Show last authors
1 (% style="display:none" %) (%%) ​​​(% style="display:none" %)
2
3 (% style="text-align:center" %)
4 [[image:image-20220627094803-5.png||height="366" width="804"]]
5
6
7 (% style="display:none" %) (%%)
8
9
10
11
12
13
14
15 **Table of Contents:**
16
17 (% _mstaria-label="285168" aria-label="macro:toc widget" contenteditable="false" role="region" tabindex="-1" %)
18 (((
19 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||height="15" role="presentation" title="Click and drag to move" width="15"]]
20 )))
21
22 {{toc/}}
23
24
25
26
27
28
29
30
31
32
33 = 1.  Introduction =
34
35 == 1.1 ​ What is LSN50 LoRa Sensor Node ==
36
37
38 (((
39 (((
40 LSN50 is a Long Range LoRaWAN Sensor Node. It is designed for (% style="color:#4472c4" %)**outdoor data logging **(%%)and powered by (% style="color:#4472c4" %)**Li/SOCl2 battery**(%%) for long term use and secure data transmission. It is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
41 )))
42
43 (((
44 It is based on SX1276/SX1278 allows the user to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
45 )))
46
47 (((
48 (% style="color:#4472c4" %)**LSN50**(%%) uses STM32l0x chip from ST, STML0x is the (% style="color:#4472c4" %)**ultra-low-power**(%%) STM32L072xxxx microcontrollers incorporate the connectivity power of the universal serial bus (USB 2.0 crystal-less) with the high-performance ARM® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.
49 )))
50
51 (((
52 LSN50 is an (% style="color:#4472c4" %)**open source product**(%%), it is based on the STM32Cube HAL drivers and lots of libraries can be found in ST site for rapid development.
53 )))
54 )))
55
56
57 [[image:1656294562709-486.png]]
58
59
60 == 1.2  Specifications ==
61
62
63 (% style="color:#037691" %)**Micro Controller:**
64
65
66 * MCU: STM32L072xxxx
67 * Flash: 128KB
68 * RAM: 20KB
69 * EEPROM: 6KB
70 * Clock Speed: 32Mhz
71
72 (% style="color:#037691" %)**Common DC Characteristics:**
73
74 * Supply Voltage: 2.1v ~~ 3.6v
75 * Operating Temperature: -40 ~~ 85°C
76 * I/O pins: Refer to [[STM32L072 datasheet>>https://www.st.com/resource/en/datasheet/stm32l072cz.pdf]]
77
78 (% style="color:#037691" %)**LoRa Spec:**
79
80 * Frequency Range,
81 ** Band 1 (HF): 862 ~~ 1020 Mhz
82 * or
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * +14 dBm high efficiency PA.
87 * Programmable bit rate up to 300 kbps.
88 * High sensitivity: down to -148 dBm.
89 * Bullet-proof front end: IIP3 = -12.5 dBm.
90 * Excellent blocking immunity.
91 * Low RX current of 10.3 mA, 200 nA register retention.
92 * Fully integrated synthesizer with a resolution of 61 Hz .
93 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
94 * Built-in bit synchronizer for clock recovery.
95 * Preamble detection.
96 * 127 dB Dynamic Range RSSI.
97 * Automatic RF Sense and CAD with ultra-fast AFC.
98 * Packet engine up to 256 bytes with CRC.
99 * LoRaWAN 1.0.2 Specification
100
101 (% style="color:#037691" %)**Battery:**
102
103 * Li/SOCI2 un-chargeable battery
104 * Capacity: 4000mAh
105 * Self Discharge: <1% / Year @ 25°C
106 * Max continuously current: 130mA
107 * Max boost current: 2A, 1 second
108
109 (% style="color:#037691" %)**Power Consumption**
110
111 * STOP Mode: 2.7uA @ 3.3v
112 * LoRa Transmit Mode: 125mA @ 20dBm 44mA @ 14dBm
113
114 == ​1.3  Features ==
115
116
117 * LoRaWAN 1.0.3 Class A, Class C
118 * STM32L072xxxx MCU
119 * SX1276/78 Wireless Chip
120 * Pre-load bootloader on USART1/USART2
121 * MDK-ARM Version 5.24a IDE
122 * I2C, LPUSART1, USB, SPI2
123 * 3x12bit ADC, 1x12bit DAC
124 * 20xDigital I/Os
125 * LoRa™ Modem
126 * Preamble detection
127 * Baud rate configurable
128 * CN470/EU433/KR920/US915/IN865
129 * EU868/AS923/AU915/MA869
130 * Open-source hardware / software
131 * Available Band:433/868/915/920 Mhz
132 * IP66 Waterproof Enclosure
133 * Ultra-Low Power consumption
134 * AT Commands to change parameters
135 * 4000mAh or 8500mAh Battery for long term use.
