properly powered.
239
240
241 )))
242
243 [[image:1653297104069-180.png]]
244
245
246 = 3. Operation Mode =
247
248 == 3.1 How it works? ==
249
250
251 (((
252 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
253 )))
254
255 (((
256 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
257 )))
258
259
260 == 3.2 Example to join LoRaWAN network ==
261
262
263 (((
264 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
265
266
267 )))
268
269 [[image:image-20220523172350-1.png||height="266" width="864"]]
270
271
272 (((
273 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
274
275
276 )))
277
278 (((
279 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
280 )))
281
282 (((
283 Each LT is shipped with a sticker with the default device EUI as below:
284 )))
285
286 [[image:image-20230425173427-2.png||height="246" width="530"]]
287
288
289 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
290
291 **Add APP EUI in the application.**
292
293 [[image:1653297955910-247.png||height="321" width="716"]]
294
295
296 **Add APP KEY and DEV EUI**
297
298 [[image:1653298023685-319.png]]
299
300
301
302 (((
303 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
304
305
306 )))
307
308 [[image:1653298044601-602.png||height="405" width="709"]]
309
310
311 == 3.3 Uplink Payload ==
312
313
314 There are five working modes + one interrupt mode on LT for different type application:
315
316 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
317
318 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
319
320 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
321
322 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
323
324 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
325
326 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
327
328
329
330 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
331
332
333 (((
334 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
335
336 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
337 |(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
338 |Value|(((
339 AVI1 voltage
340 )))|(((
341 AVI2 voltage
342 )))|(((
343 ACI1 Current
344 )))|(((
345 ACI2 Current
346 )))|DIDORO*|(((
347 Reserve
348 )))|MOD
349 )))
350
351 (((
352
353
354 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
355
356 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
358 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
359 )))
360
361
362 * RO is for relay. ROx=1 : close,ROx=0 always open.
363 * DI is for digital input. DIx=1: high or float, DIx=0: low.
364 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
365
366 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
367
368 For example if payload is: [[image:image-20220523175847-2.png]]
369
370
371 **The value for the interface is:  **
372
373 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
374
375 AVI2 channel voltage is 0x04AC/1000=1.196V
376
377 ACI1 channel current is 0x1310/1000=4.880mA
378
379 ACI2 channel current is 0x1300/1000=4.864mA
380
381 The last byte 0xAA= 10101010(B) means
382
383 * [1] RO1 relay channel is close and the RO1 LED is ON.
384 * [0] RO2 relay channel is open and RO2 LED is OFF;
385
386 **LT22222-L:**
387
388 * [1] DI2 channel is high input and DI2 LED is ON;
389 * [0] DI1 channel is low input;
390
391 * [0] DO3 channel output state
392 ** DO3 is float in case no load between DO3 and V+.;
393 ** DO3 is high in case there is load between DO3 and V+.
394 ** DO3 LED is off in both case
395 * [1] DO2 channel output is low and DO2 LED is ON.
396 * [0] DO1 channel output state
397 ** DO1 is float in case no load between DO1 and V+.;
398 ** DO1 is high in case there is load between DO1 and V+.
399 ** DO1 LED is off in both case
400
401 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
402
403
404 (((
405 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
406 )))
407
408 (((
409 Total : 11 bytes payload
410
411 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
412 |**Size(bytes)**|**4**|**4**|**1**|**1**|**1**
413 |Value|COUNT1|COUNT2 |DIDORO*|(((
414 Reserve
415
416
417 )))|MOD
418 )))
419
420 (((
421
422
423 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
424
425 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
426 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
427 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
428
429 RO is for relay. ROx=1 : close,ROx=0 always open.
430 )))
431
432 * FIRST: Indicate this is the first packet after join network.
433 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
434
435 (((
436 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
437 )))
438
439 (((
440
441
442 **To use counting mode, please run:**
443 )))
444
445 (% class="box infomessage" %)
446 (((
447 (((
448 (((
449 **AT+MOD=2**
450 )))
451
452 (((
453 **ATZ**
454 )))
455 )))
456 )))
457
458 (((
459
460
461 (% style="color:#4f81bd" %)**AT Commands for counting:**
462
463
464 )))
465
466 (((
467 **For LT22222-L:**
468
469
470 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
471
472 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
473
474 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
475
476 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
477
478 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
479
480 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
481 )))
482
483
484 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
485
486
487 **LT22222-L**: This mode the DI1 is used as a counting pin.
