Version 118.8 by Xiaoling on 2023/05/17 11:09

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is LT Series I/O Controller ==
19
20 (((
21
22
23 (((
24 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 )))
26 )))
27
28 (((
29 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 )))
31
32 (((
33 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 )))
35
36 (((
37 The use environment includes:
38 )))
39
40 (((
41 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 )))
43
44 (((
45 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
46
47
48 )))
49
50 (((
51 [[image:1653295757274-912.png]]
52
53
54 )))
55
56 == 1.2  Specifications ==
57
58 (((
59
60
61 (% style="color:#037691" %)**Hardware System:**
62 )))
63
64 * (((
65 STM32L072xxxx MCU
66 )))
67 * (((
68 SX1276/78 Wireless Chip 
69 )))
70 * (((
71 (((
72 Power Consumption:
73 )))
74
75 * (((
76 Idle: 4mA@12v
77 )))
78 * (((
79 20dB Transmit: 34mA@12v
80 )))
81 )))
82
83 (((
84
85
86 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 )))
88
89 * (((
90 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 )))
92 * (((
93 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 )))
95 * (((
96 2 x Relay Output (5A@250VAC / 30VDC)
97 )))
98 * (((
99 2 x 0~~20mA Analog Input (res:0.01mA)
100 )))
101 * (((
102 2 x 0~~30V Analog Input (res:0.01v)
103 )))
104 * (((
105 Power Input 7~~ 24V DC. 
106 )))
107
108 (((
109
110
111 (% style="color:#037691" %)**LoRa Spec:**
112 )))
113
114 * (((
115 (((
116 Frequency Range:
117 )))
118
119 * (((
120 Band 1 (HF): 862 ~~ 1020 Mhz
121 )))
122 * (((
123 Band 2 (LF): 410 ~~ 528 Mhz
124 )))
125 )))
126 * (((
127 168 dB maximum link budget.
128 )))
129 * (((
130 +20 dBm - 100 mW constant RF output vs.
131 )))
132 * (((
133 +14 dBm high efficiency PA.
134 )))
135 * (((
136 Programmable bit rate up to 300 kbps.
137 )))
138 * (((
139 High sensitivity: down to -148 dBm.
140 )))
141 * (((
142 Bullet-proof front end: IIP3 = -12.5 dBm.
143 )))
144 * (((
145 Excellent blocking immunity.
146 )))
147 * (((
148 Low RX current of 10.3 mA, 200 nA register retention.
149 )))
150 * (((
151 Fully integrated synthesizer with a resolution of 61 Hz.
152 )))
153 * (((
154 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 )))
156 * (((
157 Built-in bit synchronizer for clock recovery.
158 )))
159 * (((
160 Preamble detection.
161 )))
162 * (((
163 127 dB Dynamic Range RSSI.
164 )))
165 * (((
166 Automatic RF Sense and CAD with ultra-fast AFC.
167 )))
168 * (((
169 Packet engine up to 256 bytes with CRC.
170
171
172
173 )))
174
175 == 1.3 Features ==
176
177
178 * LoRaWAN Class A & Class C protocol
179
180 * Optional Customized LoRa Protocol
181
182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183
184 * AT Commands to change parameters
185
186 * Remote configure parameters via LoRa Downlink
187
188 * Firmware upgradable via program port
189
190 * Counting
191
192 == 1.4  Applications ==
193
194
195 * Smart Buildings & Home Automation
196
197 * Logistics and Supply Chain Management
198
199 * Smart Metering
200
201 * Smart Agriculture
202
203 * Smart Cities
204
205 * Smart Factory
206
207 == 1.5 Hardware Variants ==
208
209
210 (% border="1" style="background-color:#f2f2f2; width:500px" %)
211 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
212 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 (% style="text-align:center" %)
214 [[image:image-20230424115112-1.png||height="106" width="58"]]
215 )))|(% style="width:334px" %)(((
216 * 2 x Digital Input (Bi-direction)
217 * 2 x Digital Output
218 * 2 x Relay Output (5A@250VAC / 30VDC)
219 * 2 x 0~~20mA Analog Input (res:0.01mA)
220 * 2 x 0~~30V Analog Input (res:0.01v)
221 * 1 x Counting Port
222 )))
223
224 = 2. Power ON Device =
225
226
227 (((
228 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 )))