136
137 == 1.4 ​ Applications ==
138
139
140 * Smart Cities
141 * Smart Factory
142 * Smart Metering
143 * Smart Agriculture
144 * Smart Buildings & Home Automation
145 * Logistics and Supply Chain Management
146
147 == 1.5  Pin Definitions and Switch ==
148
149
150 (% class="wikigeneratedid" %)
151 [[image:1656295519542-152.png||height="413" width="728"]]
152
153
154 (% class="wikigeneratedid" %)
155 [[image:1656295532863-613.png||height="371" width="721"]]
156
157
158 (% border="1" cellspacing="4" style="width:510px" %)
159 |=(% style="width: 30px;background-color:#4F81BD;color:white" %)**No.**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Signal**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Direction**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 170px;background-color:#4F81BD;color:white" %)Remark
160 |(% style="background-color:#f2f2f2; width:44px" %)1|(% style="background-color:#f2f2f2; width:86px" %)VCC(2.9V)|(% style="background-color:#f2f2f2; width:84px" %)OUTPUT|(% style="background-color:#f2f2f2; width:322px" %)VCC|(% style="background-color:#f2f2f2; width:296px" %)Directly connect to main power for board
161 |(% style="background-color:#f2f2f2; width:44px" %)2|(% style="background-color:#f2f2f2; width:86px" %)PA0|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)Used as ADC in LSN50 image
162 |(% style="background-color:#f2f2f2; width:44px" %)3|(% style="background-color:#f2f2f2; width:86px" %)PA1|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
163 |(% style="background-color:#f2f2f2; width:44px" %)4|(% style="background-color:#f2f2f2; width:86px" %)PA2|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)Used as UART_TXD in LSN50 image
164 |(% style="background-color:#f2f2f2; width:44px" %)5|(% style="background-color:#f2f2f2; width:86px" %)PA3|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)Used as UART_RXD in LSN50 image
165 |(% style="background-color:#f2f2f2; width:44px" %)6|(% style="background-color:#f2f2f2; width:86px" %)PB6|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)
166 |(% style="background-color:#f2f2f2; width:44px" %)7|(% style="background-color:#f2f2f2; width:86px" %)PB7|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)
167 |(% style="background-color:#f2f2f2; width:44px" %)8|(% style="background-color:#f2f2f2; width:86px" %)PB3|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)
168 |(% style="background-color:#f2f2f2; width:44px" %)9|(% style="background-color:#f2f2f2; width:86px" %)PB4|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
169 |(% style="background-color:#f2f2f2; width:44px" %)10|(% style="background-color:#f2f2f2; width:86px" %)PA9|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)
170 |(% style="background-color:#f2f2f2; width:44px" %)11|(% style="background-color:#f2f2f2; width:86px" %)PA10|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip, 10k pull up to VCC|(% style="background-color:#f2f2f2; width:296px" %)
171 |(% style="background-color:#f2f2f2; width:44px" %)12|(% style="background-color:#f2f2f2; width:86px" %)GND|(% style="background-color:#f2f2f2; width:84px" %) |(% style="background-color:#f2f2f2; width:322px" %)Ground|(% style="background-color:#f2f2f2; width:296px" %)
172 |(% style="background-color:#f2f2f2; width:44px" %)13|(% style="background-color:#f2f2f2; width:86px" %)VCC(2.9V)|(% style="background-color:#f2f2f2; width:84px" %)OUTPUT|(% style="background-color:#f2f2f2; width:322px" %)VCC|(% style="background-color:#f2f2f2; width:296px" %)Directly connect to main power for board
173 |(% style="background-color:#f2f2f2; width:44px" %)14|(% style="background-color:#f2f2f2; width:86px" %)Jumper|(% style="background-color:#f2f2f2; width:84px" %) |(% style="background-color:#f2f2f2; width:322px" %)Power on/off jumper|(% style="background-color:#f2f2f2; width:296px" %)
174 |(% style="background-color:#f2f2f2; width:44px" %)15|(% style="background-color:#f2f2f2; width:86px" %)PA4|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
175 |(% style="background-color:#f2f2f2; width:44px" %)16|(% style="background-color:#f2f2f2; width:86px" %)NRST|(% style="background-color:#f2f2f2; width:84px" %)In|(% style="background-color:#f2f2f2; width:322px" %)Reset MCU|(% style="background-color:#f2f2f2; width:296px" %)
176 |(% style="background-color:#f2f2f2; width:44px" %)17|(% style="background-color:#f2f2f2; width:86px" %)PA12|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
177 |(% style="background-color:#f2f2f2; width:44px" %)18|(% style="background-color:#f2f2f2; width:86px" %)PA11|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
178 |(% style="background-color:#f2f2f2; width:44px" %)19|(% style="background-color:#f2f2f2; width:86px" %)PA14|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
179 |(% style="background-color:#f2f2f2; width:44px" %)20|(% style="background-color:#f2f2f2; width:86px" %)PB13|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
180 |(% style="background-color:#f2f2f2; width:44px" %)21|(% style="background-color:#f2f2f2; width:86px" %)PB12|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
181 |(% style="background-color:#f2f2f2; width:44px" %)22|(% style="background-color:#f2f2f2; width:86px" %)PB15|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
182 |(% style="background-color:#f2f2f2; width:44px" %)23|(% style="background-color:#f2f2f2; width:86px" %)PB14|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
183 |(% style="background-color:#f2f2f2; width:44px" %)24|(% style="background-color:#f2f2f2; width:86px" %)PA13|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)
184 |(% style="background-color:#f2f2f2; width:44px" %)25|(% style="background-color:#f2f2f2; width:86px" %)PA8|(% style="background-color:#f2f2f2; width:84px" %)In/Out|(% style="background-color:#f2f2f2; width:322px" %)Directly from STM32 chip|(% style="background-color:#f2f2f2; width:296px" %)Default use to turn on/off LED1 in LSN50 image
185 |(% style="background-color:#f2f2f2; width:44px" %)26|(% style="background-color:#f2f2f2; width:86px" %)GND|(% style="background-color:#f2f2f2; width:84px" %) |(% style="background-color:#f2f2f2; width:322px" %)Ground|(% style="background-color:#f2f2f2; width:296px" %)
186 |(% style="background-color:#f2f2f2; width:44px" %)27|(% style="background-color:#f2f2f2; width:86px" %)+5V|(% style="background-color:#f2f2f2; width:84px" %)Out|(% style="background-color:#f2f2f2; width:322px" %)5v output power|(% style="background-color:#f2f2f2; width:296px" %)(((
187 Controlled by PB5(Low to Enable, High to Disable)
188
189 Continuous output : max 600mA
190
191 Pulse output : max 1A
192 )))
193 |(% style="background-color:#f2f2f2; width:44px" %)28|(% style="background-color:#f2f2f2; width:86px" %)LED1|(% style="background-color:#f2f2f2; width:84px" %) |(% style="background-color:#f2f2f2; width:322px" %)Controlled by PA8|(% style="background-color:#f2f2f2; width:296px" %)Blink on transmit
194 |(% style="background-color:#f2f2f2; width:44px" %)29|(% style="background-color:#f2f2f2; width:86px" %)BOOT MODE|(% style="background-color:#f2f2f2; width:84px" %) |(% style="background-color:#f2f2f2; width:322px" %)Configure device in working mode or ISP program mode|(% style="background-color:#f2f2f2; width:296px" %)(((
195 (((
196 Flash: Normal Working mode and send AT Commands
197 )))
198
199 (((
200 ISP: UART Program Mode
201 )))
202 )))
203 |(% style="background-color:#f2f2f2; width:44px" %)30|(% style="background-color:#f2f2f2; width:86px" %)NRST|(% style="background-color:#f2f2f2; width:84px" %)In|(% style="background-color:#f2f2f2; width:322px" %)Reset MCU|(% style="background-color:#f2f2f2; width:296px" %)
204
205 (% style="display:none" %)
206
207
208
209 === 1.5.1 Jumper JP2 ===
210
211
212 Power on Device when put this jumper.
213
214
215 === 1.5.2 BOOT MODE / SW1 ===
216
217
218 (((
219 ~1. ISP:  upgrade mode, device won't have any signal in this mode. but ready for upgrade firmware. LED won't work. Firmware won't run.
