image-20220611143226-1.png

Contents:

1.  Introduction

1.1 ​ What is LoRaWAN 4-Channels Distance Sensor

 

The Dragino LDDS04 is a LoRaWAN 4-Channels Distance Sensor for Internet of Things solution. It is capable to add up to four Ultrasonic Sensors to measure four distances at the same time.

 

The LDDS04 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.

 

It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.

 

The LoRa wireless technology used in LDDS04 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.

 

LDDS04 is powered by 8500mAh Li-SOCI2 battery, it is designed for long term use up to 5 years.

 

Each LDDS04 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.

 

1654929411930-747.pngData URI imageData URI image

​1.2  Features

  • LoRaWAN 1.0.3 Class A
  • Ultra-low power consumption
  • Detect Range: Base on External Probe
  • Monitor Battery Level
  • Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
  • AT Commands to change parameters
  • Uplink on periodically
  • Downlink to change configure
  • 8500mAh Battery for long term use

  

1.3 ​ Applications

  • Horizontal distance measurement
  • Parking management system
  • Object proximity and presence detection
  • Intelligent trash can management system
  • Robot obstacle avoidance
  • Automatic control
  • Sewer

1.4  Pin mapping and power on

1654930101285-501.png

Data URI imageData URI image

1.5  Probe Options

1.5.1  Probes Comparation

ModelPhotoDescription
A01A-15

1654931296150-422.png

 

Detect Distance: 28 cm ~ 750 cm

Bling Spot Distance: 0 ~ 28cm

Accuracy: ±(1cm+S*0.3%) (S: Distance)

Measure Angle: ~ 40°

Cable Length: 1.5 meter

Temperature Compensation

Suitable for Flat Object Detect

IP67 Water Proof

A02-15

image-20220611150955-2.png

 

Detect Distance: 3cm ~ 450cm

Bling Spot Distance: 0 ~ 3cm

Accuracy: ±(1cm+S*0.3%) (S: Distance)

Measure Angle: ~ 60°

Cable Length: 1.5 meter

Temperature Compensation

Suitable for Flat Object Detect, Rubbish Bin

IP67 Water Proof

A13-15

1654931353123-552.png

 

Detect Distance: 25cm ~ 200cm

Bling Spot Distance: 0 ~ 25cm

Accuracy: ±(1cm+S*0.3%) (S: Distance)

Measure Angle: ~ 20°

Cable Length: 1.5 meter

Temperature Compensation

Suitable for Flat Object Detect, Rubbish Bin

IP67 Water Proof

A16-15

1654931363281-306.png

 

Detect Distance: 50cm ~ 1500cm

Bling Spot Distance: 0 ~ 50cm

Accuracy: ±(1cm+S*0.3%) (S: Distance)

Measure Angle: ~ 40°

Cable Length: 1.5 meter

Temperature Compensation

Suitable for Long Distance Detect

IP67 Water Proof

1.5.2  P01A-15 probe

A01A-15 is mainly used for plane distance measurement; it can carry out targeted measurement on plane objects and can measure long distances and high accuracy.

Beam Chart:

(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.

1654852253176-749.png

(2) The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.

1654852175653-550.png

Mechanical:

image-20220611152848-11.png

1654932546845-829.png

image-20220611152934-12.png

Application:

image-20220611153001-13.png   1654932667221-964.png image-20220611153001-15.png

1.5.3  A02-15 probe

Beam Chart:

(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.

1654934329751-424.png

(2) The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.

1654934343649-264.png

Mechanical:

1654932923252-110.png

Application:

image-20220611153001-13.png

1.5.4  A13-15 probe

Beam Chart:

(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.

1654934363730-880.png

(2) The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.

Mechanical:

image-20220611154330-16.png

Installation Requirement:

1654933425011-311.png

Application:

image-20220611154426-17.png  image-20220611154426-18.png  image-20220611154426-19.png

1.5.5  A13-16 probe

Beam Chart:

(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.

1654934415156-713.png

(2) The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.

1654934424571-232.png

Mechanical:

image-20220611154945-21.png

Application:

image-20220611155020-22.png     image-20220611155020-23.png

image-20220611155020-24.png     image-20220611155020-25.png

2.  Configure LDDS45 to connect to LoRaWAN network

2.1  How it works

The LDDS45 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS45. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value

In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can use AT Commands to set the keys in the LDDS45.

2.2  ​Quick guide to connect to LoRaWAN server (OTAA)

Following is an example for how to join the TTN v3 LoRaWAN Network. Below is the network structure; we use the LG308  as a LoRaWAN gateway in this example. 

 

1654913911773-521.pngData URI imageData URI imageData URI image

 

The LG308 is already set to connected to TTN network , so what we need to now is configure the TTN server.