488
489 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
490 |**Size(bytes)**|**4**|**2**|**2**|**1**|**1**|**1**
491 |Value|COUNT1|(((
492 ACI1 Current
493 )))|(((
494 ACI2 Current
495 )))|DIDORO*|Reserve|MOD
496
497 (((
498
499
500 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
501
502 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
503 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
504 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
505 )))
506
507
508 * RO is for relay. ROx=1 : close,ROx=0 always open.
509 * FIRST: Indicate this is the first packet after join network.
510 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
511
512 (((
513 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
514 )))
515
516
517 (((
518 **To use counting mode, please run:**
519 )))
520
521 (% class="box infomessage" %)
522 (((
523 (((
524 (((
525 **AT+MOD=3**
526 )))
527
528 (((
529 **ATZ**
530 )))
531 )))
532 )))
533
534 (((
535 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
536 )))
537
538
539 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
540
541
542 (((
543 **LT22222-L**: This mode the DI1 is used as a counting pin.
544 )))
545
546 (((
547 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
548
549 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
550 |**Size(bytes)**|**4**|**4**|**1**|**1**|**1**
551 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
552 Reserve
553
554
555 )))|MOD
556 )))
557
558
559 (((
560 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
561
562 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
563 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
564 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
565 )))
566
567
568 * RO is for relay. ROx=1 : close,ROx=0 always open.
569 * FIRST: Indicate this is the first packet after join network.
570 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
571
572 (((
573 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
574 )))
575
576 (((
577
578
579 **To use this mode, please run:**
580 )))
581
582 (% class="box infomessage" %)
583 (((
584 (((
585 (((
586 **AT+MOD=4**
587 )))
588
589 (((
590 **ATZ**
591 )))
592 )))
593 )))
594
595
596 (((
597 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
598 )))
599
600 (((
601
602
603 **Plus below command for AVI1 Counting:**
604
605
606 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
607
608 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
609
610 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
611
612 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
613 )))
614
615
616 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
617
618
619 **LT22222-L**: This mode the DI1 is used as a counting pin.
620
621 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
622 |**Size(bytes)**|**2**|**2**|**2**|**2**|**1**|**1**|**1**
623 |Value|(((
624 AVI1
625 voltage
626 )))|(((
627 AVI2
628 voltage
629 )))|(((
630 ACI1
631 Current
632 )))|COUNT1|DIDORO*|(((
633 Reserve
634 )))|MOD
635
636 (((
637
638
639 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
640
641 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
642 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
643 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
644 )))
645
646 * RO is for relay. ROx=1 : close,ROx=0 always open.
647 * FIRST: Indicate this is the first packet after join network.
648 * (((
649 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
650 )))
651
652 (((
653 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
654 )))
655
656 (((
657
658
659 **To use this mode, please run:**
660 )))
661
662 (% class="box infomessage" %)
663 (((
664 (((
665 (((
666 **AT+MOD=5**
667 )))
668
669 (((
670 **ATZ**
671 )))
672 )))
673 )))
674
675 (((
676 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
677 )))
678
679
680 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
681
682
683 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
684
685 For example, if user has configured below commands:
686
687 * **AT+MOD=1 ** **~-~->**  The normal working mode
688 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
689
690 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
691
692 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
693 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
694
695 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
696
697
698 (% style="color:#4f81bd" %)**Trigger base on voltage**:
699
700 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
701
702
703 **Example:**
704
705 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
706
707 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
708
709
710
711 (% style="color:#4f81bd" %)**Trigger base on current**:
712
713 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
714
715
716 **Example:**
717
718 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
719
720
721
722 (% style="color:#4f81bd" %)**Trigger base on DI status**:
723
724 DI status trigger Flag.
725
726 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
727
728
729 **Example:**
730
731 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
732
733
734 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
735
736 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
737
738 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
739
740 AA: Code for this downlink Command:
741
742 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
743
744 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
745
746 yy2 yy2: AC1 or AV1 high limit.
747
748 yy3 yy3: AC2 or AV2 low limit.
749
750 Yy4 yy4: AC2 or AV2 high limit.
751
752
753 **Example1**: AA 00 13 88 00 00 00 00 00 00
754
755 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
756
757
758 **Example2**: AA 02 01 00
759
760 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
761
762
763
764 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
765
766 MOD6 Payload : total 11 bytes payload
767
768 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
769 |**Size(bytes)**|**1**|**1**|**1**|**6**|**1**|**1**
770 |Value|(((
771 TRI_A
772 FLAG
773 )))|(((
774 TRI_A
775 Status
776 )))|(((
777 TRI_DI
778 FLAG+STA
779 )))|Reserve|Enable/Disable MOD6|(((
780 MOD
781 (6)
782 )))
783
784 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
785
786 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
787 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
788 |(((
789 AV1_
790 LOW
791 )))|(((
792 AV1_
793 HIGH
794 )))|(((
795 AV2_
796 LOW
797 )))|(((
798 AV2_
799 HIGH
800 )))|(((
801 AC1_
802 LOW
803 )))|(((
804 AC1_
805 HIGH
806 )))|(((
807 AC2_
808 LOW
809 )))|(((
810 AC2_
811 HIGH
812 )))
813
814 * Each bits shows if the corresponding trigger has been configured.