220 )))
221
222 (((
223 2. Flash:  work mode, device starts to work and send out console output for further debug
224 )))
225
226
227 === 1.5.3 Reset Button ===
228
229
230 Press to reboot the device.
231
232
233 === 1.5.4 LED ===
234
235
236 It will flash:
237
238 ~1. When boot the device in flash mode
239
240 2. Send an uplink packet
241
242
243 == 1.6  Hardware Change log ==
244
245
246 (% style="color:red" %)**Note: Hardware version is marked in the PCB.**
247
248
249 (% style="color:#4472c4" %)**LSN50 v2.1:**
250
251 1. Change R14 to 1M ohm
252 1. Change R3, R4 to 4.7Kohm. So no need to modify them for 3 DS18B20 connection.
253 1. Add ESD to each I/O
254
255 (% style="color:#4472c4" %)**LSN50 v2.0:**
256
257 * Change to a new enclosure. Improve with external antenna, IP66, ear hook.
258
259 (% style="color:#4472c4" %)**LSN50 v1.3**:
260
261 * Add P-MOS to control 5V output
262
263 (% style="color:#4472c4" %)**LSN50 v1.2**:
264
265 * Add LED. Turn on for every LoRa transmit
266 * Add pin PA4, PB13, NRST
267 * Add 5V Output, on/off control by PB5(Low to Enable, High to Disable)
268
269 == 1.7  Hole Option ==
270
271
272 The LSN50 provides different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
273
274 [[image:image-20220627104757-1.png]]
275
276
277 [[image:1656298089706-973.png]]
278
279
280 = 2.  Use LSN50 with LoRaWAN firmware =
281
282 == 2.1  How it works ==
283
284
285 (((
286 (((
287 The LSN50 is pre-loaded with a firmware and is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you just need to input the OTAA keys in the LoRaWAN IoT server and power on the LSN50. It will automatically join the network via OTAA.
288 )))
289
290 (((
291
292 )))
293
294 (((
295 The diagram below shows the working flow in default firmware (ver 1.8.0): 
296
297
298 )))
299
300 [[image:image-20220823174408-9.png||height="890" width="657"]]
301
302
303 (((
304 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands>>||anchor="H3.A0UsingtheATCommands"]] to set the keys in the LSN50.
305 )))
306 )))
307
308
309 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
310
311
312 (((
313 Following is an example for how to join the [[TTN V3 LoRaWAN Network>>url:http://www.thethingsnetwork.org/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 
314
315
316 (% style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]][[image:1655891470063-521.png]](% title="Click and drag to resize" %)​[[image:1656298385089-555.png]]
317
318
319 )))
320
321 (% _mstmutation="1" title="Click and drag to resize" %)​(%%)The LG308 is already set to connected to [[TTN V3 network >>url:https://www.thethingsnetwork.org/||_mstmutation="1"]], so what we need to now is configure the TTN V3 server.(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||data-widget="image" draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]][[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)​(%%)​
322
323 (((
324
325
326 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSN50.
327
328 Each LSN50 is shipped with a sticker with the default device EUI as below:
329 )))
330
331 (((
332 [[image:image-20230425173445-3.png||height="250" width="538"]]
333 )))
334
335 (% title="Click and drag to resize" %)​(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||data-widget="image" draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="Click and drag to resize" %)​(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||data-widget="image" draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]][[image:||draggable="true" height="15" role="presentation" title="Click and drag to move" width="15"]](% title="Click and drag to resize" %)​(% _mstaria-label="548795" aria-label="Data URI image image widget" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)​(%%)​
336
337 (((
338 (((
339 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
340 )))
341
342 (((
343 **Create the application.**
344
345 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
346
347 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
348
349 **Add devices to the created Application.**
350
351 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
352
353 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
354
355
356 **Enter end device specifics manually.**
357
358 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
359
360
361 **Add DevEUI and AppKey.**
362
363 **Customize a platform ID for the device.**
364
365 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
366
367
368 (% style="color:blue" %)**Step 2**(%%):  Add decoder.
369
370 In TTN, user can add a custom payload so it shows friendly reading.
371
372 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
373
374 Below is TTN screen shot:
375
376 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
377
378 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
379
380
381 )))
382 )))
383
384 (% style="color:blue" %)**Step 3**(%%)**:** Power on LSN50
385
386
387 Put a Jumper on JP2 to power on the device.
388
389 [[image:image-20220627145643-5.png]]
390
391
392 **For LSn50v2:**
393
394 [[image:1656313034748-905.png]]
395
396
397 (((
398 (((
399 The LSN50/LSN50v2 will auto join to the TTN V3 network. After join success, it will start to upload messages to TTN V3 and you can see the messages in the panel.
400 )))
401 )))
402
403 ​[[image:1656312908855-552.png]]
404
405
406 == 2.3  ​Working Mode & Uplink Payload ==
407
408
409 (((
410 LSN50 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set LSN50 to different working modes.
411 )))
412
413 (((
414 For example:
415 )))
416
417 (((
418 (% _mstmutation="1" style="color:red" %)**AT+MOD=2  **(%%) ~/~/ will set the LSN50 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
419 )))
420
421 (((
422
423 )))
424
425 (((
426 (% style="color:red" %)**NOTE:**
427 )))
428
429 (((
430 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while LSn50 transmit in DR0 with 12 bytes payload.
431
432 2. All modes share the same Payload Explanation from HERE.
433
434 3. By default, the device will send an uplink message every 5 minutes.
