Version 109.1 by Edwin Chen on 2022/11/19 11:32

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220523163353-1.jpeg||height="604" width="500"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16 = 1.Introduction =
17
18
19 == 1.1 What is LT Series I/O Controller ==
20
21 (((
22
23
24 (((
25 The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
26 )))
27 )))
28
29 (((
30 The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
31 )))
32
33 (((
34 The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
35 )))
36
37 (((
38 The use environment includes:
39 )))
40
41 (((
42 1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
43 )))
44
45 (((
46 2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
47
48
49 )))
50
51 (((
52 [[image:1653295757274-912.png]]
53
54
55 )))
56
57
58 == 1.2  Specifications ==
59
60 (((
61
62
63 (% style="color:#037691" %)**Hardware System:**
64 )))
65
66 * (((
67 STM32L072xxxx MCU
68 )))
69 * (((
70 SX1276/78 Wireless Chip 
71 )))
72 * (((
73 (((
74 Power Consumption:
75 )))
76
77 * (((
78 Idle: 4mA@12v
79 )))
80 * (((
81 20dB Transmit: 34mA@12v
82 )))
83 )))
84
85 (((
86
87
88 (% style="color:#037691" %)**Interface for Model: LT22222-L:**
89 )))
90
91 * (((
92 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
93 )))
94 * (((
95 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
96 )))
97 * (((
98 2 x Relay Output (5A@250VAC / 30VDC)
99 )))
100 * (((
101 2 x 0~~20mA Analog Input (res:0.01mA)
102 )))
103 * (((
104 2 x 0~~30V Analog Input (res:0.01v)
105 )))
106 * (((
107 Power Input 7~~ 24V DC. 
108 )))
109
110 (((
111
112
113 (% style="color:#037691" %)**LoRa Spec:**
114 )))
115
116 * (((
117 (((
118 Frequency Range:
119 )))
120
121 * (((
122 Band 1 (HF): 862 ~~ 1020 Mhz
123 )))
124 * (((
125 Band 2 (LF): 410 ~~ 528 Mhz
126 )))
127 )))
128 * (((
129 168 dB maximum link budget.
130 )))
131 * (((
132 +20 dBm - 100 mW constant RF output vs.
133 )))
134 * (((
135 +14 dBm high efficiency PA.
136 )))
137 * (((
138 Programmable bit rate up to 300 kbps.
139 )))
140 * (((
141 High sensitivity: down to -148 dBm.
142 )))
143 * (((
144 Bullet-proof front end: IIP3 = -12.5 dBm.
145 )))
146 * (((
147 Excellent blocking immunity.
148 )))
149 * (((
150 Low RX current of 10.3 mA, 200 nA register retention.
151 )))
152 * (((
153 Fully integrated synthesizer with a resolution of 61 Hz.
154 )))
155 * (((
156 FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
157 )))
158 * (((
159 Built-in bit synchronizer for clock recovery.
160 )))
161 * (((
162 Preamble detection.
163 )))
164 * (((
165 127 dB Dynamic Range RSSI.
166 )))
167 * (((
168 Automatic RF Sense and CAD with ultra-fast AFC.
169 )))
170 * (((
171 Packet engine up to 256 bytes with CRC.
172
173
174
175
176 )))
177
178 == 1.3 Features ==
179
180
181 * LoRaWAN Class A & Class C protocol
182 * Optional Customized LoRa Protocol
183 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
184 * AT Commands to change parameters
185 * Remote configure parameters via LoRa Downlink
186 * Firmware upgradable via program port
187 * Counting
188
189 == 1.4  Applications ==
190
191
192 * Smart Buildings & Home Automation
193 * Logistics and Supply Chain Management
194 * Smart Metering
195 * Smart Agriculture
196 * Smart Cities
197 * Smart Factory
198
199 == 1.5 Hardware Variants ==
200
201
202 (% border="1" style="background-color:#f7faff; width:500px" %)
203 |(% style="width:103px" %)**Model**|(% style="width:131px" %)**Photo**|(% style="width:334px" %)**Description**
204 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)[[image:1653296302983-697.png]]|(% style="width:334px" %)(((
205 * 2 x Digital Input (Bi-direction)
206 * 2 x Digital Output
207 * 2 x Relay Output (5A@250VAC / 30VDC)
208 * 2 x 0~~20mA Analog Input (res:0.01mA)
209 * 2 x 0~~30V Analog Input (res:0.01v)
210 * 1 x Counting Port
211 )))
212
213 = 2. Power ON Device =
214
215
216 (((
217 The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
218 )))