Step 1: Create a device in TTN with the OTAA keys from LDDS45.

Each LDDS45 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.

image-20220607170145-1.jpegData URI imageData URI imageData URI image

For OTAA registration, we need to set APP EUI/ APP KEY/ DEV EUI. Some server might no need to set APP EUI.

Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:

Add APP EUI in the application

image-20220610161353-4.pngData URI imageData URI imageData URI image

image-20220610161353-5.pngData URI imageData URI imageData URI image

image-20220610161353-6.pngData URI imageData URI imageData URI image

image-20220610161353-7.pngData URI imageData URI imageData URI image

Choose LDDS75 instead of LDDS45 is ok. They are of the same payload

You can also choose to create the device manually.

                                          image-20220610161538-8.pngData URI imageData URI imageData URI image

Add APP KEY and DEV EUI

image-20220610161538-9.pngData URI imageData URI imageData URI image

Step 2: Power on LDDS45

Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).

image-20220611102908-2.pngData URI imageData URI imageData URI image

Step 3: The LDDS45 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.

1654849068701-275.pngData URI imageData URI imageData URI image

2.3  ​Uplink Payload

LDDS45 will uplink payload via LoRaWAN with below payload format:  

Uplink payload includes in total 8 bytes.

 

Size (bytes)

22121
ValueBAT

Distance

(unit: mm)

Digital Interrupt (Optional)Sensor Flag

1654850511545-399.pngData URI imageData URI imageData URI image

2.3.1  Battery Info

Check the battery voltage for LDDS45.

Ex1: 0x0B45 = 2885mV

Ex2: 0x0B49 = 2889mV

2.3.2  Distance

Get the distance. Flat object range 30mm - 4500mm.

For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is 0B05(H) = 2821 (D) = 2821 mm.

  • If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
  • If the sensor value lower than 0x001E (30mm), the sensor value will be 0x00.

2.3.3  Interrupt Pin

This data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.

Example:

0x00: Normal uplink packet.

0x01: Interrupt Uplink Packet.

2.3.4  DS18B20 Temperature sensor

This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.

Example:

If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree

If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.

2.3.5  Sensor Flag

0x01: Detect Ultrasonic Sensor

0x00: No Ultrasonic Sensor

2.3.6  Decode payload in The Things Network

While using TTN network, you can add the payload format to decode the payload.

1654850829385-439.pngData URI imageData URI imageData URI image

The payload decoder function for TTN V3 is here:

2.4  Uplink Interval

The LDDS45 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: Change Uplink Interval

2.5  ​Show Data in DataCake IoT Server

DATACAKE provides a human friendly interface to show the sensor data, once we have data in TTN, we can use DATACAKE to connect to TTN and see the data in DATACAKE. Below are the steps:

 

Step 1: Be sure that your device is programmed and properly connected to the network at this time.

Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:

1654592790040-760.pngData URI imageData URI imageData URI image

1654592800389-571.pngData URI imageData URI imageData URI image

Step 3: Create an account or log in Datacake.

Step 4: Search the LDDS45 and add DevEUI.

1654851029373-510.pngData URI imageData URI imageData URI image

After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.

image-20220610165129-11.pngData URI imageData URI imageData URI image

2.6  Frequency Plans

The LDDS45 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.

2.6.1  EU863-870 (EU868)

Uplink:

868.1 - SF7BW125 to SF12BW125

868.3 - SF7BW125 to SF12BW125 and SF7BW250

868.5 - SF7BW125 to SF12BW125

867.1 - SF7BW125 to SF12BW125

867.3 - SF7BW125 to SF12BW125

867.5 - SF7BW125 to SF12BW125

867.7 - SF7BW125 to SF12BW125

867.9 - SF7BW125 to SF12BW125

868.8 - FSK

 

Downlink:

Uplink channels 1-9 (RX1)

869.525 - SF9BW125 (RX2 downlink only)

2.6.2  US902-928(US915)

Used in USA, Canada and South America. Default use CHE=2

Uplink:

903.9 - SF7BW125 to SF10BW125

904.1 - SF7BW125 to SF10BW125

904.3 - SF7BW125 to SF10BW125

904.5 - SF7BW125 to SF10BW125

904.7 - SF7BW125 to SF10BW125

904.9 - SF7BW125 to SF10BW125

905.1 - SF7BW125 to SF10BW125

905.3 - SF7BW125 to SF10BW125

Downlink:

923.3 - SF7BW500 to SF12BW500

923.9 - SF7BW500 to SF12BW500

924.5 - SF7BW500 to SF12BW500

925.1 - SF7BW500 to SF12BW500

925.7 - SF7BW500 to SF12BW500

926.3 - SF7BW500 to SF12BW500

926.9 - SF7BW500 to SF12BW500

927.5 - SF7BW500 to SF12BW500

923.3 - SF12BW500(RX2 downlink only)