435 )))
436
437
438 === 2.3.1  MOD~=1 (Default Mode) ===
439
440
441 (((
442 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
443
444 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
445 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
446 |Value|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20)
447
448 [[image:image-20220627150949-6.png]]
449 )))
450
451
452 === 2.3.2 MOD~=2 (Distance Mode) ===
453
454
455 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
456
457 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
458 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:60px" %)**2**
459 |Value|BAT|(((
460 Temperature(DS18B20)
461 )))|ADC|Digital in & Digital Interrupt|(((
462 Distance measure by:
463 1) LIDAR-Lite V3HP
464 Or
465 2) Ultrasonic Sensor
466 )))|Reserved
467
468 [[image:1656324539647-568.png]]
469
470
471 (% style="color:red" %)**Connection of LIDAR-Lite V3HP:**
472
473 [[image:1656324581381-162.png]]
474
475
476 (% style="color:red" %)**Connection to Ultrasonic Sensor:**
477
478 [[image:1656324598488-204.png]]
479
480 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
481
482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
483 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**1**|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
484 |Value|BAT|(% style="width:102px" %)(((
485 Temperature(DS18B20)
486 )))|(% style="width:145px" %)Digital in & Digital Interrupt|ADC|(((
487 Distance measure by:1)TF-Mini plus LiDAR
488 Or 
489 2) TF-Luna LiDAR
490 )))|Distance signal  strength
491
492 [[image:1656376779088-686.png]]
493
494
495 (% style="color:red" %)**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
496
497 Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
498
499 [[image:1656376795715-436.png]]
500
501
502 (% style="color:red" %)**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
503
504 Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
505
506 [[image:1656376865561-355.png]]
507
508 (((
509 Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
510 )))
511
512
513 === 2.3.3 MOD~=3 (3 ADC + I2C) ===
514
515
516 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
517
518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
520 **Size(bytes)**
521 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)2|=(% style="width: 90px;background-color:#4F81BD;color:white" %)2|=(% style="width: 30px;background-color:#4F81BD;color:white" %)1
522 |(% style="width:97px" %)Value|(% style="width:46px" %)ADC(Pin PA0)|(% style="width:123px" %)ADC2(PA1)|(% style="width:108px" %)ADC3 (PA4)|(% style="width:133px" %)(((
523 Digital in(PA12)&Digital Interrupt1(PB14)
524 )))|(% style="width:151px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:131px" %)Humidity(SHT20 or SHT31)|(% style="width:66px" %)Bat
525
526 [[image:1656377431497-975.png]]
527
528
529 === 2.3.4 MOD~=4 (3 x DS18B20) ===
530
531
532 This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4
533
534 Hardware connection is as below,
535
536 (% style="color:red" %)**( Note:**
537
538 * In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes.
539 * In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already.
540
541 See [[here>>||anchor="H1.6A0HardwareChangelog" _mstmutation="1"]] for hardware changelog. (% style="color:red" %)**) **
542
543 [[image:1656377461619-156.png]]
544
545
546 This mode has total 11 bytes. As shown below:
547
548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:60px" %)**2**
550 |Value|BAT|(((
551 Temperature1
552 (DS18B20)
553 (PB3)
554 )))|ADC|Digital in & Digital Interrupt|Temperature2
555 (DS18B20)
556 (PA9)|Temperature3
557 (DS18B20)
558 (PA10)
559
560 [[image:1656377606181-607.png]]
561
562
563 === 2.3.5 MOD~=5(Weight Measurement by HX711) ===
564
565
566 (((
567 This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection.
568
569
570 )))
571
572 [[image:1656378224664-860.png]]
573
574
575 Each HX711 need to be calibrated before used. User need to do below two steps:
576
577 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
578 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
579 1. (((
580 Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes(Since its maximum number of bytes is 4 bytes with positive and negative
581 So its maximum weight is 2,147,483,647), the unit is g.(Since v1.8.0)
582 )))
583
584 For example:
585
586 (% style="color:#4472c4" %)**AT+WEIGAP =403.0**
587
588 Response:  Weight is 401 g
589
590
591 Check the response of this command and adjust the value to match the real value for thing.
592
593 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:490px" %)
594 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
595 **Size(bytes)**
596 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 130px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)2
597 |(% style="width:97px" %)Value|(% style="width:40px" %)[[Bat>>||anchor="H2.4.1BatteryInfo"]]|(% style="width:110px" %)[[Temperature(DS18B20)>>||anchor="H2.4.2Temperature28DS18B2029"]]|(% style="width:30px" %)[[ADC>>||anchor="H2.4.4AnalogueDigitalConverter28ADC29"]]|(% style="width:120px" %)[[Digital Input and Digitak Interrupt>>||anchor="H2.4.3DigitalInput"]]|(% style="width:40px" %)Weight|(% style="width:40px" %)Reserved
598
599 [[image:image-20220820120036-2.png||height="469" width="1003"]]
600
601
602 === 2.3.6 MOD~=6 (Counting Mode, Since firmware v1.6.5) ===
603
604
605 (((
606 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
607 )))
608
609 (((
610 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
611 )))
612
613
614 [[image:1656378351863-572.png]]
615
616
617 (((
618 (% style="color:red" %)**Note:**(%%) Power loss or restart will reset the count
619 )))
620
621
622 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
623 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
624 |(% style="width:80px" %)Value|(% style="width:44px" %)[[BAT>>||anchor="H2.4.1BatteryInfo"]]|(% style="width:172px" %)(((
625 [[Temperature(DS18B20)>>||anchor="H2.4.2Temperature28DS18B2029"]]
626 )))|(% style="width:51px" %)[[ADC>>||anchor="H2.4.4AnalogueDigitalConverter28ADC29"]]|(% style="width:206px" %)[[Digital in>>||anchor="H2.4.3DigitalInput"]]|(% style="width:72px" %)Count(PB14)
627
628 [[image:1656378441509-171.png]]
629
630
631 === 2.3.7  MOD~=7 Three interrupt contact modes (the hardware version needs to support three interrupt versions, Since firmware v1.8.0) ===
632
633
634 [[image:image-20220820140109-3.png]]
635
636
637 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:490px" %)
638 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
639 **Size(bytes)**
640 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 50px;background-color:#4F81BD;color:white" %)2