219
220 (((
221 PWR will on when device is properly powered.
222
223
224 )))
225
226 [[image:1653297104069-180.png]]
227
228
229
230 = 3. Operation Mode =
231
232
233 == 3.1 How it works? ==
234
235
236 (((
237 The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
238 )))
239
240 (((
241 In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
242 )))
243
244
245
246 == 3.2 Example to join LoRaWAN network ==
247
248
249 (((
250 This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
251
252
253 )))
254
255 [[image:image-20220523172350-1.png||height="266" width="864"]]
256
257
258 (((
259 The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
260
261
262 )))
263
264 (((
265 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
266 )))
267
268 (((
269 Each LT is shipped with a sticker with the default device EUI as below:
270 )))
271
272 [[image:1653297924498-393.png]]
273
274
275 Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
276
277 **Add APP EUI in the application.**
278
279 [[image:1653297955910-247.png||height="321" width="716"]]
280
281
282 **Add APP KEY and DEV EUI**
283
284 [[image:1653298023685-319.png]]
285
286
287
288 (((
289 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
290
291
292 )))
293
294 [[image:1653298044601-602.png||height="405" width="709"]]
295
296
297
298 == 3.3 Uplink Payload ==
299
300
301 There are five working modes + one interrupt mode on LT for different type application:
302
303 * (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
304 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
305 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
306 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
307 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
308 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
309
310 === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
311
312
313 (((
314 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
315 )))
316
317 [[image:image-20220523174024-3.png]]
318
319 (((
320
321
322 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
323 )))
324
325 [[image:image-20220523174254-4.png]]
326
327 * RO is for relay. ROx=1 : close,ROx=0 always open.
328 * DI is for digital input. DIx=1: high or float, DIx=0: low.
329 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
330
331 (% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
332
333 For example if payload is: [[image:image-20220523175847-2.png]]
334
335
336 **The value for the interface is:  **
337
338 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
339
340 AVI2 channel voltage is 0x04AC/1000=1.196V
341
342 ACI1 channel current is 0x1310/1000=4.880mA
343
344 ACI2 channel current is 0x1300/1000=4.864mA
345
346 The last byte 0xAA= 10101010(B) means
347
348 * [1] RO1 relay channel is close and the RO1 LED is ON.
349 * [0] RO2 relay channel is open and RO2 LED is OFF;
350
351 **LT22222-L:**
352
353 * [1] DI2 channel is high input and DI2 LED is ON;
354 * [0] DI1 channel is low input;
355
356 * [0] DO3 channel output state
357 ** DO3 is float in case no load between DO3 and V+.;
358 ** DO3 is high in case there is load between DO3 and V+.
359 ** DO3 LED is off in both case
360 * [1] DO2 channel output is low and DO2 LED is ON.
361 * [0] DO1 channel output state
362 ** DO1 is float in case no load between DO1 and V+.;
363 ** DO1 is high in case there is load between DO1 and V+.
364 ** DO1 LED is off in both case
365
366 === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
367
368
369 (((
370 **For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
371 )))
372
373 (((
374 Total : 11 bytes payload
375 )))
376
377 [[image:image-20220523180452-3.png]]
378
379
380 (((
381 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
382 )))
383
384 [[image:image-20220523180506-4.png]]
385
386 * RO is for relay. ROx=1 : close,ROx=0 always open.
387 * FIRST: Indicate this is the first packet after join network.
388 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
389
390 (((
391 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
392 )))
393
394 (((
395
396
397 **To use counting mode, please run:**
398 )))
399
400 (% class="box infomessage" %)
401 (((
402 (((
403 (((
404 **AT+MOD=2**
405 )))
406
407 (((
408 **ATZ**
409 )))
410 )))
411 )))
412
413 (((
414
415
416 (% style="color:#4f81bd" %)**AT Commands for counting:**
417
418
419 )))
420
421 (((
422 **For LT22222-L:**
423
424
425 (% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
426
427 (% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
428
429 (% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
430
431 (% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
432
433 (% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
434
435 (% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
436 )))
437
438
439
440 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
441
442
443 **LT22222-L**: This mode the DI1 is used as a counting pin.
444
445 [[image:image-20220523181246-5.png]]
446
447 (((
448
449
450 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
451 )))
452
453 [[image:image-20220523181301-6.png]]
454
455 * RO is for relay. ROx=1 : close,ROx=0 always open.
456 * FIRST: Indicate this is the first packet after join network.
457 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
458
459 (((
460 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
461 )))
462
463
464 (((
465 **To use counting mode, please run:**
466 )))
467
468 (% class="box infomessage" %)
469 (((
470 (((
471 (((
472 **AT+MOD=3**
473 )))
474
475 (((
476 **ATZ**
477 )))
478 )))
479 )))
480
481 (((
482 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
483 )))
484
485
486
487 === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
488
489
490 (((
491 **LT22222-L**: This mode the DI1 is used as a counting pin.
492 )))
493
494 (((
495 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
496 )))
497
498 [[image:image-20220523181903-8.png]]
499
500
501 (((
502 (% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
503 )))
504
505 [[image:image-20220523181727-7.png]]
506
507 * RO is for relay. ROx=1 : close,ROx=0 always open.
508 * FIRST: Indicate this is the first packet after join network.
509 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
510
511 (((
512 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
513 )))
514
515 (((
516
517
518 **To use this mode, please run:**
519 )))
520
521 (% class="box infomessage" %)
522 (((
523 (((
524 (((
525 **AT+MOD=4**
526 )))
527
528 (((
529 **ATZ**
530 )))
531 )))
532 )))
533
534
535 (((
536 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
537 )))
538
539 (((
540
541
542 **Plus below command for AVI1 Counting:**
543
544
545 (% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
546
547 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
548
549 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
550
551 (% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
552 )))
553
554
555
556 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
557
558
559 **LT22222-L**: This mode the DI1 is used as a counting pin.