230
231 (((
232 PWR will on when device is properly powered.
233
234
235 )))
236
237 [[image:1653297104069-180.png]]
238
239
240 = 3. Operation Mode =
241
242 == 3.1 How it works? ==
243
244
245 (((
246 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 )))
248
249 (((
250 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 )))
252
253
254 == 3.2 Example to join LoRaWAN network ==
255
256
257 (((
258 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259
260
261 )))
262
263 [[image:image-20220523172350-1.png||height="266" width="864"]]
264
265
266 (((
267 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
268
269
270 )))
271
272 (((
273 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 )))
275
276 (((
277 Each LT is shipped with a sticker with the default device EUI as below:
278 )))
279
280 [[image:image-20230425173427-2.png||height="246" width="530"]]
281
282
283 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284
285 **Add APP EUI in the application.**
286
287 [[image:1653297955910-247.png||height="321" width="716"]]
288
289
290 **Add APP KEY and DEV EUI**
291
292 [[image:1653298023685-319.png]]
293
294
295
296 (((
297 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298
299
300 )))
301
302 [[image:1653298044601-602.png||height="405" width="709"]]
303
304
305 == 3.3 Uplink Payload ==
306
307
308 There are five working modes + one interrupt mode on LT for different type application:
309
310 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
311 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
313 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
314 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
315 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316
317 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
318
319
320 (((
321 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
322
323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 |Size(bytes)(% style="display:none" %) |2|2|2|2|1|1|1
325 |Value|(((
326 AVI1
327 voltage
328 )))|(((
329 AVI2
330 voltage
331 )))|(((
332 ACI1
333 Current
334 )))|(((
335 ACI2
336 Current
337 )))|DIDORO*|(((
338 Reserve
339 )))|MOD
340 )))
341
342
343 (((
344
345
346 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
347
348 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
349 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
350 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
351 )))
352
353
354 * RO is for relay. ROx=1 : close,ROx=0 always open.
355 * DI is for digital input. DIx=1: high or float, DIx=0: low.
356 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
357
358 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
359
360 For example if payload is: [[image:image-20220523175847-2.png]]
361
362
363 **The value for the interface is:  **
364
365 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366
367 AVI2 channel voltage is 0x04AC/1000=1.196V
368
369 ACI1 channel current is 0x1310/1000=4.880mA
370
371 ACI2 channel current is 0x1300/1000=4.864mA
372
373 The last byte 0xAA= 10101010(B) means
374
375 * [1] RO1 relay channel is close and the RO1 LED is ON.
376 * [0] RO2 relay channel is open and RO2 LED is OFF;
377
378 **LT22222-L:**
379
380 * [1] DI2 channel is high input and DI2 LED is ON;
381 * [0] DI1 channel is low input;
382
383 * [0] DO3 channel output state
384 ** DO3 is float in case no load between DO3 and V+.;
385 ** DO3 is high in case there is load between DO3 and V+.
386 ** DO3 LED is off in both case
387 * [1] DO2 channel output is low and DO2 LED is ON.
388 * [0] DO1 channel output state
389 ** DO1 is float in case no load between DO1 and V+.;
390 ** DO1 is high in case there is load between DO1 and V+.
391 ** DO1 LED is off in both case
392
393 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394
395
396 (((
397 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
398 )))
399
400 (((
401 Total : 11 bytes payload
402
403 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
404 |Size(bytes)|4|4|1|1|1
405 |Value|COUNT1|COUNT2 |DIDORO*|(((
406 Reserve
407
408
409 )))|MOD
410 )))
411
412 (((
413
414
415 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
419 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
420
421 RO is for relay. ROx=1 : close,ROx=0 always open.
422 )))
423
424 * FIRST: Indicate this is the first packet after join network.
425 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
426
427 (((
428 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
429 )))
430
431 (((
432
433
434 **To use counting mode, please run:**
435 )))
436
437 (% class="box infomessage" %)
438 (((
439 (((
440 (((
441 **AT+MOD=2**
442 )))
443
444 (((
445 **ATZ**
446 )))
447 )))
448 )))
449
450 (((
451
452
453 (% style="color:#4f81bd" %)**AT Commands for counting:**
454
455
456 )))
457
458 (((
459 **For LT22222-L:**
460
461
462 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
463
464 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
465
466 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
467
468 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
469
470 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
471
472 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
473 )))
474
475
476 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
477
478
479 **LT22222-L**: This mode the DI1 is used as a counting pin.
480
481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 |Size(bytes)|4|2|2|1|1|1
483 |Value|COUNT1|(((
484 ACI1 Current
485 )))|(((
486 ACI2 Current
487 )))|DIDORO*|Reserve|MOD
488
489 (((
490
491
492 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
493
494 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
495 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
496 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
497 )))
498
499
500 * RO is for relay. ROx=1 : close,ROx=0 always open.
501 * FIRST: Indicate this is the first packet after join network.
502 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
503
504 (((
505 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
506 )))
507
508
509 (((
510 **To use counting mode, please run:**
511 )))
512
513 (% class="box infomessage" %)
514 (((
515 (((
516 (((
517 **AT+MOD=3**
518 )))
519
520 (((
521 **ATZ**
522 )))
523 )))
524 )))
525
526 (((
527 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
528 )))
529
530
531 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
532
533
534 (((
535 **LT22222-L**: This mode the DI1 is used as a counting pin.
536 )))
537
538 (((
539 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
540
541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 |Size(bytes)|4|4|1|1|1
543 |Value|COUNT1|AVI1 Counting|DIDORO*|(((
544 Reserve
545
546
547 )))|MOD
548 )))
549
550
551
552 (((
553 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
554
555 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
556 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
557 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
558 )))
559
560
561 * RO is for relay. ROx=1 : close,ROx=0 always open.