641 |(% style="width:97px" %)Value|(% style="width:46px" %)BAT|(% style="width:123px" %)Temperature(DS18B20)|(% style="width:108px" %)ADC|(% style="width:133px" %)(((
642 Digital in(PA12)&Digital Interrupt1(PB14)
643 )))|(% style="width:159px" %)Digital Interrupt2(PB15)|(% style="width:159px" %)Digital Interrupt3(PA4)|(% style="width:159px" %)Reserved
644
645 === 2.3.8  MOD~=8 (3ADC+1DS18B20, Since firmware v1.8.0) ===
646
647
648 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
649 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
650 **Size(bytes)**
651 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2
652 |(% style="width:97px" %)Value|(% style="width:46px" %)BAT|(% style="width:123px" %)Temperature(DS18B20)|(% style="width:108px" %)(((
653 ADC1(PA0)
654 )))|(% style="width:133px" %)(((
655 Digital in
656 & Digital Interrupt(PB14)
657 )))|(% style="width:159px" %)(((
658 ADC2(PA1)
659 )))|(% style="width:159px" %)(((
660 ADC3(PA4)
661 )))
662
663 [[image:image-20220823164903-2.png]]
664
665
666 === 2.3.9  MOD~=9 3DS18B20+ two Interrupt count mode (the hardware version needs to support 3 interrupt versions, Since firmware v1.8.0) ===
667
668
669 (% style="color:red" %)**Note:**(%%) Power loss or restart will reset the count
670
671 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
672 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
673 **Size(bytes)**
674 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
675 |(% style="width:97px" %)Value|(% style="width:46px" %)BAT|(% style="width:123px" %)(((
676 Temperature1(PB3)
677 )))|(% style="width:108px" %)(((
678 Temperature2(PA9)
679 )))|(% style="width:133px" %)(((
680 Digital in
681 & Digital Interrupt(PA4)
682 )))|(% style="width:159px" %)(((
683 Temperature3(PA10)
684 )))|(% style="width:159px" %)(((
685 Count1(PB14)
686 )))|(% style="width:159px" %)(((
687 Count2(PB15)
688 )))
689
690 (% class="wikigeneratedid" id="H" %)
691 [[image:image-20220823165322-3.png]]
692
693
694 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
695
696 **~1. Set Interrupt Mode:**
697
698 Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
699
700 (% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx**
701
702 (% style="color:#4472c4" %)**AT+INTMODx:**
703
704 * (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB14**(%%) pin.
705 * (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
706 * (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
707
708 **Parameter setting:**
709
710 * **0:** Disable Interrupt
711 * **1:** Trigger by rising and falling edge
712 * **2:** Trigger by falling edge
713 * **3: **Trigger by rising edge
714
715 **Example:**
716
717 * AT+INTMOD1=0  ~/~/Disable the PB14 pin interrupt function
718 * AT+INTMOD2=2  ~/~/Set the interrupt of the PB15 pin to be triggered by the falling edge
719 * AT+INTMOD3=3  ~/~/Set the interrupt of the PA4 pin to be triggered by the rising edge
720
721 (% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
722
723 Format: Command Code (0x06) followed by 3 bytes.
724
725 (% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PB14 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PB15 Pin;  (% style="background-color:yellow" %)**02**(%%): PA4 Pin.)
726
727 (% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
728
729 **Example:**
730
731 * Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
732 * Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
733 * Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
734
735 **~ 2. Set the counting value:**
736
737 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
738
739 When aa is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
740
741 When aa is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
742
743
744 === 2.3.10  ​Decode payload in The Things Network ===
745
746
747 While using TTN V3 network, you can add the payload format to decode the payload.
748
749
750 [[image:1656378466788-734.png]]
751
752
753 (((
754 The payload decoder function for TTN V3 are here:
755 )))
756
757 (((
758 LSN50 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
759 )))
760
761
762 == 2.4 Payload Explanation and Sensor Interface ==
763
764 === 2.4.1 Battery Info ===
765
766
767 (((
768 Check the battery voltage for LSN50.
769 )))
770
771 (((
772 Ex1: 0x0B45 = 2885mV
773 )))
774
775 (((
776 Ex2: 0x0B49 = 2889mV
777 )))
778
779
780 === 2.4.2 Temperature (DS18B20) ===
781
782
783 If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
784
785 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="2.3.4MOD3D4283xDS18B2029"]]
786
787
788 (% style="color:#4472c4" %)**Connection:**
789
790 [[image:1656378573379-646.png]]
791
792
793 (% style="color:#4472c4" %)**Example**:
794
795 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
796
797 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
798
799 (FF3F & 8000 : Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
800
801
802 === 2.4.3 Digital Input ===
803
804
805 The digital input for pin PA12,
806
807 * When PA12 is high, the bit 1 of payload byte 6 is 1.
808 * When PA12 is low, the bit 1 of payload byte 6 is 0.
809
810 === 2.4.4 Analogue Digital Converter (ADC) ===
811
812
813 (((
814 The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from STM32. If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin.
815
816 Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink.
817 )))
818
819
820 (((
821 The ADC monitors the voltage on the PA0 line, in mV.
822 )))
823
824 (((
825 Ex: 0x021F = 543mv,
826 )))
827
828
829 (((
830 (% style="color:#4472c4" %)** Example1:** (%%) Reading an Oil Sensor (Read a resistance value):
831
832
833 )))
834
835 [[image:image-20220627172409-28.png]]
836
837
838 In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor.
839
840
841 (% style="color:blue" %)**Steps:**
842
843 1. Solder a 10K resistor between PA0 and VCC.
844 1. Screw oil sensor's two pins to PA0 and PB4.
845
846 The equipment circuit is as below:
847
848
849 [[image:image-20220627172500-29.png]]
850
851
852 According to above diagram:
853
854 [[image:image-20220628091043-4.png]]
855
856 So
857
858 [[image:image-20220628091344-6.png]]
859
860
861 [[image:image-20220628091621-8.png]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v
862
863
864 The [[image:image-20220628091702-9.png]] 4.5K ohm
865
866 Since the Bouy is linear resistance from 10 ~~ 70cm.
867
868
869 The position of Bouy is [[image:image-20220628091824-10.png]] , from the bottom of Bouy.
870
871
872 === 2.4.5 Digital Interrupt ===
873
874
875 Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the LSN50 will send a packet to the server.