 

2.6.3  CN470-510 (CN470)

Used in China, Default use CHE=1

Uplink:

486.3 - SF7BW125 to SF12BW125

486.5 - SF7BW125 to SF12BW125

486.7 - SF7BW125 to SF12BW125

486.9 - SF7BW125 to SF12BW125

487.1 - SF7BW125 to SF12BW125

487.3 - SF7BW125 to SF12BW125

487.5 - SF7BW125 to SF12BW125

487.7 - SF7BW125 to SF12BW125

 

Downlink:

506.7 - SF7BW125 to SF12BW125

506.9 - SF7BW125 to SF12BW125

507.1 - SF7BW125 to SF12BW125

507.3 - SF7BW125 to SF12BW125

507.5 - SF7BW125 to SF12BW125

507.7 - SF7BW125 to SF12BW125

507.9 - SF7BW125 to SF12BW125

508.1 - SF7BW125 to SF12BW125

505.3 - SF12BW125 (RX2 downlink only)

2.6.4  AU915-928(AU915)

Default use CHE=2

Uplink:

916.8 - SF7BW125 to SF12BW125

917.0 - SF7BW125 to SF12BW125

917.2 - SF7BW125 to SF12BW125

917.4 - SF7BW125 to SF12BW125

917.6 - SF7BW125 to SF12BW125

917.8 - SF7BW125 to SF12BW125

918.0 - SF7BW125 to SF12BW125

918.2 - SF7BW125 to SF12BW125

Downlink:

923.3 - SF7BW500 to SF12BW500

923.9 - SF7BW500 to SF12BW500

924.5 - SF7BW500 to SF12BW500

925.1 - SF7BW500 to SF12BW500

925.7 - SF7BW500 to SF12BW500

926.3 - SF7BW500 to SF12BW500

926.9 - SF7BW500 to SF12BW500

927.5 - SF7BW500 to SF12BW500

923.3 - SF12BW500(RX2 downlink only)

 

2.6.5  AS920-923 & AS923-925 (AS923)

Default Uplink channel:

923.2 - SF7BW125 to SF10BW125

923.4 - SF7BW125 to SF10BW125

 

Additional Uplink Channel:

(OTAA mode, channel added by JoinAccept message)

 

AS920~AS923 for Japan, Malaysia, Singapore:

922.2 - SF7BW125 to SF10BW125

922.4 - SF7BW125 to SF10BW125

922.6 - SF7BW125 to SF10BW125

922.8 - SF7BW125 to SF10BW125

923.0 - SF7BW125 to SF10BW125

922.0 - SF7BW125 to SF10BW125

 

AS923 ~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam:

923.6 - SF7BW125 to SF10BW125

923.8 - SF7BW125 to SF10BW125

924.0 - SF7BW125 to SF10BW125

924.2 - SF7BW125 to SF10BW125

924.4 - SF7BW125 to SF10BW125

924.6 - SF7BW125 to SF10BW125

 

Downlink:

Uplink channels 1-8 (RX1)

923.2 - SF10BW125 (RX2)

2.6.6  KR920-923 (KR920)

Default channel:

922.1 - SF7BW125 to SF12BW125

922.3 - SF7BW125 to SF12BW125

922.5 - SF7BW125 to SF12BW125

 

Uplink: (OTAA mode, channel added by JoinAccept message)

922.1 - SF7BW125 to SF12BW125

922.3 - SF7BW125 to SF12BW125

922.5 - SF7BW125 to SF12BW125

922.7 - SF7BW125 to SF12BW125

922.9 - SF7BW125 to SF12BW125

923.1 - SF7BW125 to SF12BW125

923.3 - SF7BW125 to SF12BW125

 

Downlink:

Uplink channels 1-7(RX1)

921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)

2.6.7  IN865-867 (IN865)

Uplink:

865.0625 - SF7BW125 to SF12BW125

865.4025 - SF7BW125 to SF12BW125

865.9850 - SF7BW125 to SF12BW125

 

Downlink:

Uplink channels 1-3 (RX1)

866.550 - SF10BW125 (RX2)

2.7  LED Indicator

The LDDS45 has an internal LED which is to show the status of different state. 

  • Blink once when device power on.
  • The device detects the sensor and flashes 5 times.
  • Solid ON for 5 seconds once device successful Join the network.
  • Blink once when device transmit a packet.