562 * FIRST: Indicate this is the first packet after join network.
563 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
564
565 (((
566 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
567 )))
568
569 (((
570
571
572 **To use this mode, please run:**
573 )))
574
575 (% class="box infomessage" %)
576 (((
577 (((
578 (((
579 **AT+MOD=4**
580 )))
581
582 (((
583 **ATZ**
584 )))
585 )))
586 )))
587
588
589 (((
590 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
591 )))
592
593 (((
594
595
596 **Plus below command for AVI1 Counting:**
597
598
599 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
600
601 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
602
603 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
604
605 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
606 )))
607
608
609 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
610
611
612 **LT22222-L**: This mode the DI1 is used as a counting pin.
613
614 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
615 |Size(bytes)|2|2|2|2|1|1|1
616 |Value|(((
617 AVI1
618 voltage
619 )))|(((
620 AVI2
621 voltage
622 )))|(((
623 ACI1
624 Current
625 )))|COUNT1|DIDORO*|(((
626 Reserve
627 )))|MOD
628
629 (((
630
631
632 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
633
634 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
635 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
636 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
637 )))
638
639 * RO is for relay. ROx=1 : close,ROx=0 always open.
640 * FIRST: Indicate this is the first packet after join network.
641 * (((
642 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
643 )))
644
645 (((
646 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
647 )))
648
649 (((
650
651
652 **To use this mode, please run:**
653 )))
654
655 (% class="box infomessage" %)
656 (((
657 (((
658 (((
659 **AT+MOD=5**
660 )))
661
662 (((
663 **ATZ**
664 )))
665 )))
666 )))
667
668 (((
669 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
670 )))
671
672
673 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
674
675
676 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
677
678 For example, if user has configured below commands:
679
680 * **AT+MOD=1 ** **~-~->**  The normal working mode
681 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
682
683 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
684
685 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
686 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
687
688 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
689
690
691 (% style="color:#4f81bd" %)**Trigger base on voltage**:
692
693 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
694
695
696 **Example:**
697
698 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
699
700 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
701
702
703
704 (% style="color:#4f81bd" %)**Trigger base on current**:
705
706 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
707
708
709 **Example:**
710
711 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
712
713
714
715 (% style="color:#4f81bd" %)**Trigger base on DI status**:
716
717 DI status trigger Flag.
718
719 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
720
721
722 **Example:**
723
724 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
725
726
727 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
728
729 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
730
731 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
732
733 AA: Code for this downlink Command:
734
735 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
736
737 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
738
739 yy2 yy2: AC1 or AV1 high limit.
740
741 yy3 yy3: AC2 or AV2 low limit.
742
743 Yy4 yy4: AC2 or AV2 high limit.
744
745
746 **Example1**: AA 00 13 88 00 00 00 00 00 00
747
748 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
749
750
751 **Example2**: AA 02 01 00
752
753 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
754
755
756
757 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
758
759 MOD6 Payload : total 11 bytes payload
760
761 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
762 |Size(bytes)|1|1|1|6|1|1
763 |Value|(((
764 TRI_A
765 FLAG
766 )))|(((
767 TRI_A
768 Status
769 )))|(((
770 TRI_DI
771 FLAG+STA
772 )))|Reserve|Enable/Disable MOD6|(((
773 MOD
774 (6)
775 )))
776
777 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
778
779 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
780 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
781 |(((
782 AV1_
783 LOW
784 )))|(((
785 AV1_
786 HIGH
787 )))|(((
788 AV2_
789 LOW
790 )))|(((
791 AV2_
792 HIGH
793 )))|(((
794 AC1_
795 LOW
796 )))|(((
797 AC1_
798 HIGH
799 )))|(((
800 AC2_
801 LOW
802 )))|(((
803 AC2_
804 HIGH
805 )))
806
807 * Each bits shows if the corresponding trigger has been configured.
808
809 **Example:**
810
811 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
812
813
814
815 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
816
817 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
818 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
819 |(((
820 AV1_
821 LOW
822 )))|(((
823 AV1_
824 HIGH
825 )))|(((
826 AV2_
827 LOW
828 )))|(((
829 AV2_
830 HIGH
831 )))|(((
832 AC1_
833 LOW
834 )))|(((
835 AC1_
836 HIGH
837 )))|(((
838 AC2_
839 LOW
840 )))|(((
841 AC2_
842 HIGH
843 )))
844
845
846 * Each bits shows which status has been trigger on this uplink.
847
848 **Example:**
849
850 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
851
852
853 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
854
855 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
856 |bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
857 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
858
859 * Each bits shows which status has been trigger on this uplink.
860
861 **Example:**
862
863 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
864
865 00000101: Means both DI1 and DI2 trigger are enabled.