815
816 **Example:**
817
818 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
819
820
821 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
822
823 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
824 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
825 |(((
826 AV1_
827 LOW
828 )))|(((
829 AV1_
830 HIGH
831 )))|(((
832 AV2_
833 LOW
834 )))|(((
835 AV2_
836 HIGH
837 )))|(((
838 AC1_
839 LOW
840 )))|(((
841 AC1_
842 HIGH
843 )))|(((
844 AC2_
845 LOW
846 )))|(((
847 AC2_
848 HIGH
849 )))
850
851 * Each bits shows which status has been trigger on this uplink.
852
853 **Example:**
854
855 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
856
857
858 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
859
860 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
861 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
862 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
863
864 * Each bits shows which status has been trigger on this uplink.
865
866 **Example:**
867
868 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
869
870 00000101: Means both DI1 and DI2 trigger are enabled.
871
872
873 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
874
875 Downlink command to poll MOD6 status:
876
877 **AB 06**
878
879 When device got this command, it will send the MOD6 payload.
880
881
882 === 3.3.7 Payload Decoder ===
883
884 (((
885
886
887 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
888 )))
889
890
891 == 3.4 ​Configure LT via AT or Downlink ==
892
893
894 (((
895 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
896 )))
897
898 (((
899 (((
900 There are two kinds of Commands:
901 )))
902 )))
903
904 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
905
906 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
907
908 === 3.4.1 Common Commands ===
909
910
911 (((
912 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
913 )))
914
915
916 === 3.4.2 Sensor related commands ===
917
918 ==== 3.4.2.1 Set Transmit Interval ====
919
920
921 Set device uplink interval.
922
923 * (% style="color:#037691" %)**AT Command:**
924
925 (% style="color:blue" %)**AT+TDC=N **
926
927
928 **Example: **AT+TDC=30000. Means set interval to 30 seconds
929
930
931 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
932
933 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
934
935
936
937 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
938
939
940 Set work mode.
941
942 * (% style="color:#037691" %)**AT Command:**
943
944 (% style="color:blue" %)**AT+MOD=N  **
945
946
947 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
948
949
950 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
951
952 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
953
954
955
956 ==== 3.4.2.3 Poll an uplink ====
957
958
959 * (% style="color:#037691" %)**AT Command:**
960
961 There is no AT Command to poll uplink
962
963
964 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
965
966 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
967
968
969 **Example**: 0x08FF, ask device to send an Uplink
970
971
972
973 ==== 3.4.2.4 Enable Trigger Mode ====
974
975
976 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
977
978 * (% style="color:#037691" %)**AT Command:**
979
980 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
981
982 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
983
984 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
985
986
987 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
988
989 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
990
991
992
993 ==== 3.4.2.5 Poll trigger settings ====
994
995
996 Poll trigger settings,
997
998 * (% style="color:#037691" %)**AT Command:**
999
1000 There is no AT Command for this feature.
1001
1002
1003 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
1004
1005 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
1006
1007
1008
1009 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
1010
1011
1012 Enable Disable DI1/DI2/DI2 as trigger,
1013
1014 * (% style="color:#037691" %)**AT Command:**
1015
1016 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
1017
1018
1019 **Example:**
1020
1021 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
1022
1023 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
1024
1025 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
1026
1027
1028
1029 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
1030
1031
1032 Set DI1 or DI3(for LT-33222-L) trigger.
1033
1034 * (% style="color:#037691" %)**AT Command:**
1035
1036 (% style="color:blue" %)**AT+TRIG1=a,b**
1037
1038 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1039
1040 (% style="color:red" %)**b :** (%%)delay timing.
1041
1042
1043 **Example:**
1044
1045 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1046
1047
1048 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1049
1050 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1051
1052
1053
1054 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
1055
1056
1057 Set DI2 trigger.
1058
1059 * (% style="color:#037691" %)**AT Command:**
1060
1061 (% style="color:blue" %)**AT+TRIG2=a,b**
1062
1063 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1064
1065 (% style="color:red" %)**b :** (%%)delay timing.