876
877
878 (((
879 (% style="color:#4472c4" %)** Interrupt connection method:**
880 )))
881
882 [[image:1656379178634-321.png]]
883
884
885 (((
886 (% style="color:#4472c4" %)**Example to use with door sensor : (Requires firmware > 1.5.1)**
887 )))
888
889
890 (((
891 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
892 )))
893
894 [[image:1656379210849-860.png]]
895
896
897 (((
898 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
899 )))
900
901
902 (((
903 (% style="color:#4472c4" %)** Below is the installation example:**
904 )))
905
906 (((
907 Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
908 )))
909
910 * (((
911 One pin to LSN50's PB14 pin
912 )))
913 * (((
914 The other pin to LSN50's VCC pin
915 )))
916
917 (((
918 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
919 )))
920
921
922 (((
923 Door sensors have two types: ** (% style="color:#4472c4" %)NC (Normal close)(%%)** and (% style="color:#4472c4" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
924 )))
925
926 (((
927 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
928 )))
929
930 [[image:1656379283019-229.png]]
931
932
933 (((
934 The above photos shows the two parts of the magnetic switch fitted to a door.
935 )))
936
937 (((
938 (((
939 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
940 )))
941 )))
942
943
944 (((
945 The command is:
946 )))
947
948 (((
949 (% _mstmutation="1" style="color:blue" %)**AT+INTMOD=1 **(% _mstmutation="1" %)** **(%%)~/~/(more info about INMOD please refer(% _mstmutation="1" %)** **(%%)[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf||_mstmutation="1"]](% _mstmutation="1" %)**. **(%%))
950 )))
951
952
953 (((
954 Below shows some screen captures in TTN V3:
955 )))
956
957 [[image:1656379339508-835.png]]
958
959
960 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
961
962 (% style="background-color:#dcdcdc" %)door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
963
964
965 (% style="color:red" %)**Notice for hardware version LSN50 v1 < v1.3**(%%) (produced before 2018-Nov).
966
967 In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board.
968
969 [[image:1656379563303-771.png]]
970
971
972 === 2.4.6 I2C Interface (SHT20) ===
973
974
975 (((
976 The PB6(SCL) and PB7(SDA) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
977 )))
978
979 (((
980 We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with (% style="color:#4472c4" %)**AT+MOD=1 (default value).**
981
982 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference.**
983 )))
984
985 (((
986 Below is the connection to SHT20/ SHT31. The connection is as below:
987 )))
988
989
990 [[image:image-20220902163605-2.png]]
991
992
993 The device will be able to get the I2C sensor data now and upload to IoT Server.
994
995 [[image:1656379664142-345.png]]
996
997 Convert the read byte to decimal and divide it by ten.
998
999
1000 (% style="color:blue" %)**Example:**
1001
1002 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
1003
1004 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
1005
1006
1007 If you want to use other I2C device, please refer the SHT20 part source code as reference.
1008
1009
1010 === 2.4.7 ​Distance Reading ===
1011
1012
1013 Refer [[Ultrasonic Sensor section>>||anchor="H2.4.8UltrasonicSensor"]].
1014
1015
1016 === 2.4.8 Ultrasonic Sensor ===
1017
1018
1019 (((
1020 The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
1021 )))
1022
1023
1024 (((
1025 The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
1026 )))
1027
1028
1029 (((
1030 The picture below shows the connection:
1031 )))
1032
1033 [[image:1656380061365-178.png]]
1034
1035 Connect to the LSN50 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
1036
1037 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
1038
1039
1040 (% style="color:blue" %)**Example:**
1041
1042 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
1043
1044 [[image:1656384895430-327.png]]
1045
1046
1047 [[image:1656384913616-455.png]]
1048
1049
1050 You can see the serial output in ULT mode as below:
1051
1052 [[image:1656384939855-223.png]]
1053
1054
1055 **In TTN V3 server:**
1056
1057 [[image:1656384961830-307.png]]
1058
1059
1060 [[image:1656384973646-598.png]]
1061
1062
1063 === 2.4.9  Battery Output - VDD pin ===
1064
1065
1066 The VDD pin of LSN50v2 is connected to the Battery directly. If users want to use VDD pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the VDD pin is always open. If the external sensor is of high power consumption. the battery of LSN50v2 will run out very soon.
1067
1068
1069 === 2.4.10  +5V Output ===
1070
1071
1072 Since v1.2 hardware version, a +5v output is added in the hardware. The +5V output will be valid for every sampling.  LSN50 will enable +5V output before all sampling and disable the +5v after all sampling. 
1073
1074
1075 (((
1076 Since firmware (% style="color:red" %)**v1.6.3**(%%), The 5V output time can be controlled by AT Command.
1077 )))
1078
1079 (((
1080 (% style="color:#4472c4" %)**AT+5VT=1000**
1081 )))
1082
1083 (((
1084 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
1085 )))
1086
1087
1088 (((
1089 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1090 )))