866
867
868 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
869
870 Downlink command to poll MOD6 status:
871
872 **AB 06**
873
874 When device got this command, it will send the MOD6 payload.
875
876
877 === 3.3.7 Payload Decoder ===
878
879 (((
880
881
882 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
883 )))
884
885
886 == 3.4 ​Configure LT via AT or Downlink ==
887
888
889 (((
890 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
891 )))
892
893 (((
894 (((
895 There are two kinds of Commands:
896 )))
897 )))
898
899 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
900
901 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
902
903 === 3.4.1 Common Commands ===
904
905
906 (((
907 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
908 )))
909
910
911 === 3.4.2 Sensor related commands ===
912
913 ==== 3.4.2.1 Set Transmit Interval ====
914
915
916 Set device uplink interval.
917
918 * (% style="color:#037691" %)**AT Command:**
919
920 (% style="color:blue" %)**AT+TDC=N **
921
922
923 **Example: **AT+TDC=30000. Means set interval to 30 seconds
924
925
926 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
927
928 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
929
930
931
932 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
933
934
935 Set work mode.
936
937 * (% style="color:#037691" %)**AT Command:**
938
939 (% style="color:blue" %)**AT+MOD=N  **
940
941
942 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
943
944
945 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
946
947 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
948
949
950
951 ==== 3.4.2.3 Poll an uplink ====
952
953
954 * (% style="color:#037691" %)**AT Command:**
955
956 There is no AT Command to poll uplink
957
958
959 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
960
961 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
962
963
964 **Example**: 0x08FF, ask device to send an Uplink
965
966
967
968 ==== 3.4.2.4 Enable Trigger Mode ====
969
970
971 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
972
973 * (% style="color:#037691" %)**AT Command:**
974
975 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
976
977 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
978
979 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
980
981
982 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
983
984 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
985
986
987
988 ==== 3.4.2.5 Poll trigger settings ====
989
990
991 Poll trigger settings,
992
993 * (% style="color:#037691" %)**AT Command:**
994
995 There is no AT Command for this feature.
996
997
998 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
999
1000 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
1001
1002
1003
1004 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
1005
1006
1007 Enable Disable DI1/DI2/DI2 as trigger,
1008
1009 * (% style="color:#037691" %)**AT Command:**
1010
1011 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
1012
1013
1014 **Example:**
1015
1016 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
1017
1018 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
1019
1020 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
1021
1022
1023
1024 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
1025
1026
1027 Set DI1 or DI3(for LT-33222-L) trigger.
1028
1029 * (% style="color:#037691" %)**AT Command:**
1030
1031 (% style="color:blue" %)**AT+TRIG1=a,b**
1032
1033 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1034
1035 (% style="color:red" %)**b :** (%%)delay timing.
1036
1037
1038 **Example:**
1039
1040 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1041
1042
1043 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1044
1045 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1046
1047
1048
1049 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
1050
1051
1052 Set DI2 trigger.
1053
1054 * (% style="color:#037691" %)**AT Command:**
1055
1056 (% style="color:blue" %)**AT+TRIG2=a,b**
1057
1058 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1059
1060 (% style="color:red" %)**b :** (%%)delay timing.
1061
1062
1063 **Example:**
1064
1065 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1066
1067
1068 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1069
1070 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1071
1072
1073
1074 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1075
1076
1077 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1078
1079 * (% style="color:#037691" %)**AT Command**
1080
1081 (% style="color:blue" %)**AT+ACLIM**
1082
1083
1084 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1085
1086 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1087
1088
1089
1090 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1091
1092
1093 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1094
1095 * (% style="color:#037691" %)**AT Command**
1096
1097 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1098
1099
1100 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1101
1102 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1103
1104
1105
1106 ==== 3.4.2.11 Trigger – Set minimum interval ====
1107
1108
1109 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1110
1111 * (% style="color:#037691" %)**AT Command**
1112
1113 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1114
1115
1116 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1117
1118 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1119
1120 (((
1121
1122
1123 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1124 )))
1125
1126
1127
1128 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1129
1130
1131 * (% style="color:#037691" %)**AT Command**
1132
1133 There is no AT Command to control Digital Output
1134
1135
1136 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1137 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1138
1139 (((
1140 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1141 )))
1142
1143 (((
1144 01: Low,  00: High ,  11: No action
1145 )))
1146
1147 [[image:image-20220524092754-5.png]]
1148
1149 (((
1150 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1151 )))
1152
1153 (((
1154 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1155 )))
1156
1157
1158
1159 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1160
1161
1162 * (% style="color:#037691" %)**AT Command**
1163
1164 There is no AT Command to control Digital Output
1165
1166
1167 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1168
1169 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1170
1171
1172 This is to control the digital output time of DO pin. Include four bytes:
1173
1174 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1175
1176 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1177
1178 01: DO pins will change back to original state after timeout.