560
561 [[image:image-20220523182334-9.png]]
562
563 (((
564
565
566 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
567 )))
568
569 * RO is for relay. ROx=1 : close,ROx=0 always open.
570 * FIRST: Indicate this is the first packet after join network.
571 * (((
572 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
573 )))
574
575 (((
576 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
577 )))
578
579 (((
580
581
582 **To use this mode, please run:**
583 )))
584
585 (% class="box infomessage" %)
586 (((
587 (((
588 (((
589 **AT+MOD=5**
590 )))
591
592 (((
593 **ATZ**
594 )))
595 )))
596 )))
597
598 (((
599 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
600 )))
601
602
603
604 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
605
606
607 (% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
608
609 For example, if user has configured below commands:
610
611 * **AT+MOD=1 ** **~-~->**  The normal working mode
612 * **AT+ADDMOD6=1**   **~-~->**  Enable trigger
613
614 LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
615
616 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
617 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
618
619 (% style="color:#037691" %)**AT Command to set Trigger Condition**:
620
621
622 (% style="color:#4f81bd" %)**Trigger base on voltage**:
623
624 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
625
626
627 **Example:**
628
629 AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
630
631 AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
632
633
634
635 (% style="color:#4f81bd" %)**Trigger base on current**:
636
637 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
638
639
640 **Example:**
641
642 AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
643
644
645
646 (% style="color:#4f81bd" %)**Trigger base on DI status**:
647
648 DI status trigger Flag.
649
650 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
651
652
653 **Example:**
654
655 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
656
657
658
659 (% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
660
661 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
662
663 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
664
665 AA: Code for this downlink Command:
666
667 xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
668
669 yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
670
671 yy2 yy2: AC1 or AV1 high limit.
672
673 yy3 yy3: AC2 or AV2 low limit.
674
675 Yy4 yy4: AC2 or AV2 high limit.
676
677
678 **Example1**: AA 00 13 88 00 00 00 00 00 00
679
680 Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
681
682
683 **Example2**: AA 02 01 00
684
685 Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
686
687
688
689 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
690
691 MOD6 Payload : total 11 bytes payload
692
693 [[image:image-20220524085923-1.png]]
694
695
696 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
697
698 [[image:image-20220524090106-2.png]]
699
700 * Each bits shows if the corresponding trigger has been configured.
701
702 **Example:**
703
704 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
705
706
707
708 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
709
710 [[image:image-20220524090249-3.png]]
711
712 * Each bits shows which status has been trigger on this uplink.
713
714 **Example:**
715
716 10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
717
718
719
720 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
721
722 [[image:image-20220524090456-4.png]]
723
724 * Each bits shows which status has been trigger on this uplink.
725
726 **Example:**
727
728 00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
729
730 00000101: Means both DI1 and DI2 trigger are enabled.
731
732
733
734 (% style="color:#4f81bd" %)**Enable/Disable MOD6 **(%%): 0x01: MOD6 is enable. 0x00: MOD6 is disable.
735
736 Downlink command to poll MOD6 status:
737
738 **AB 06**
739
740 When device got this command, it will send the MOD6 payload.
741
742
743
744 === 3.3.7 Payload Decoder ===
745
746 (((
747
748
749 **Decoder for TTN/loraserver/ChirpStack**:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
750 )))
751
752
753
754 == 3.4 ​Configure LT via AT or Downlink ==
755
756
757 (((
758 User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
759 )))
760
761 (((
762 (((
763 There are two kinds of Commands:
764 )))
765 )))
766
767 * (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
768
769 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
770
771 === 3.4.1 Common Commands ===
772
773
774 (((
775 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
776 )))