1091
1092
1093 === 2.4.11  Weigh Sensor HX711 ===
1094
1095
1096 Since v1.6.2 firmware, LSN50 support Weigh Sensor HX711.
1097
1098
1099 === 2.4.12  BH1750 Illumination Sensor ===
1100
1101
1102 Since v1.7.0 firmware, MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
1103
1104 [[image:image-20220628110012-11.jpeg]]
1105
1106
1107 [[image:image-20220628110012-12.png]]
1108
1109
1110 === 2.4.13  Working MOD ===
1111
1112
1113 (((
1114 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1115 )))
1116
1117 (((
1118 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
1119 )))
1120
1121 (((
1122 Case 7^^th^^ Byte >> 2 & 0x1f:
1123 )))
1124
1125 * 0: MOD1
1126 * 1: MOD2
1127 * 2: MOD3
1128 * 3: MOD4
1129 * 4: MOD5
1130 * 5: MOD6
1131
1132 == 2.5 Configure LSN50 via AT or Downlink ==
1133
1134
1135 (((
1136 User can configure LSN50 via [[AT Commands >>||anchor="H3.A0UsingtheATCommands"]]or LoRaWAN Downlink Commands
1137 )))
1138
1139 (((
1140 There are two kinds of Commands:
1141 )))
1142
1143 * (% _mstmutation="1" style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.7.0, user can find what common commands it supports:  [[End Device AT Commands>>doc:Main.End Device AT Commands and Downlink Command.WebHome||_mstmutation="1"]]
1144
1145 * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LSN50.  User can see these commands below:
1146
1147 === 2.5.1 Common Commands: ===
1148
1149
1150 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.7.0, user can find what common commands it supports: [[End Device AT Commands>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1151
1152
1153 === 2.5.2 Sensor related commands: ===
1154
1155
1156 (% style="color:blue" %)**Set work mode:**
1157
1158 * (% style="color:#037691" %)**AT Command:**
1159
1160 (((
1161 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+MOD=2 **(%%) ~/~/ Set work MOD =2. (1: IIC mode, 2: Distance mode, 3: 3ADC mode, 4: 3DS18B20 mode, 5: weight mode)
1162 )))
1163
1164 (((
1165 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+MOD=?** (%%) ~/~/  Get current work MOD
1166 )))
1167
1168
1169 * (% style="color:#037691" %)**Downlink Payload:**
1170
1171 (% style="background-color:#dcdcdc" %)**0x0A aa** (%%) ~/~/ Same as AT+MOD=aa
1172
1173
1174
1175 (% style="color:blue" %)**Set the trigger interrupt mode:**
1176
1177 * (% style="color:#037691" %)**AT Command:**
1178
1179 (((
1180 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+INTMOD=2**  (%%) ~/~/ Set INTMOD =2. (0: Disable, 1:falling or rising, 2: falling, 3: rising)
1181 )))
1182
1183 (((
1184 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+INTMOD=?**  (%%) ~/~/  Get current INTMOD
1185 )))
1186
1187
1188 * (% style="color:#037691" %)**Downlink Payload:**
1189
1190 (% style="background-color:#dcdcdc" %)**0x06 000003**      (%%) ~/~/ Set AT+INTMOD=3
1191
1192
1193
1194 (% style="color:blue" %)**Set the 5V power open time during sampling:**
1195
1196 * (% style="color:#037691" %)**AT Command:**
1197
1198 (((
1199 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+5VT=1000** (%%) ~/~/ Set 5v open time to 1000ms
1200 )))
1201
1202 (((
1203 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+5VT=?**    (%%) ~/~/  Check current 5v open duration
1204 )))
1205
1206
1207 * (% style="color:#037691" %)**Downlink Payload:**
1208
1209 (% style="background-color:#dcdcdc" %)**0x07 aa bb**    (%%) ~/~/ Equal AT+5VT=0x(aa bb)
1210
1211
1212
1213 (% style="color:blue" %)**Set the weight to 0g (Zero Calibration):**
1214
1215 * (% style="color:#037691" %)**AT Command:**
1216
1217 (% style="background-color:#dcdcdc" %)**AT+WEIGRE** ** **(%%)** **~/~/ Set the weight to 0g
1218
1219
1220 * (% style="color:#037691" %)**Downlink Payload:**
1221
1222 (% style="background-color:#dcdcdc" %)**0x08 01** (%%) ~/~/ Set the weight to 0g
1223
1224
1225
1226 (% style="color:blue" %)**Get or Set the GAP Value (calibrate factor) of measurement:**
1227
1228 * (% style="color:#037691" %)**AT Command:**
1229
1230 (((
1231 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+WEIGAP=403.0**  (%%) ~/~/ Set GAP Value =403.0 (response: Weight: xx g)
1232 )))
1233
1234 (((
1235 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+WEIGAP=?**  (%%) ~/~/  Get current GAP Value
1236 )))
1237
1238
1239 * (% style="color:#037691" %)**Downlink Payload:**
1240
1241 (% style="background-color:#dcdcdc" %)**0x08 02 aa bb** (%%) ~/~/ Equal to AT+WEIGAP=0x(aa bb)/10
1242
1243
1244
1245 (% style="color:blue" %)**Encrypt upload:**
1246
1247 * (% style="color:#037691" %)**AT Command:**
1248
1249 (((
1250 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DECRYPT=1**  (%%) ~/~/ The payload is uploaded without encryption
1251 )))
1252
1253 (((
1254 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DECRYPT=0**  (%%) ~/~/  Encrypt when uploading payload (default)
1255 )))
1256
1257
1258
1259 (% style="color:blue" %)**Get data:**
1260
1261 * (% style="color:#037691" %)**AT Command:**
1262
1263 (((
1264 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+GETSENSORVALUE=0** (%%) ~/~/ The serial port gets the reading of the current sensor
1265 )))
1266
1267 (((
1268 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+GETSENSORVALUE=1** (%%) ~/~/  The serial port gets the current sensor reading and uploads it.
1269
1270
1271
1272 (% style="color:blue" %)**Resets the downlink packet count:**
1273
1274 * (% style="color:#037691" %)**AT Command:**
1275
1276 (((
1277 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DISFCNTCHECK=0**(% _mstmutation="1" %)**     **(%%) ~/~/(% _mstmutation="1" %)** **(%%)When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1278 )))
1279
1280 (((
1281 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DISFCNTCHECK=1** (%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count
1282 )))
1283
1284
1285
1286 (% style="color:blue" %)**When the limit bytes are exceeded, upload in batches:**
1287
1288 * (% style="color:#037691" %)**AT Command:**
1289
1290 (((
1291 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DISMACANS=0**(%%)  ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1292 )))
1293
1294 (((
1295 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+DISMACANS=1** (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1296 )))
1297
1298 * (% style="color:#037691" %)**Downlink Payload:**
1299
1300 (% class="wikigeneratedid" %)
1301 (% style="background-color:#dcdcdc" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1302
1303
1304
1305 (% style="color:blue" %)**Copy downlink to uplink:**
1306
1307 * (% style="color:#037691" %)**AT Command:**
1308
1309 (((
1310 (% _mstmutation="1" style="background-color:#dcdcdc" %)**AT+RPL=5**(%%)  ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1311 )))
1312
1313 (% class="wikigeneratedid" %)
1314 Example: (% style="background-color:#dcdcdc" %)**aa xx xx xx xx** (%%) ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1315
1316
1317 (% class="wikigeneratedid" %)
1318 [[image:image-20220823173747-6.png||height="165" width="1124"]]
1319
1320 **For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.**
1321
1322
1323
1324 [[image:image-20220823173833-7.png||height="149" width="1124"]]
1325
1326 **For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.**
1327
1328
1329
1330 (% style="color:blue" %)**Query version number and frequency band 、TDC:**
1331
1332 * (((
1333 (% style="color:#037691" %)**Downlink: 26 01  **(%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
1334 )))
1335
1336 **Example:**
1337
1338
1339 [[image:image-20220823173929-8.png||height="76" width="1205"]]
1340
1341
1342
1343 (% style="color:blue" %)**Add rejoin feature if device offline: (Since V1.8.0)**
1344
1345 * (% style="color:#037691" %)**AT Command:**
1346
1347 **AT+DDETECT=<Flag>,<ACK_Timout_1>,<ACK_Timout_2>    (Default Value: AT+DDETECT=1,1440,2880)**
1348
1349 (% style="color:red" %)**Flag:** (%%) 1 Enable online detect, 0: Disable online detect
1350
1351 (% style="color:red" %)**ACK_Timout_1:**(%%) Unit: min
1352
1353 (% style="color:red" %)**ACK_Timout_2:**(%%) Unit: min
1354
1355
1356 **Example: AT+DDETECT=1,1440,2880**
1357
1358 Enable Online Detect, if end node doesn't receive any downlink within ACK_Timout_1( 1440 minutes or 24 hours). End node will use confirmed uplink to send packets during ACK_Timout_1 (the 24th hour) to ACK_Timout_2 ( the 48th hour).