1066
1067
1068 **Example:**
1069
1070 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1071
1072
1073 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1074
1075 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1076
1077
1078
1079 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1080
1081
1082 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1083
1084 * (% style="color:#037691" %)**AT Command**
1085
1086 (% style="color:blue" %)**AT+ACLIM**
1087
1088
1089 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1090
1091 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1092
1093
1094
1095 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1096
1097
1098 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1099
1100 * (% style="color:#037691" %)**AT Command**
1101
1102 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1103
1104
1105 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1106
1107 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1108
1109
1110
1111 ==== 3.4.2.11 Trigger – Set minimum interval ====
1112
1113
1114 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1115
1116 * (% style="color:#037691" %)**AT Command**
1117
1118 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1119
1120
1121 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1122
1123 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1124
1125 (((
1126
1127
1128 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1129 )))
1130
1131
1132
1133 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1134
1135
1136 * (% style="color:#037691" %)**AT Command**
1137
1138 There is no AT Command to control Digital Output
1139
1140
1141 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1142 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1143
1144 (((
1145 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1146 )))
1147
1148 (((
1149 01: Low,  00: High ,  11: No action
1150
1151 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1152 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1153 |02  01  00  11|Low|High|No Action
1154 |02  00  11  01|High|No Action|Low
1155 |02  11  01  00|No Action|Low|High
1156 )))
1157
1158
1159 (((
1160 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1161 )))
1162
1163 (((
1164 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1165 )))
1166
1167
1168
1169 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1170
1171
1172 * (% style="color:#037691" %)**AT Command**
1173
1174 There is no AT Command to control Digital Output
1175
1176
1177 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1178
1179 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1180
1181
1182 This is to control the digital output time of DO pin. Include four bytes:
1183
1184 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1185
1186 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1187
1188 01: DO pins will change back to original state after timeout.
1189
1190 00: DO pins will change to an inverter state after timeout 
1191
1192
1193 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1194
1195 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1196 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1197 |0x01|DO1 set to low
1198 |0x00|DO1 set to high
1199 |0x11|DO1 NO Action
1200
1201 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1202
1203 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1204 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1205 |0x01|DO2 set to low
1206 |0x00|DO2 set to high
1207 |0x11|DO2 NO Action
1208
1209 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1210
1211 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1212 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1213 |0x01|DO3 set to low
1214 |0x00|DO3 set to high
1215 |0x11|DO3 NO Action
1216
1217 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1218
1219
1220 (% style="color:red" %)**Note: **
1221
1222 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1223
1224 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1225
1226
1227 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1228
1229
1230 **Example payload:**
1231
1232 **~1. A9 01 01 01 01 07 D0**
1233
1234 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1235
1236 **2. A9 01 00 01 11 07 D0**
1237
1238 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1239
1240 **3. A9 00 00 00 00 07 D0**
1241
1242 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1243
1244 **4. A9 00 11 01 00 07 D0**
1245
1246 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1247
1248
1249
1250 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1251
1252
1253 * (% style="color:#037691" %)**AT Command:**
1254
1255 There is no AT Command to control Relay Output
1256
1257
1258 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1259
1260 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1261
1262
1263 (((
1264 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1265 )))
1266
1267 (((
1268 01: Close ,  00: Open , 11: No action
1269
1270 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1271 |(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1272 |03  00  11|Open|No Action
1273 |03  01  11|Close|No Action
1274 |03  11  00|No Action|Open
1275 |03  11  01|No Action|Close
1276 |03  00  00|Open|Open
1277 |03  01  01|Close|Close
1278 |03  01  00|Close|Open
1279 |03  00  01|Open|Close
1280 )))
1281
1282 (((
1283
1284 )))
1285
1286 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1287
1288
1289
1290 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1291
1292
1293 * (% style="color:#037691" %)**AT Command:**
1294
1295 There is no AT Command to control Relay Output
1296
1297
1298 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1299
1300 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1301
1302
1303 This is to control the relay output time of relay. Include four bytes:
1304
1305 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1306
1307 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1308
1309 01: Relays will change back to original state after timeout.