1179
1180 00: DO pins will change to an inverter state after timeout 
1181
1182
1183 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1184
1185 [[image:image-20220524093238-6.png]]
1186
1187
1188 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1189
1190 [[image:image-20220524093328-7.png]]
1191
1192
1193 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1194
1195 [[image:image-20220524093351-8.png]]
1196
1197
1198 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1199
1200 Latching time. Unit: ms
1201
1202
1203 (% style="color:red" %)**Note: **
1204
1205 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1206
1207 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1208
1209
1210 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1211
1212
1213 **Example payload:**
1214
1215 **~1. A9 01 01 01 01 07 D0**
1216
1217 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1218
1219 **2. A9 01 00 01 11 07 D0**
1220
1221 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1222
1223 **3. A9 00 00 00 00 07 D0**
1224
1225 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1226
1227 **4. A9 00 11 01 00 07 D0**
1228
1229 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1230
1231
1232
1233 ==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1234
1235
1236 * (% style="color:#037691" %)**AT Command:**
1237
1238 There is no AT Command to control Relay Output
1239
1240
1241 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1242
1243 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1244
1245
1246 (((
1247 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1248 )))
1249
1250 (((
1251 01: Close ,  00: Open , 11: No action
1252 )))
1253
1254 (((
1255 [[image:image-20230426161322-1.png]]
1256 )))
1257
1258 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1259
1260
1261
1262 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1263
1264
1265 * (% style="color:#037691" %)**AT Command:**
1266
1267 There is no AT Command to control Relay Output
1268
1269
1270 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1271
1272 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1273
1274
1275 This is to control the relay output time of relay. Include four bytes:
1276
1277 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1278
1279 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1280
1281 01: Relays will change back to original state after timeout.
1282
1283 00: Relays will change to an inverter state after timeout
1284
1285
1286 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1287
1288 [[image:image-20221008095908-1.png||height="364" width="564"]]
1289
1290
1291 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1292
1293
1294 (% style="color:red" %)**Note:**
1295
1296 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1297
1298 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1299
1300
1301 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1302
1303
1304 **Example payload:**
1305
1306 **~1. 05 01 11 07 D0**
1307
1308 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1309
1310 **2. 05 01 10 07 D0**
1311
1312 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1313
1314 **3. 05 00 01 07 D0**
1315
1316 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1317
1318 **4. 05 00 00 07 D0**
1319
1320 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1321
1322
1323
1324 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1325
1326
1327 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1328
1329 * (% style="color:#037691" %)**AT Command:**
1330
1331 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1332
1333
1334 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1335
1336 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1337
1338
1339
1340 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1341
1342
1343 * (% style="color:#037691" %)**AT Command:**
1344
1345 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1346
1347 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1348
1349 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1350
1351
1352 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1353
1354 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1355
1356
1357
1358 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1359
1360
1361 Clear counting for counting mode
1362
1363 * (% style="color:#037691" %)**AT Command:**
1364
1365 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1366
1367
1368 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1369
1370 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1371
1372
1373
1374 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1375
1376
1377 * (% style="color:#037691" %)**AT Command:**
1378
1379 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1380
1381
1382 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1383
1384 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1385
1386 (((
1387 range: aa bb cc:0 to 16777215,  (unit:second)
1388 )))
1389
1390
1391
1392 ==== 3.4.2.20 Reset save RO DO state ====
1393
1394
1395 * (% style="color:#037691" %)**AT Command:**
1396
1397 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1398
1399 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1400
1401
1402 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1403
1404 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1405
1406
1407
1408 ==== 3.4.2.21 Encrypted payload ====
1409
1410
1411 * (% style="color:#037691" %)**AT Command:**
1412
1413 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1414
1415 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1416
1417
1418
1419 ==== 3.4.2.22 Get sensor value ====
1420
1421
1422 * (% style="color:#037691" %)**AT Command:**
1423
1424 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1425
1426 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1427
1428
1429
1430 ==== 3.4.2.23 Resets the downlink packet count ====
1431
1432
1433 * (% style="color:#037691" %)**AT Command:**
1434
1435 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1436
1437 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1438
1439
1440
1441 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1442
1443
1444 * (% style="color:#037691" %)**AT Command:**
1445
1446 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1447
1448 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1449
1450
1451 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1452
1453 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1454
1455
1456
1457 ==== 3.4.2.25 Copy downlink to uplink ====
1458
1459
1460 * (% style="color:#037691" %)**AT Command**(%%)**:**
1461
1462 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1463
1464 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1465
1466
1467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1468
1469 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1470
1471
1472
1473 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1474
1475 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1476
1477
1478
1479 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1480
1481
1482 * (((
1483 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1484
1485 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1486
1487
1488 )))
1489
1490 **Example:**
1491
1492 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1493
1494
1495 == 3.5 Integrate with Mydevice ==
1496
1497
1498 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1499
1500 (((
1501 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1502 )))
1503
1504 (((
1505 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1506
1507
1508 )))
1509
1510 [[image:image-20220719105525-1.png||height="377" width="677"]]
1511
1512
1513
1514 [[image:image-20220719110247-2.png||height="388" width="683"]]
1515
1516
1517 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1518
1519 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1520
1521 Search under The things network
1522
1523 [[image:1653356838789-523.png||height="337" width="740"]]
1524
1525
1526
1527 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1528
1529 [[image:image-20220524094909-1.png||height="335" width="729"]]
1530
1531
1532 [[image:image-20220524094909-2.png||height="337" width="729"]]
1533
1534
1535 [[image:image-20220524094909-3.png||height="338" width="727"]]
1536
1537
1538 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1539
1540
1541 [[image:image-20220524094909-5.png||height="341" width="734"]]
1542
1543
1544 == 3.6 Interface Detail ==
1545
1546 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1547
1548
1549 Support NPN Type sensor
1550
1551 [[image:1653356991268-289.png]]