777
778
779
780 === 3.4.2 Sensor related commands ===
781
782
783 ==== 3.4.2.1 Set Transmit Interval ====
784
785
786 Set device uplink interval.
787
788 * (% style="color:#037691" %)**AT Command:**
789
790 (% style="color:blue" %)**AT+TDC=N **
791
792
793 **Example: **AT+TDC=30000. Means set interval to 30 seconds
794
795
796 * (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
797
798 (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
799
800
801
802 ==== 3.4.2.2 Set Work Mode (AT+MOD) ====
803
804
805 Set work mode.
806
807 * (% style="color:#037691" %)**AT Command:**
808
809 (% style="color:blue" %)**AT+MOD=N  **
810
811
812 **Example**: AT+MOD=2. Set work mode to Double DI counting mode
813
814
815 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
816
817 (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
818
819
820
821 ==== 3.4.2.3 Poll an uplink ====
822
823
824 * (% style="color:#037691" %)**AT Command:**
825
826 There is no AT Command to poll uplink
827
828
829 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
830
831 (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
832
833
834 **Example**: 0x08FF, ask device to send an Uplink
835
836
837
838 ==== 3.4.2.4 Enable Trigger Mode ====
839
840
841 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
842
843 * (% style="color:#037691" %)**AT Command:**
844
845 (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
846
847 (% style="color:red" %)**1:** (%%)Enable Trigger Mode
848
849 (% style="color:red" %)**0: **(%%)Disable Trigger Mode
850
851
852 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
853
854 (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
855
856
857
858
859 ==== 3.4.2.5 Poll trigger settings ====
860
861
862 Poll trigger settings,
863
864 * (% style="color:#037691" %)**AT Command:**
865
866 There is no AT Command for this feature.
867
868
869 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
870
871 (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
872
873
874
875 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
876
877
878 Enable Disable DI1/DI2/DI2 as trigger,
879
880 * (% style="color:#037691" %)**AT Command:**
881
882 (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
883
884
885 **Example:**
886
887 AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
888
889 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
890
891 (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
892
893
894
895 ==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
896
897
898 Set DI1 or DI3(for LT-33222-L) trigger.
899
900 * (% style="color:#037691" %)**AT Command:**
901
902 (% style="color:blue" %)**AT+TRIG1=a,b**
903
904 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
905
906 (% style="color:red" %)**b :** (%%)delay timing.
907
908
909 **Example:**
910
911 AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
912
913
914 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
915
916 (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
917
918
919
920 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
921
922
923 Set DI2 trigger.
924
925 * (% style="color:#037691" %)**AT Command:**
926
927 (% style="color:blue" %)**AT+TRIG2=a,b**
928
929 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
930
931 (% style="color:red" %)**b :** (%%)delay timing.
932
933
934 **Example:**
935
936 AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
937
938
939 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
940
941 (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG1=aa,0x(bb cc)
942
943
944
945 ==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
946
947
948 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
949
950 * (% style="color:#037691" %)**AT Command**
951
952 (% style="color:blue" %)**AT+ACLIM**
953
954
955 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
956
957 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
958
959
960
961 ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
962
963
964 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
965
966 * (% style="color:#037691" %)**AT Command**
967
968 (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
969
970
971 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
972
973 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
974
975
976
977 ==== 3.4.2.11 Trigger – Set minimum interval ====
978
979
980 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
981
982 * (% style="color:#037691" %)**AT Command**
983
984 (% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
985
986
987 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
988
989 (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
990
991 (((
992
993
994 (% style="color:red" %)**Note: ATDC setting must be more than 5min**
995 )))
996
997
998
999 ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1000
1001
1002 * (% style="color:#037691" %)**AT Command**
1003
1004 There is no AT Command to control Digital Output
1005
1006
1007 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1008 * (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1009
1010 (((
1011 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1012 )))
1013
1014 (((
1015 01: Low,  00: High ,  11: No action
1016 )))
1017
1018 [[image:image-20220524092754-5.png]]
1019
1020 (((
1021 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1022 )))
1023
1024 (((
1025 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1026 )))
1027
1028
1029
1030 ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1031
1032
1033 * (% style="color:#037691" %)**AT Command**
1034
1035 There is no AT Command to control Digital Output
1036
1037
1038 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA9)**
1039
1040 (% style="color:blue" %)**0xA9 aa bb cc     **(%%) ~/~/ Set DO1/DO2/DO3 output with time control
1041
1042
1043 This is to control the digital output time of DO pin. Include four bytes:
1044
1045 (% style="color:#4f81bd" %)**First Byte**(%%)**:** Type code (0xA9)
1046
1047 (% style="color:#4f81bd" %)**Second Byte**(%%): Inverter Mode
1048
1049 01: DO pins will change back to original state after timeout.
1050
1051 00: DO pins will change to an inverter state after timeout 
1052
1053
1054 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1055
1056 [[image:image-20220524093238-6.png]]
1057
1058
1059 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1060
1061 [[image:image-20220524093328-7.png]]
1062
1063
1064 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1065
1066 [[image:image-20220524093351-8.png]]
1067
1068
1069 (% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1070
1071 Latching time. Unit: ms
1072
1073 Note:
1074
1075 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1076
1077 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1078
1079
1080 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1081
1082
1083 **Example payload:**
1084
1085 **~1. A9 01 01 01 01 07 D0**
1086
1087 DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1088
1089 **2. A9 01 00 01 11 07 D0**
1090
1091 DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1092
1093 **3. A9 00 00 00 00 07 D0**
1094
1095 DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1096
1097 **4. A9 00 11 01 00 07 D0**
1098
1099 DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1100
1101
1102
1103 ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1104
1105
1106 * (% style="color:#037691" %)**AT Command:**
1107
1108 There is no AT Command to control Relay Output
1109
1110
1111 * (% style="color:#037691" %)**Downlink Payload (prefix 0x03):**
1112
1113 (% style="color:blue" %)**0x03 aa bb     ** (%%)~/~/ Set RO1/RO2 output
1114
1115
1116 (((
1117 If payload = 0x030100, it means set RO1 to close and RO2 to open.
1118 )))
1119
1120 (((
1121 01: Close ,  00: Open , 11: No action
1122 )))
1123
1124 (((
1125 [[image:image-20220524093724-9.png]]
1126 )))
1127
1128 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1129
1130
1131
1132
1133 ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1134
1135
1136 * (% style="color:#037691" %)**AT Command:**
1137
1138 There is no AT Command to control Relay Output
1139
1140
1141 * (% style="color:#037691" %)**Downlink Payload (prefix 0x05):**
1142
1143 (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1144
1145
1146 This is to control the relay output time of relay. Include four bytes:
1147
1148 (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1149
1150 (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1151
1152 01: Relays will change back to original state after timeout.