1310
1311 00: Relays will change to an inverter state after timeout
1312
1313
1314 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1315
1316 [[image:image-20221008095908-1.png||height="364" width="564"]]
1317
1318
1319 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1320
1321
1322 (% style="color:red" %)**Note:**
1323
1324 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1325
1326 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1327
1328
1329 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1330
1331
1332 **Example payload:**
1333
1334 **~1. 05 01 11 07 D0**
1335
1336 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1337
1338 **2. 05 01 10 07 D0**
1339
1340 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1341
1342 **3. 05 00 01 07 D0**
1343
1344 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1345
1346 **4. 05 00 00 07 D0**
1347
1348 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1349
1350
1351
1352 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1353
1354
1355 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1356
1357 * (% style="color:#037691" %)**AT Command:**
1358
1359 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1360
1361
1362 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1363
1364 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1365
1366
1367
1368 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1369
1370
1371 * (% style="color:#037691" %)**AT Command:**
1372
1373 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1374
1375 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1376
1377 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1378
1379
1380 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1381
1382 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1383
1384
1385
1386 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1387
1388
1389 Clear counting for counting mode
1390
1391 * (% style="color:#037691" %)**AT Command:**
1392
1393 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1394
1395
1396 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1397
1398 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1399
1400
1401
1402 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1403
1404
1405 * (% style="color:#037691" %)**AT Command:**
1406
1407 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1408
1409
1410 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1411
1412 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1413
1414 (((
1415 range: aa bb cc:0 to 16777215,  (unit:second)
1416 )))
1417
1418
1419
1420 ==== 3.4.2.20 Reset save RO DO state ====
1421
1422
1423 * (% style="color:#037691" %)**AT Command:**
1424
1425 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1426
1427 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1428
1429
1430 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1431
1432 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1433
1434
1435
1436 ==== 3.4.2.21 Encrypted payload ====
1437
1438
1439 * (% style="color:#037691" %)**AT Command:**
1440
1441 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1442
1443 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1444
1445
1446
1447 ==== 3.4.2.22 Get sensor value ====
1448
1449
1450 * (% style="color:#037691" %)**AT Command:**
1451
1452 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1453
1454 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1455
1456
1457
1458 ==== 3.4.2.23 Resets the downlink packet count ====
1459
1460
1461 * (% style="color:#037691" %)**AT Command:**
1462
1463 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1464
1465 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1466
1467
1468
1469 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1470
1471
1472 * (% style="color:#037691" %)**AT Command:**
1473
1474 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1475
1476 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1477
1478
1479 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1480
1481 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1482
1483
1484
1485 ==== 3.4.2.25 Copy downlink to uplink ====
1486
1487
1488 * (% style="color:#037691" %)**AT Command**(%%)**:**
1489
1490 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1491
1492 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1493
1494
1495 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1496
1497 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1498
1499
1500
1501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1502
1503 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1504
1505
1506
1507 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1508
1509
1510 * (((
1511 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1512
1513 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1514
1515
1516 )))
1517
1518 **Example:**
1519
1520 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1521
1522
1523 == 3.5 Integrate with Mydevice ==
1524
1525
1526 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1527
1528 (((
1529 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1530 )))
1531
1532 (((
1533 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1534
1535
1536 )))
1537
1538 [[image:image-20220719105525-1.png||height="377" width="677"]]
1539
1540
1541
1542 [[image:image-20220719110247-2.png||height="388" width="683"]]
1543
1544
1545 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1546
1547 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1548
1549 Search under The things network
1550
1551 [[image:1653356838789-523.png||height="337" width="740"]]
1552
1553
1554
1555 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1556
1557 [[image:image-20220524094909-1.png||height="335" width="729"]]
1558
1559
1560 [[image:image-20220524094909-2.png||height="337" width="729"]]
1561
1562
1563 [[image:image-20220524094909-3.png||height="338" width="727"]]
1564
1565
1566 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1567
1568
1569 [[image:image-20220524094909-5.png||height="341" width="734"]]
1570
1571
1572 == 3.6 Interface Detail ==
1573
1574 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1575
1576
1577 Support NPN Type sensor
1578
1579 [[image:1653356991268-289.png]]
1580
1581
1582 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1583
1584
1585 (((
1586 The DI port of LT-22222-L can support NPN or PNP output sensor.
1587 )))
1588
1589 (((
1590 (((
1591 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1592
1593
1594 )))
1595 )))
1596
1597 [[image:1653357170703-587.png]]
1598
1599 (((
1600 (((
1601 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1602 )))
1603 )))
1604
1605 (((
1606
1607 )))
1608
1609 (((
1610 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1611 )))
1612
1613 (((
1614 This type of sensor will output a low signal GND when active.
1615 )))
1616
1617 * (((
1618 Connect sensor's output to DI1-
1619 )))
1620 * (((
1621 Connect sensor's VCC to DI1+.
1622 )))
1623
1624 (((
1625 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1626 )))
1627
1628 (((
1629 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1630 )))
1631
1632 (((
1633 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1634 )))
1635
1636 (((
1637
1638 )))
1639
1640 (((
1641 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1642 )))
1643
1644 (((
1645 This type of sensor will output a high signal (example 24v) when active.
1646 )))
1647
1648 * (((
1649 Connect sensor's output to DI1+
1650 )))