1552
1553
1554 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1555
1556
1557 (((
1558 The DI port of LT-22222-L can support NPN or PNP output sensor.
1559 )))
1560
1561 (((
1562 (((
1563 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1564
1565
1566 )))
1567 )))
1568
1569 [[image:1653357170703-587.png]]
1570
1571 (((
1572 (((
1573 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1574 )))
1575 )))
1576
1577 (((
1578
1579 )))
1580
1581 (((
1582 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1583 )))
1584
1585 (((
1586 This type of sensor will output a low signal GND when active.
1587 )))
1588
1589 * (((
1590 Connect sensor's output to DI1-
1591 )))
1592 * (((
1593 Connect sensor's VCC to DI1+.
1594 )))
1595
1596 (((
1597 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1598 )))
1599
1600 (((
1601 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1602 )))
1603
1604 (((
1605 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1606 )))
1607
1608 (((
1609
1610 )))
1611
1612 (((
1613 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1614 )))
1615
1616 (((
1617 This type of sensor will output a high signal (example 24v) when active.
1618 )))
1619
1620 * (((
1621 Connect sensor's output to DI1+
1622 )))
1623 * (((
1624 Connect sensor's GND DI1-.
1625 )))
1626
1627 (((
1628 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1629 )))
1630
1631 (((
1632 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1633 )))
1634
1635 (((
1636 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1637 )))
1638
1639 (((
1640
1641 )))
1642
1643 (((
1644 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1645 )))
1646
1647 (((
1648 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1649 )))
1650
1651 * (((
1652 Connect sensor's output to DI1+ with a serial 50K resistor
1653 )))
1654 * (((
1655 Connect sensor's GND DI1-.
1656 )))
1657
1658 (((
1659 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1660 )))
1661
1662 (((
1663 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1664 )))
1665
1666 (((
1667 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1668 )))
1669
1670
1671 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1672
1673
1674 (% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1675
1676 (% style="color:red" %)**Note: DO pins go to float when device is power off.**
1677
1678 [[image:1653357531600-905.png]]
1679
1680
1681 === 3.6.4 Analog Input Interface ===
1682
1683
1684 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1685
1686
1687 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1688
1689 [[image:1653357592296-182.png]]
1690
1691 Example to connect a 4~~20mA sensor
1692
1693 We take the wind speed sensor as an example for reference only.
1694
1695
1696 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1697
1698 (% style="color:red" %)**Red:  12~~24v**
1699
1700 (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1701
1702 **Black:  GND**
1703
1704
1705 **Connection diagram:**
1706
1707 [[image:1653357640609-758.png]]
1708
1709 [[image:1653357648330-671.png||height="155" width="733"]]
1710
1711
1712 === 3.6.5 Relay Output ===
1713
1714
1715 (((
1716 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1717
1718 **Note**: RO pins go to Open(NO) when device is power off.