1153
1154 00: Relays will change to an inverter state after timeout
1155
1156
1157 (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
1158
1159 [[image:image-20221008095908-1.png||height="364" width="564"]]
1160
1161
1162 (% style="color:#4f81bd" %)**Fourth/Fifth/Sixth/Seventh Bytes(cc)**(%%): Latching time. Unit: ms
1163
1164 Note:
1165
1166 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1167
1168 Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1169
1170
1171 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1172
1173
1174 **Example payload:**
1175
1176 **~1. 05 01 11 07 D**
1177
1178 Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1179
1180 **2. 05 01 10 07 D0**
1181
1182 Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1183
1184 **3. 05 00 01 07 D0**
1185
1186 Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1187
1188 **4. 05 00 00 07 D0**
1189
1190 Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1191
1192
1193
1194 ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1195
1196
1197 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1198
1199 * (% style="color:#037691" %)**AT Command:**
1200
1201 (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1202
1203
1204 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1205
1206 (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1207
1208
1209
1210 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1211
1212
1213 * (% style="color:#037691" %)**AT Command:**
1214
1215 (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1216
1217 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1218
1219 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1220
1221
1222 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
1223
1224 (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1225
1226
1227
1228 ==== 3.4.2.18 Counting ~-~- Clear Counting ====
1229
1230
1231 Clear counting for counting mode
1232
1233 * (% style="color:#037691" %)**AT Command:**
1234
1235 (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1236
1237
1238 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1239
1240 (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1241
1242
1243
1244 ==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1245
1246
1247 * (% style="color:#037691" %)**AT Command:**
1248
1249 (% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1250
1251
1252 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
1253
1254 (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1255
1256 (((
1257 range: aa bb cc:0 to 16777215,  (unit:second)
1258 )))
1259
1260
1261
1262 ==== 3.4.2.20 Reset save RO DO state ====
1263
1264
1265 * (% style="color:#037691" %)**AT Command:**
1266
1267 (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1268
1269 (% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1270
1271
1272 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
1273
1274 (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1275
1276
1277
1278 ==== 3.4.2.21 Encrypted payload ====
1279
1280
1281 * (% style="color:#037691" %)**AT Command:**
1282
1283 (% style="color:blue" %)**AT+DECRYPT=1  ** (%%)~/~/ The payload is uploaded without encryption
1284
1285 (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1286
1287
1288
1289 ==== 3.4.2.22 Get sensor value ====
1290
1291
1292 * (% style="color:#037691" %)**AT Command:**
1293
1294 (% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1295
1296 (% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1297
1298
1299
1300 ==== 3.4.2.23 Resets the downlink packet count ====
1301
1302
1303 * (% style="color:#037691" %)**AT Command:**
1304
1305 (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1306
1307 (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1308
1309
1310
1311
1312 ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1313
1314
1315 * (% style="color:#037691" %)**AT Command:**
1316
1317 (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1318
1319 (% style="color:blue" %)**AT+DISMACANS=1**  (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1320
1321
1322 * (% style="color:#037691" %)**Downlink Payload **(%%)**:**
1323
1324 (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1325
1326
1327
1328
1329 ==== 3.4.2.25 Copy downlink to uplink ====
1330
1331
1332 * (% style="color:#037691" %)**AT Command**(%%)**:**
1333
1334 (% style="color:blue" %)**AT+RPL=5**   (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1335
1336 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1337
1338
1339 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1340
1341 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1342
1343
1344
1345 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1346
1347 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1348
1349
1350
1351 ==== 3.4.2.26 Query version number and frequency band 、TDC ====
1352
1353
1354 * (((
1355 (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1356
1357 (% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1358
1359
1360 )))
1361
1362 **Example:**
1363
1364 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1365
1366
1367
1368 == 3.5 Integrate with Mydevice ==
1369
1370
1371 Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1372
1373 (((
1374 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1375 )))
1376
1377 (((
1378 (% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1379
1380
1381 )))
1382
1383 [[image:image-20220719105525-1.png||height="377" width="677"]]
1384
1385
1386
1387 [[image:image-20220719110247-2.png||height="388" width="683"]]
1388
1389
1390 (% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1391
1392 (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1393
1394 Search under The things network
1395
1396 [[image:1653356838789-523.png||height="337" width="740"]]
1397
1398
1399
1400 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1401
1402 [[image:image-20220524094909-1.png||height="335" width="729"]]
1403
1404
1405 [[image:image-20220524094909-2.png||height="337" width="729"]]
1406
1407
1408 [[image:image-20220524094909-3.png||height="338" width="727"]]
1409
1410
1411 [[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1412
1413
1414 [[image:image-20220524094909-5.png||height="341" width="734"]]
1415
1416
1417
1418 == 3.6 Interface Detail ==
1419
1420
1421 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1422
1423
1424 Support NPN Type sensor
1425
1426 [[image:1653356991268-289.png]]