2.8  ​Firmware Change Log

 

Firmware Upgrade Method: Firmware Upgrade Instruction

2.9  Mechanical

1654915562090-396.pngData URI imageData URI imageData URI image

3. Battery & How to replace

3.1 Battery Type

LDDS45 is equipped with a 8500mAH ER26500 Li-SOCI2 battery. The battery is un-rechargeable battery with low discharge rate targeting for 8~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.

The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.

1654593587246-335.pngData URI imageData URI imageData URI image

Minimum Working Voltage for the LDDS45:

LDDS45:  2.45v ~ 3.6v

3.2 Replace Battery

Any battery with range 2.45 ~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.

And make sure the positive and negative pins match.

3.3 Power Consumption Analyze

Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.

Instruction to use as below:

Step 1 :  Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:

https://www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/

Step 2 :  Open it and choose

  • Product Model
  • Uplink Interval
  • Working Mode

And the Life expectation in difference case will be shown on the right.

1654593605679-189.pngData URI imageData URI imageData URI image

The battery related documents as below:

image-20220607172042-11.pngData URI imageData URI imageData URI image

3.3.1 ​Battery Note

The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.

​3.3.2 Replace the battery

You can change the battery in the LSPH01.The type of battery is not limited as long as the output is between 3v to 3.6v.  On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.

The default battery pack of LSPH01 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).

4.  Configure LDDS45 via AT Command or LoRaWAN Downlink

Use can configure LDDS45 via AT Command or LoRaWAN Downlink.

 

There are two kinds of commands to configure LDDS45, they are:

  •  General Commands.

These commands are to configure:

  • General system settings like: uplink interval.

  • LoRaWAN protocol & radio related command.

They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: End Device AT Commands and Downlink Command

 

  •  Commands special design for LDDS45

These commands only valid for LDDS45, as below:

4.1  Access AT Commands

User can use a USB to TTL adapter to connect to LDDS45 and access the console to enter AT Commands. Note the TXD/RXD can use 3.3v or 5v.

Pins for console is:

  • UART_TXD to   USB TTL Adapter's RXD
  • UART_RXD to   USB TTL Adapter's  TXD
  • GND           to   USB TTL Adapter's GND

Data URI imageData URI image1654917294526-626.pngData URI image​​

Data URI imageData URI image

In the PC, you need to set the serial baud rate to 9600 to access the serial console for LDDS75. LDDS75 will output system info once power on as below:

1654917321722-210.pngData URI image

 Data URI imageData URI image

4.2  Set Transmit Interval Time

Feature: Change LoRaWAN End Node Transmit Interval.

AT Command: AT+TDC

image-20220610173409-7.pngData URI imageData URI imageData URI image

Downlink Command: 0x01

Format: Command Code (0x01) followed by 3 bytes time value.

If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.

  • Example 1: Downlink Payload: 0100001E // Set Transmit Interval (TDC) = 30 seconds
  • Example 2: Downlink Payload: 0100003C // Set Transmit Interval (TDC) = 60 seconds

4.3  Set Interrupt Mode

Feature, Set Interrupt mode for GPIO_EXIT.

Downlink Command: AT+INTMOD

image-20220610174917-9.pngData URI imageData URI imageData URI image

Downlink Command: 0x06

Format: Command Code (0x06) followed by 3 bytes.

This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.

  • Example 1: Downlink Payload: 06000000 // Turn off interrupt mode
  • Example 2: Downlink Payload: 06000003 // Set the interrupt mode to rising edge trigger

5.  FAQ

5.1  What is the frequency plan for LDDS45?

LDDS45 use the same frequency as other Dragino products. User can see the detail from this link:  Introduction

5.2  How to change the LoRa Frequency Bands/Region

You can follow the instructions for how to upgrade image.
When downloading the images, choose the required image file for download. ​

6.  Trouble Shooting

6.1  AT Command input doesn't work

In the case if user can see the console output but can’t type input to the device. Please check if you already include the ENTER while sending out the command. Some serial tool doesn’t send ENTER while press the send key, user need to add ENTER in their string. 

 

7.  Order Info

Part Number : LDDS45-XX

XXThe default frequency band

  • AS923 : LoRaWAN AS923 band
  • AU915 : LoRaWAN AU915 band
  • EU433 : LoRaWAN EU433 band
  • EU868 : LoRaWAN EU868 band
  • KR920 : LoRaWAN KR920 band
  • US915 : LoRaWAN US915 band
  • IN865 :  LoRaWAN IN865 band
  • CN470 : LoRaWAN CN470 band

8. ​ Packing Info

Package Includes:

  • LDDS45 LoRaWAN Distance Detection Sensor x 1

Dimension and weight:

  • Device Size: cm
  • Device Weight: g
  • Package Size / pcs : cm
  • Weight / pcs : g

9.  ​Support

  • Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
  • Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to support@dragino.com.
Tags:
    
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0