1719 )))
1720
1721 [[image:image-20220524100215-9.png]]
1722
1723
1724 [[image:image-20220524100215-10.png||height="382" width="723"]]
1725
1726
1727 == 3.7 LEDs Indicators ==
1728
1729
1730 [[image:image-20220524100748-11.png]]
1731
1732
1733 = 4. Use AT Command =
1734
1735 == 4.1 Access AT Command ==
1736
1737
1738 (((
1739 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1740 )))
1741
1742 (((
1743
1744 )))
1745
1746 [[image:1653358238933-385.png]]
1747
1748
1749 (((
1750 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1751 )))
1752
1753 [[image:1653358355238-883.png]]
1754
1755
1756 (((
1757 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1758 )))
1759
1760 (((
1761 AT+<CMD>?        : Help on <CMD>
1762 )))
1763
1764 (((
1765 AT+<CMD>         : Run <CMD>
1766 )))
1767
1768 (((
1769 AT+<CMD>=<value> : Set the value
1770 )))
1771
1772 (((
1773 AT+<CMD>=?       :  Get the value
1774 )))
1775
1776 (((
1777 ATZ: Trig a reset of the MCU
1778 )))
1779
1780 (((
1781 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1782 )))
1783
1784 (((
1785 AT+DEUI: Get or Set the Device EUI
1786 )))
1787
1788 (((
1789 AT+DADDR: Get or Set the Device Address
1790 )))
1791
1792 (((
1793 AT+APPKEY: Get or Set the Application Key
1794 )))
1795
1796 (((
1797 AT+NWKSKEY: Get or Set the Network Session Key
1798 )))
1799
1800 (((
1801 AT+APPSKEY:  Get or Set the Application Session Key
1802 )))
1803
1804 (((
1805 AT+APPEUI:  Get or Set the Application EUI
1806 )))
1807
1808 (((
1809 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1810 )))
1811
1812 (((
1813 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1814 )))
1815
1816 (((
1817 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1818 )))
1819
1820 (((
1821 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1822 )))
1823
1824 (((
1825 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1826 )))
1827
1828 (((
1829 AT+RX2FQ: Get or Set the Rx2 window frequency
1830 )))
1831
1832 (((
1833 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1834 )))
1835
1836 (((
1837 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1838 )))
1839
1840 (((
1841 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1842 )))
1843
1844 (((
1845 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1846 )))
1847
1848 (((
1849 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1850 )))
1851
1852 (((
1853 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1854 )))
1855
1856 (((
1857 AT+NWKID: Get or Set the Network ID
1858 )))
1859
1860 (((
1861 AT+FCU: Get or Set the Frame Counter Uplink
1862 )))
1863
1864 (((
1865 AT+FCD: Get or Set the Frame Counter Downlink
1866 )))
1867
1868 (((
1869 AT+CLASS: Get or Set the Device Class
1870 )))
1871
1872 (((
1873 AT+JOIN: Join network
1874 )))
1875
1876 (((
1877 AT+NJS: Get OTAA Join Status
1878 )))
1879
1880 (((
1881 AT+SENDB: Send hexadecimal data along with the application port
1882 )))
1883
1884 (((
1885 AT+SEND: Send text data along with the application port
1886 )))
1887
1888 (((
1889 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1890 )))
1891
1892 (((
1893 AT+RECV: Print last received data in raw format
1894 )))
1895
1896 (((
1897 AT+VER:  Get current image version and Frequency Band
1898 )))
1899
1900 (((
1901 AT+CFM: Get or Set the confirmation mode (0-1)
1902 )))
1903
1904 (((
1905 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1906 )))
1907
1908 (((
1909 AT+SNR: Get the SNR of the last received packet
1910 )))
1911
1912 (((
1913 AT+RSSI: Get the RSSI of the last received packet
1914 )))
1915
1916 (((
1917 AT+TDC: Get or set the application data transmission interval in ms
1918 )))
1919
1920 (((
1921 AT+PORT: Get or set the application port
1922 )))
1923
1924 (((
1925 AT+DISAT: Disable AT commands
1926 )))
1927
1928 (((
1929 AT+PWORD: Set password, max 9 digits
1930 )))
1931
1932 (((
1933 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1934 )))
1935
1936 (((
1937 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1938 )))
1939
1940 (((
1941 AT+CFG: Print all settings
1942 )))
1943
1944
1945 == 4.2 Common AT Command Sequence ==
1946
1947 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1948
1949 (((
1950
1951
1952 (((
1953 (% style="color:blue" %)**If device has not joined network yet:**
1954 )))
1955 )))
1956
1957 (((
1958 (% style="background-color:#dcdcdc" %)**123456**
1959 )))
1960
1961 (((
1962 (% style="background-color:#dcdcdc" %)**AT+FDR**
1963 )))
1964
1965 (((
1966 (% style="background-color:#dcdcdc" %)**123456**
1967 )))
1968
1969 (((
1970 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1971 )))
1972
1973 (((
1974 (% style="background-color:#dcdcdc" %)**ATZ**
1975 )))
1976
1977
1978 (((
1979 (% style="color:blue" %)**If device already joined network:**
1980 )))
1981
1982 (((
1983 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1984 )))
1985
1986 (((
1987 (% style="background-color:#dcdcdc" %)**ATZ**
1988 )))
1989
1990
1991 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1992
1993 (((
1994
1995
1996 (((
1997 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1998 )))
1999 )))
2000
2001 (((
2002 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
2003 )))
2004
2005 (((
2006 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
2007 )))
2008
2009 (((
2010 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2011 )))
2012
2013 (((
2014 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
2015 )))
2016
2017 (((
2018 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
2019 )))
2020
2021 (((
2022 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
2023 )))
2024
2025 (((
2026 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
2027 )))
2028
2029 (((
2030 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2031 )))
2032
2033 (((
2034 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2035 )))
2036
2037 (((
2038 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2039 )))
2040
2041 (((
2042 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2043 )))
2044
2045 (((
2046 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
2047
2048
2049 )))
2050
2051 (((
2052 (% style="color:red" %)**Note:**
2053 )))
2054
2055 (((
2056 **~1. Make sure the device is set to ABP mode in the IoT Server.**
2057
2058 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2059
2060 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2061 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2062
2063 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2064
2065
2066 )))
2067
2068 (((
2069 [[image:1653359097980-169.png||height="188" width="729"]]
2070 )))
2071
2072 (((
2073
2074 )))
2075
2076 === 4.2.3 Change to Class A ===
2077
2078
2079 (((
2080 (% style="color:blue" %)**If sensor JOINED:**
2081
2082 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
2083 ATZ**
2084 )))
2085
2086
2087 = 5. Case Study =
2088
2089 == 5.1 Counting how many objects pass in Flow Line ==
2090
2091
2092 Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2093
2094
2095 = 6. FAQ =
2096
2097 == 6.1 How to upgrade the image? ==
2098
2099
2100 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2101
2102 * Support new features
2103 * For bug fix
2104 * Change LoRaWAN bands.