1651 * (((
1652 Connect sensor's GND DI1-.
1653 )))
1654
1655 (((
1656 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1657 )))
1658
1659 (((
1660 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1661 )))
1662
1663 (((
1664 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1665 )))
1666
1667 (((
1668
1669 )))
1670
1671 (((
1672 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1673 )))
1674
1675 (((
1676 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1677 )))
1678
1679 * (((
1680 Connect sensor's output to DI1+ with a serial 50K resistor
1681 )))
1682 * (((
1683 Connect sensor's GND DI1-.
1684 )))
1685
1686 (((
1687 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1688 )))
1689
1690 (((
1691 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1692 )))
1693
1694 (((
1695 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1696 )))
1697
1698
1699 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1700
1701
1702 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1703
1704 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1705
1706 [[image:1653357531600-905.png]]
1707
1708
1709 === 3.6.4 Analog Input Interface ===
1710
1711
1712 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1713
1714
1715 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1716
1717 [[image:1653357592296-182.png]]
1718
1719 Example to connect a 4~~20mA sensor
1720
1721 We take the wind speed sensor as an example for reference only.
1722
1723
1724 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1725
1726 (% style="color:red" %)**Red:  12~~24v**
1727
1728 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1729
1730 **Black:  GND**
1731
1732 **Connection diagram:**
1733
1734 [[image:1653357640609-758.png]]
1735
1736 [[image:1653357648330-671.png||height="155" width="733"]]
1737
1738
1739 Example connected to a regulated power supply to measure voltage
1740
1741 [[image:image-20230608101532-1.png||height="606" width="447"]]
1742
1743 [[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1744
1745 [[image:image-20230608101722-3.png||height="102" width="1139"]]
1746
1747
1748 (% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1749
1750 (% style="color:red" %)**Red:  12~~24v**
1751
1752 **Black:  GND**
1753
1754
1755 === 3.6.5 Relay Output ===
1756
1757
1758 (((
1759 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1760
1761 **Note**: RO pins go to Open(NO) when device is power off.
1762 )))
1763
1764 [[image:image-20220524100215-9.png]]
1765
1766
1767 [[image:image-20220524100215-10.png||height="382" width="723"]]
1768
1769
1770 == 3.7 LEDs Indicators ==
1771
1772
1773 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1774 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1775 |**PWR**|Always on if there is power
1776 |**SYS**|(((
1777 After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1778 )))
1779 |**TX**|(((
1780 (((
1781 Device boot: TX blinks 5 times.
1782 )))
1783
1784 (((
1785 Successful join network: TX ON for 5 seconds.
1786 )))
1787
1788 (((
1789 Transmit a LoRa packet: TX blinks once
1790 )))
1791 )))
1792 |**RX**|RX blinks once when receive a packet.
1793 |**DO1**|
1794 |**DO2**|
1795 |**DO3**|
1796 |**DI2**|(((
1797 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1798 )))
1799 |**DI2**|(((
1800 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1801 )))
1802 |**DI2**|(((
1803 For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1804 )))
1805 |**RO1**|
1806 |**RO2**|
1807
1808 = 4. Use AT Command =
1809
1810 == 4.1 Access AT Command ==
1811
1812
1813 (((
1814 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1815 )))
1816
1817 (((
1818
1819 )))
1820
1821 [[image:1653358238933-385.png]]
1822
1823
1824 (((
1825 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1826 )))
1827
1828 [[image:1653358355238-883.png]]
1829
1830
1831 (((
1832 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1833 )))
1834
1835 (((
1836 AT+<CMD>?        : Help on <CMD>
1837 )))
1838
1839 (((
1840 AT+<CMD>         : Run <CMD>
1841 )))
1842
1843 (((
1844 AT+<CMD>=<value> : Set the value
1845 )))
1846
1847 (((
1848 AT+<CMD>=?       :  Get the value
1849 )))
1850
1851 (((
1852 ATZ: Trig a reset of the MCU
1853 )))
1854
1855 (((
1856 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1857 )))
1858
1859 (((
1860 AT+DEUI: Get or Set the Device EUI
1861 )))
1862
1863 (((
1864 AT+DADDR: Get or Set the Device Address
1865 )))
1866
1867 (((
1868 AT+APPKEY: Get or Set the Application Key
1869 )))
1870
1871 (((
1872 AT+NWKSKEY: Get or Set the Network Session Key
1873 )))
1874
1875 (((
1876 AT+APPSKEY:  Get or Set the Application Session Key
1877 )))
1878
1879 (((
1880 AT+APPEUI:  Get or Set the Application EUI
1881 )))
1882
1883 (((
1884 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1885 )))
1886
1887 (((
1888 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1889 )))
1890
1891 (((
1892 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1893 )))
1894
1895 (((
1896 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1897 )))
1898
1899 (((
1900 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1901 )))
1902
1903 (((
1904 AT+RX2FQ: Get or Set the Rx2 window frequency
1905 )))
1906
1907 (((