1427
1428
1429
1430 === 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1431
1432
1433 (((
1434 The DI port of LT-22222-L can support NPN or PNP output sensor.
1435 )))
1436
1437 (((
1438 (((
1439 Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1440
1441
1442 )))
1443 )))
1444
1445 [[image:1653357170703-587.png]]
1446
1447 (((
1448 (((
1449 When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1450 )))
1451 )))
1452
1453 (((
1454
1455 )))
1456
1457 (((
1458 (% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1459 )))
1460
1461 (((
1462 This type of sensor will output a low signal GND when active.
1463 )))
1464
1465 * (((
1466 Connect sensor's output to DI1-
1467 )))
1468 * (((
1469 Connect sensor's VCC to DI1+.
1470 )))
1471
1472 (((
1473 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1474 )))
1475
1476 (((
1477 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1**+** / 1K.**
1478 )))
1479
1480 (((
1481 If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1482 )))
1483
1484 (((
1485
1486
1487
1488 )))
1489
1490 (((
1491 (% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1492 )))
1493
1494 (((
1495 This type of sensor will output a high signal (example 24v) when active.
1496 )))
1497
1498 * (((
1499 Connect sensor's output to DI1+
1500 )))
1501 * (((
1502 Connect sensor's GND DI1-.
1503 )))
1504
1505 (((
1506 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1507 )))
1508
1509 (((
1510 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 1K.**
1511 )))
1512
1513 (((
1514 If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1515 )))
1516
1517 (((
1518
1519
1520
1521 )))
1522
1523 (((
1524 (% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1525 )))
1526
1527 (((
1528 Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1529 )))
1530
1531 * (((
1532 Connect sensor's output to DI1+ with a serial 50K resistor
1533 )))
1534 * (((
1535 Connect sensor's GND DI1-.
1536 )))
1537
1538 (((
1539 So when sensor active, the current between NEC2501 pin1 and pin2 is:
1540 )))
1541
1542 (((
1543 [[image:1653968155772-850.png||height="23" width="19"]]**= DI1+ / 51K.**
1544 )))
1545
1546 (((
1547 If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1548 )))
1549
1550
1551
1552 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1553
1554
1555 **NPN output**: GND or Float. Max voltage can apply to output pin is 36v.
1556
1557 Note: DO pins go to float when device is power off.
1558
1559 [[image:1653357531600-905.png]]
1560
1561
1562
1563 === 3.6.4 Analog Input Interface ===
1564
1565
1566 The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1567
1568
1569 (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
1570
1571 [[image:1653357592296-182.png]]
1572
1573 Example to connect a 4~~20mA sensor
1574
1575 We take the wind speed sensor as an example for reference only.
1576
1577
1578 (% style="color:blue" %)**Specifications of the wind speed sensor:**
1579
1580 **Red:  12~~24v**
1581
1582 **Yellow:  4~~20mA**
1583
1584 **Black:  GND**
1585
1586
1587 **Connection diagram:**
1588
1589 [[image:1653357640609-758.png]]
1590
1591 [[image:1653357648330-671.png||height="155" width="733"]]
1592
1593
1594
1595 === 3.6.5 Relay Output ===
1596
1597
1598 (((
1599 The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1600
1601 **Note**: RO pins go to Open(NO) when device is power off.
1602 )))
1603
1604 [[image:image-20220524100215-9.png]]
1605
1606
1607 [[image:image-20220524100215-10.png||height="382" width="723"]]
1608
1609
1610
1611 == 3.7 LEDs Indicators ==
1612
1613
1614 [[image:image-20220524100748-11.png]]
1615
1616
1617
1618 = 4. Use AT Command =
1619
1620
1621 == 4.1 Access AT Command ==
1622
1623
1624 (((
1625 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1626 )))
1627
1628 (((
1629
1630 )))
1631
1632 [[image:1653358238933-385.png]]
1633
1634
1635 (((
1636 In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1637 )))
1638
1639 [[image:1653358355238-883.png]]
1640
1641
1642 (((
1643 More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1644 )))
1645
1646 (((
1647 AT+<CMD>?        : Help on <CMD>
1648 )))
1649
1650 (((
1651 AT+<CMD>         : Run <CMD>
1652 )))
1653
1654 (((
1655 AT+<CMD>=<value> : Set the value
1656 )))
1657
1658 (((
1659 AT+<CMD>=?       :  Get the value
1660 )))
1661
1662 (((
1663 ATZ: Trig a reset of the MCU
1664 )))
1665
1666 (((
1667 AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1668 )))
1669
1670 (((
1671 AT+DEUI: Get or Set the Device EUI
1672 )))
1673
1674 (((
1675 AT+DADDR: Get or Set the Device Address
1676 )))
1677
1678 (((
1679 AT+APPKEY: Get or Set the Application Key
1680 )))
1681
1682 (((
1683 AT+NWKSKEY: Get or Set the Network Session Key
1684 )))
1685
1686 (((
1687 AT+APPSKEY:  Get or Set the Application Session Key
1688 )))
1689
1690 (((
1691 AT+APPEUI:  Get or Set the Application EUI
1692 )))
1693
1694 (((
1695 AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1696 )))
1697
1698 (((
1699 AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1700 )))
1701
1702 (((
1703 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1704 )))
1705
1706 (((
1707 AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1708 )))
1709
1710 (((
1711 AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1712 )))
1713
1714 (((
1715 AT+RX2FQ: Get or Set the Rx2 window frequency