2105
2106 Below shows the hardware connection for how to upload an image to the LT:
2107
2108 [[image:1653359603330-121.png]]
2109
2110
2111 (((
2112 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2113 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2114 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2115
2116
2117 (((
2118 (% style="color:blue" %)**For LT-22222-L**(%%):
2119 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2120 )))
2121
2122
2123 )))
2124
2125 [[image:image-20220524103407-12.png]]
2126
2127
2128 [[image:image-20220524103429-13.png]]
2129
2130
2131 [[image:image-20220524104033-15.png]]
2132
2133
2134 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2135
2136
2137 [[image:1653360054704-518.png||height="186" width="745"]]
2138
2139
2140 (((
2141 (((
2142 == 6.2 How to change the LoRa Frequency Bands/Region? ==
2143
2144
2145 )))
2146 )))
2147
2148 (((
2149 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2150 )))
2151
2152 (((
2153
2154
2155 == 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2156
2157
2158 )))
2159
2160 (((
2161 (((
2162 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2163 )))
2164 )))
2165
2166 (((
2167 (((
2168 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2169
2170
2171 )))
2172 )))
2173
2174 (((
2175 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2176
2177
2178 )))
2179
2180 (((
2181 [[image:1653360231087-571.png||height="401" width="727"]]
2182
2183
2184 )))
2185
2186 (((
2187 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2188 )))
2189
2190
2191
2192 (((
2193 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2194
2195
2196 )))
2197
2198 (((
2199 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2200 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2201 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2202 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2203 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2204 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2205 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2206 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2207 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2208 )))
2209
2210
2211 (((
2212 As shown in below:
2213 )))
2214
2215 [[image:1653360498588-932.png||height="485" width="726"]]
2216
2217
2218 == 6.4 How to change the uplink interval? ==
2219
2220
2221 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2222
2223
2224 == 6.5 Can I see counting event in Serial? ==
2225
2226
2227 (((
2228 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2229
2230
2231 == 6.6 Can i use point to point communication for LT-22222-L? ==
2232
2233
2234 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2235
2236
2237 )))
2238
2239 (((
2240 == 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2241
2242
2243 If the device is not shut down, but directly powered off.
2244
2245 It will default that this is a power-off state.
2246
2247 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2248
2249 After restart, the status before power failure will be read from flash.
2250
2251
2252 == 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2253
2254
2255 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2256
2257
2258 [[image:image-20221006170630-1.png||height="610" width="945"]]
2259
2260
2261 == 6.9 Can LT22222-L save RO state? ==
2262
2263
2264 Firmware version needs to be no less than 1.6.0.
2265
2266
2267 = 7. Trouble Shooting =
2268 )))
2269
2270 (((
2271 (((
2272 == 7.1 Downlink doesn't work, how to solve it? ==
2273
2274
2275 )))
2276 )))
2277
2278 (((
2279 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2280 )))
2281
2282 (((
2283
2284
2285 == 7.2 Have trouble to upload image. ==
2286
2287
2288 )))
2289
2290 (((
2291 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2292 )))
2293
2294 (((
2295
2296
2297 == 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2298
2299
2300 )))
2301
2302 (((
2303 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2304 )))
2305
2306
2307 = 8. Order Info =
2308
2309
2310 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2311
2312 (% style="color:#4f81bd" %)**XXX:**
2313
2314 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2315 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2316 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2317 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2318 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2319 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2320 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2321 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2322 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2323
2324 = 9. Packing Info =
2325
2326
2327 **Package Includes**:
2328
2329 * LT-22222-L I/O Controller x 1
2330 * Stick Antenna for LoRa RF part x 1
2331 * Bracket for controller x1
2332 * Program cable x 1
2333
2334 **Dimension and weight**:
2335
2336 * Device Size: 13.5 x 7 x 3 cm
2337 * Device Weight: 105g
2338 * Package Size / pcs : 14.5 x 8 x 5 cm
2339 * Weight / pcs : 170g
2340
2341 = 10. Support =
2342
2343
2344 * (((
2345 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2346 )))
2347 * (((
2348 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2349
2350
2351
2352 )))
2353
2354 = 11. Reference​​​​​ =
2355
2356
2357 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2358 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2359 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]