1908 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1909 )))
1910
1911 (((
1912 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1913 )))
1914
1915 (((
1916 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1917 )))
1918
1919 (((
1920 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1921 )))
1922
1923 (((
1924 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1925 )))
1926
1927 (((
1928 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1929 )))
1930
1931 (((
1932 AT+NWKID: Get or Set the Network ID
1933 )))
1934
1935 (((
1936 AT+FCU: Get or Set the Frame Counter Uplink
1937 )))
1938
1939 (((
1940 AT+FCD: Get or Set the Frame Counter Downlink
1941 )))
1942
1943 (((
1944 AT+CLASS: Get or Set the Device Class
1945 )))
1946
1947 (((
1948 AT+JOIN: Join network
1949 )))
1950
1951 (((
1952 AT+NJS: Get OTAA Join Status
1953 )))
1954
1955 (((
1956 AT+SENDB: Send hexadecimal data along with the application port
1957 )))
1958
1959 (((
1960 AT+SEND: Send text data along with the application port
1961 )))
1962
1963 (((
1964 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1965 )))
1966
1967 (((
1968 AT+RECV: Print last received data in raw format
1969 )))
1970
1971 (((
1972 AT+VER:  Get current image version and Frequency Band
1973 )))
1974
1975 (((
1976 AT+CFM: Get or Set the confirmation mode (0-1)
1977 )))
1978
1979 (((
1980 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1981 )))
1982
1983 (((
1984 AT+SNR: Get the SNR of the last received packet
1985 )))
1986
1987 (((
1988 AT+RSSI: Get the RSSI of the last received packet
1989 )))
1990
1991 (((
1992 AT+TDC: Get or set the application data transmission interval in ms
1993 )))
1994
1995 (((
1996 AT+PORT: Get or set the application port
1997 )))
1998
1999 (((
2000 AT+DISAT: Disable AT commands
2001 )))
2002
2003 (((
2004 AT+PWORD: Set password, max 9 digits
2005 )))
2006
2007 (((
2008 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
2009 )))
2010
2011 (((
2012 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
2013 )))
2014
2015 (((
2016 AT+CFG: Print all settings
2017 )))
2018
2019
2020 == 4.2 Common AT Command Sequence ==
2021
2022 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
2023
2024 (((
2025
2026
2027 (((
2028 (% style="color:blue" %)**If device has not joined network yet:**
2029 )))
2030 )))
2031
2032 (((
2033 (% style="background-color:#dcdcdc" %)**123456**
2034 )))
2035
2036 (((
2037 (% style="background-color:#dcdcdc" %)**AT+FDR**
2038 )))
2039
2040 (((
2041 (% style="background-color:#dcdcdc" %)**123456**
2042 )))
2043
2044 (((
2045 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
2046 )))
2047
2048 (((
2049 (% style="background-color:#dcdcdc" %)**ATZ**
2050 )))
2051
2052
2053 (((
2054 (% style="color:blue" %)**If device already joined network:**
2055 )))
2056
2057 (((
2058 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
2059 )))
2060
2061 (((
2062 (% style="background-color:#dcdcdc" %)**ATZ**
2063 )))
2064
2065
2066 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
2067
2068 (((
2069
2070
2071 (((
2072 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
2073 )))
2074 )))
2075
2076 (((
2077 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
2078 )))
2079
2080 (((
2081 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
2082 )))
2083
2084 (((
2085 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2086 )))
2087
2088 (((
2089 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2090 )))
2091
2092 (((
2093 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2094 )))
2095
2096 (((
2097 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2098 )))
2099
2100 (((
2101 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2102 )))
2103
2104 (((
2105 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2106 )))
2107
2108 (((
2109 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2110 )))
2111
2112 (((
2113 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2114 )))
2115
2116 (((
2117 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2118 )))
2119
2120 (((
2121 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2122
2123
2124 )))
2125
2126 (((
2127 (% style="color:red" %)**Note:**
2128 )))
2129
2130 (((
2131 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2132
2133 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2134
2135 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2136 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2137
2138 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2139
2140
2141 )))
2142
2143 (((
2144 [[image:1653359097980-169.png||height="188" width="729"]]
2145 )))
2146
2147 (((
2148
2149 )))
2150
2151 === 4.2.3 Change to Class A ===
2152
2153
2154 (((
2155 (% style="color:blue" %)**If sensor JOINED:**
2156
2157 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2158 ATZ**
2159 )))
2160
2161
2162 = 5. Case Study =
2163
2164 == 5.1 Counting how many objects pass in Flow Line ==
2165
2166
2167 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2168
2169
2170 = 6. FAQ =
2171
2172 == 6.1 How to upgrade the image? ==
2173
2174
2175 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2176
2177 * Support new features
2178 * For bug fix
2179 * Change LoRaWAN bands.