1716 )))
1717
1718 (((
1719 AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1720 )))
1721
1722 (((
1723 AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1724 )))
1725
1726 (((
1727 AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1728 )))
1729
1730 (((
1731 AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1732 )))
1733
1734 (((
1735 AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1736 )))
1737
1738 (((
1739 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1740 )))
1741
1742 (((
1743 AT+NWKID: Get or Set the Network ID
1744 )))
1745
1746 (((
1747 AT+FCU: Get or Set the Frame Counter Uplink
1748 )))
1749
1750 (((
1751 AT+FCD: Get or Set the Frame Counter Downlink
1752 )))
1753
1754 (((
1755 AT+CLASS: Get or Set the Device Class
1756 )))
1757
1758 (((
1759 AT+JOIN: Join network
1760 )))
1761
1762 (((
1763 AT+NJS: Get OTAA Join Status
1764 )))
1765
1766 (((
1767 AT+SENDB: Send hexadecimal data along with the application port
1768 )))
1769
1770 (((
1771 AT+SEND: Send text data along with the application port
1772 )))
1773
1774 (((
1775 AT+RECVB: Print last received data in binary format (with hexadecimal values)
1776 )))
1777
1778 (((
1779 AT+RECV: Print last received data in raw format
1780 )))
1781
1782 (((
1783 AT+VER:  Get current image version and Frequency Band
1784 )))
1785
1786 (((
1787 AT+CFM: Get or Set the confirmation mode (0-1)
1788 )))
1789
1790 (((
1791 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1792 )))
1793
1794 (((
1795 AT+SNR: Get the SNR of the last received packet
1796 )))
1797
1798 (((
1799 AT+RSSI: Get the RSSI of the last received packet
1800 )))
1801
1802 (((
1803 AT+TDC: Get or set the application data transmission interval in ms
1804 )))
1805
1806 (((
1807 AT+PORT: Get or set the application port
1808 )))
1809
1810 (((
1811 AT+DISAT: Disable AT commands
1812 )))
1813
1814 (((
1815 AT+PWORD: Set password, max 9 digits
1816 )))
1817
1818 (((
1819 AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1820 )))
1821
1822 (((
1823 AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1824 )))
1825
1826 (((
1827 AT+CFG: Print all settings
1828 )))
1829
1830
1831
1832 == 4.2 Common AT Command Sequence ==
1833
1834
1835 === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1836
1837 (((
1838
1839
1840 (((
1841 (% style="color:blue" %)**If device has not joined network yet:**
1842 )))
1843 )))
1844
1845 (((
1846 (% style="background-color:#dcdcdc" %)**123456**
1847 )))
1848
1849 (((
1850 (% style="background-color:#dcdcdc" %)**AT+FDR**
1851 )))
1852
1853 (((
1854 (% style="background-color:#dcdcdc" %)**123456**
1855 )))
1856
1857 (((
1858 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1859 )))
1860
1861 (((
1862 (% style="background-color:#dcdcdc" %)**ATZ**
1863 )))
1864
1865
1866 (((
1867 (% style="color:blue" %)**If device already joined network:**
1868 )))
1869
1870 (((
1871 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1872 )))
1873
1874 (((
1875 (% style="background-color:#dcdcdc" %)**ATZ**
1876 )))
1877
1878
1879
1880 === 4.2.2 Single-channel ABP mode (Use with LG01/LG02) ===
1881
1882 (((
1883
1884
1885 (((
1886 (% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
1887 )))
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
1892 )))
1893
1894 (((
1895 (% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
1896 )))
1897
1898 (((
1899 (% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
1900 )))
1901
1902 (((
1903 (% style="background-color:#dcdcdc" %)** AT+NJM=0**(%%)  ~/~/ Set to ABP mode
1904 )))
1905
1906 (((
1907 (% style="background-color:#dcdcdc" %) **AT+ADR=0**(%%)  ~/~/ Set the Adaptive Data Rate Off
1908 )))
1909
1910 (((
1911 (% style="background-color:#dcdcdc" %)** AT+DR=5**(%%)  ~/~/ Set Data Rate
1912 )))
1913
1914 (((
1915 (% style="background-color:#dcdcdc" %)** AT+TDC=60000**(%%)  ~/~/ Set transmit interval to 60 seconds
1916 )))
1917
1918 (((
1919 (% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
1920 )))
1921
1922 (((
1923 (% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
1924 )))
1925
1926 (((
1927 (% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
1928 )))
1929
1930 (((
1931 (% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1932 )))
1933
1934 (((
1935 (% style="background-color:#dcdcdc" %)** ATZ**         (%%) ~/~/ Reset MCU
1936
1937
1938 )))
1939
1940 (((
1941 (% style="color:red" %)**Note:**
1942 )))
1943
1944 (((
1945 **~1. Make sure the device is set to ABP mode in the IoT Server.**
1946
1947 **2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
1948
1949 **3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
1950 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1951
1952 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5**
1953
1954
1955 )))
1956
1957 (((
1958 [[image:1653359097980-169.png||height="188" width="729"]]
1959 )))
1960
1961 (((
1962
1963 )))
1964
1965
1966 === 4.2.3 Change to Class A ===
1967
1968
1969 (((
1970 (% style="color:blue" %)**If sensor JOINED:**
1971
1972 (% style="background-color:#dcdcdc" %)**AT+CLASS=A
1973 ATZ**
1974 )))
1975
1976
1977
1978 = 5. FAQ =
1979
1980
1981 == 5.1 How to upgrade the image? ==
1982
1983
1984 The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1985
1986 * Support new features
1987 * For bug fix
1988 * Change LoRaWAN bands.
1989
1990 Below shows the hardware connection for how to upload an image to the LT:
1991
1992 [[image:1653359603330-121.png]]
1993
1994
1995 (((
1996 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1997 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1998 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1999
2000
2001 (((
2002 (% style="color:blue" %)**For LT-22222-L**(%%):
2003 Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2004 )))
2005
2006
2007 )))
2008
2009 [[image:image-20220524103407-12.png]]
2010
2011 [[image:image-20220524103429-13.png]]
2012
2013 [[image:image-20220524104033-15.png]]
2014
2015
2016 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2017
2018
2019 [[image:1653360054704-518.png||height="186" width="745"]]
2020
2021
2022 (((
2023 (((
2024
2025
2026 == 5.2 How to change the LoRa Frequency Bands/Region? ==
2027
2028
2029 )))
2030 )))
2031
2032 (((
2033 User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2034 )))
2035
2036 (((
2037
2038
2039
2040 == 5.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2041
2042
2043 )))
2044
2045 (((
2046 (((
2047 In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2048 )))
2049 )))
2050
2051 (((
2052 (((
2053 Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2054
2055
2056 )))
2057 )))
2058
2059 (((
2060 (% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2061
2062
2063 )))
2064
2065 (((
2066 [[image:1653360231087-571.png||height="401" width="727"]]
2067
2068
2069 )))
2070
2071 (((
2072 (% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2073 )))
2074
2075
2076
2077 (((
2078 (% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2079
2080
2081 )))
2082
2083 (((
2084 (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2085 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2086 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2087 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2088 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2089 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2090 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2091 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2092 (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2093 )))
2094
2095
2096 (((
2097 As shown in below:
2098 )))
2099
2100 [[image:1653360498588-932.png||height="485" width="726"]]
2101
2102
2103
2104 == 5.4 Can I see counting event in Serial? ==
2105
2106
2107 (((
2108 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2109
2110
2111
2112 == 5.5 Can i use point to point communication for LT-22222-L? ==
2113
2114
2115 Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2116
2117
2118
2119 )))
2120
2121 (((
2122 == 5.6 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2123
2124
2125 If the device is not shut down, but directly powered off.
2126
2127 It will default that this is a power-off state.
2128
2129 In modes 2 to 5, DO RO status and pulse count are saved in flash.
2130
2131 After restart, the status before power failure will be read from flash.
2132
2133
2134
2135 == 5.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2136
2137
2138 LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2139
2140
2141 [[image:image-20221006170630-1.png||height="610" width="945"]]
2142
2143
2144 == 5.8 Can LT22222-L save RO state? ==
2145
2146
2147 Firmware version needs to be no less than 1.6.0.
2148
2149
2150
2151 = 6. Trouble Shooting =
2152
2153
2154 )))
2155
2156 (((
2157 (((
2158 == 6.1 Downlink doesn't work, how to solve it? ==
2159
2160
2161 )))
2162 )))
2163
2164 (((
2165 Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2166 )))
2167
2168 (((
2169
2170
2171
2172 == 6.2 Have trouble to upload image. ==
2173
2174
2175 )))
2176
2177 (((
2178 See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2179 )))
2180
2181 (((
2182
2183
2184
2185 == 6.3 Why I can't join TTN in US915 /AU915 bands? ==
2186
2187
2188 )))
2189
2190 (((
2191 It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2192 )))
2193
2194
2195
2196 = 7. Order Info =
2197
2198
2199 (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2200
2201 (% style="color:#4f81bd" %)**XXX:**
2202
2203 * (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2204 * (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2205 * (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2206 * (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2207 * (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2208 * (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2209 * (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2210 * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2211 * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2212
2213 = 8. Packing Info =
2214
2215
2216 **Package Includes**:
2217
2218 * LT-22222-L I/O Controller x 1
2219 * Stick Antenna for LoRa RF part x 1
2220 * Bracket for controller x1
2221 * Program cable x 1
2222
2223 **Dimension and weight**:
2224
2225 * Device Size: 13.5 x 7 x 3 cm
2226 * Device Weight: 105g
2227 * Package Size / pcs : 14.5 x 8 x 5 cm
2228 * Weight / pcs : 170g
2229
2230 = 9. Support =
2231
2232
2233 * (((
2234 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2235 )))
2236 * (((
2237 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2238
2239
2240
2241 )))
2242
2243 = 10. Reference​​​​​ =
2244
2245
2246 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2247 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2248 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]