2180
2181 Below shows the hardware connection for how to upload an image to the LT:
2182
2183 [[image:1653359603330-121.png]]
2184
2185
2186 (((
2187 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2188 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2189 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2190
2191
2192 (((
2193 (% style="color:blue" %)**For LT-22222-L**(%%):
2194 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2195 )))
2196
2197
2198 )))
2199
2200 [[image:image-20220524103407-12.png]]
2201
2202
2203 [[image:image-20220524103429-13.png]]
2204
2205
2206 [[image:image-20220524104033-15.png]]
2207
2208
2209 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2210
2211
2212 [[image:1653360054704-518.png||height="186" width="745"]]
2213
2214
2215 (((
2216 (((
2217 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2218
2219
2220 )))
2221 )))
2222
2223 (((
2224 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2225 )))
2226
2227 (((
2228
2229
2230 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2231
2232
2233 )))
2234
2235 (((
2236 (((
2237 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2238 )))
2239 )))
2240
2241 (((
2242 (((
2243 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2244
2245
2246 )))
2247 )))
2248
2249 (((
2250 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2251
2252
2253 )))
2254
2255 (((
2256 [[image:1653360231087-571.png||height="401" width="727"]]
2257
2258
2259 )))
2260
2261 (((
2262 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2263 )))
2264
2265
2266
2267 (((
2268 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2269
2270
2271 )))
2272
2273 (((
2274 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2275 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2276 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2277 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2278 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2279 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2280 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2281 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2282 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2283 )))
2284
2285
2286 (((
2287 As shown in below:
2288 )))
2289
2290 [[image:1653360498588-932.png||height="485" width="726"]]
2291
2292
2293 == 6.4 How to change the uplink interval? ==
2294
2295
2296 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2297
2298
2299 == 6.5 Can I see counting event in Serial? ==
2300
2301
2302 (((
2303 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2304
2305
2306 == 6.6 Can i use point to point communication for LT-22222-L? ==
2307
2308
2309 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2310
2311
2312 )))
2313
2314 (((
2315 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2316
2317
2318 If the device is not shut down, but directly powered off.
2319
2320 It will default that this is a power-off state.
2321
2322 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2323
2324 After restart, the status before power failure will be read from flash.
2325
2326
2327 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2328
2329
2330 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2331
2332
2333 [[image:image-20221006170630-1.png||height="610" width="945"]]
2334
2335
2336 == 6.9 Can LT22222-L save RO state? ==
2337
2338
2339 Firmware version needs to be no less than 1.6.0.
2340
2341
2342 = 7. Trouble Shooting =
2343 )))
2344
2345 (((
2346 (((
2347 == 7.1 Downlink doesn't work, how to solve it? ==
2348
2349
2350 )))
2351 )))
2352
2353 (((
2354 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2355 )))
2356
2357 (((
2358
2359
2360 == 7.2 Have trouble to upload image. ==
2361
2362
2363 )))
2364
2365 (((
2366 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2367 )))
2368
2369 (((
2370
2371
2372 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2373
2374
2375 )))
2376
2377 (((
2378 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2379 )))
2380
2381
2382 = 8. Order Info =
2383
2384
2385 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2386
2387 (% style="color:#4f81bd" %)**XXX:**
2388
2389 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2390 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2391 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2392 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2393 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2394 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2395 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2396 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2397 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2398
2399 = 9. Packing Info =
2400
2401
2402 **Package Includes**:
2403
2404 * LT-22222-L I/O Controller x 1
2405 * Stick Antenna for LoRa RF part x 1
2406 * Bracket for controller x1
2407 * Program cable x 1
2408
2409 **Dimension and weight**:
2410
2411 * Device Size: 13.5 x 7 x 3 cm
2412 * Device Weight: 105g
2413 * Package Size / pcs : 14.5 x 8 x 5 cm
2414 * Weight / pcs : 170g
2415
2416 = 10. Support =
2417
2418
2419 * (((
2420 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2421 )))
2422 * (((
2423 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2424
2425
2426
2427 )))
2428
2429 = 11. Reference​​​​​ =
2430
2431
2432 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2433 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2434 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]