1359
1360 If from the 24th to 48th hour, end node got an downlink from server, it will switch back to unconfirmed uplink. end node will restart ACK_Timout_1.
1361
1362 If from the 24th to 48th hour, end node still not got any downlink, means device doesn't get ACK in 48 hours. Device will process rejoin, rejoin request interval is AT+RJTDC period. For AU915/ US915, device will use the sub-band used for last join.
1363
1364
1365 * (((
1366 (% style="color:#037691" %)**Downlink: 0x32 01 05A0 0B40 **
1367
1368 0x01 : Flag
1369
1370 0x05A0: ACK_Timout_1
1371
1372 0x0B40: ACK_Timout_2
1373
1374
1375
1376 )))
1377
1378 (% class="wikigeneratedid" %)
1379 (% style="color:blue" %)**Add new feature to control NBTrans for unconfirmed uplink mode:**
1380
1381 * (% style="color:#037691" %)**AT Command:**
1382
1383 (% style="background-color:#dcdcdc" %)** AT+SETMAXNBTRANS=value1,value2   **(%%)** **~/~/ NBTrans specified how many re-transmission for each packet. If LoRaWAN LinkADR from server set NBTrans to high value. The battery will consume fast.
1384
1385 **AT+SETMAXNBTRANS=value1,value2 Default Value: AT+SETMAXNBTRANS=1,0**
1386
1387 (% style="color:red" %)**value1:** (%%) Set max NBTrans. For example, if value1(NBTrans)=1, end node set NBTrans max to 1 , even downlink LinkADR request end node to set NBTrans to higher value such as 6.
1388
1389 (% style="color:red" %)**value2:** (%%) 0: uplink fcnt doesn't change for each NBTrans;  1: uplink fcnt increase by 1 for each NBTrans.
1390
1391 set value2 to 1 for Chirpstack server, because Chirpstack will ignore same FCNT in re-transmission.
1392
1393
1394 **Example: AT+SETMAXNBTRANS=2,1**
1395
1396 Set max NBTrans to 2, fcnt will increase +1 for each NBTrans
1397
1398
1399 * (((
1400 (% style="color:#037691" %)**Downlink: 0x33 02 01**
1401
1402 value1=0x02
1403 )))
1404
1405 (% class="wikigeneratedid" %)
1406 value2=0x01
1407
1408
1409 == 2.6 Show Data in Datacake IoT Server ==
1410
1411
1412 (((
1413 Datacake provides a human friendly interface to show the sensor data, once we have data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
1414 )))
1415
1416 (((
1417 (% style="color:blue" %)**Step 1**(%%)**:** Be sure that your device is programmed and properly connected to the network at this time.
1418 )))
1419
1420 (((
1421 (% style="color:blue" %)**Step 2**(%%)**:** To configure the Application to forward data to Datacake you will need to add integration. To add the Datacake integration, perform the following steps:
1422 )))
1423
1424 [[image:1656385623971-339.png]]
1425
1426
1427 [[image:1656385646347-395.png]]
1428
1429
1430 [[image:1656385662459-942.png]]
1431
1432
1433 (% style="color:blue" %)**Step 3**(%%)**: **Create an account or log in Datacake.
1434
1435 (% style="color:blue" %)**Step 4**(%%)**:** Search the LSN50 and add DevEUI.
1436
1437 [[image:1656385688973-317.png]]
1438
1439
1440 == 2.7 ​Firmware Change Log ==
1441
1442
1443 (((
1444 **Firmware download: ** [[https:~~/~~/www.dropbox.com/scl/fo/e8tj75c12ecumt4qvx3w0/APfXGCagGqiDYqkl7cnItlk?rlkey=tfltr3b4xsa7gp0wg5silkpcw&st=yeqslbpz&dl=0>>https://www.dropbox.com/scl/fo/e8tj75c12ecumt4qvx3w0/APfXGCagGqiDYqkl7cnItlk?rlkey=tfltr3b4xsa7gp0wg5silkpcw&st=yeqslbpz&dl=0]]
1445 )))
1446
1447 (((
1448 **Firmware Change Log: **[[https:~~/~~/www.dropbox.com/scl/fo/e8tj75c12ecumt4qvx3w0/APfXGCagGqiDYqkl7cnItlk?rlkey=tfltr3b4xsa7gp0wg5silkpcw&st=yeqslbpz&dl=0>>https://www.dropbox.com/scl/fo/e8tj75c12ecumt4qvx3w0/APfXGCagGqiDYqkl7cnItlk?rlkey=tfltr3b4xsa7gp0wg5silkpcw&st=yeqslbpz&dl=0]]
1449
1450
1451 )))
1452
1453 == 2.8 Use VDD or +5V to Power External Sensor ==
1454
1455
1456 (((
1457 User can use VDD or +5V to power external sensor.
1458 )))
1459
1460 (((
1461 (% style="color:red" %)**Note:**
1462 )))
1463
1464 1. (((
1465 VDD is 2.5~~3.3v from the battery + diode, the VDD is always on, so when use VDD to power external sensor, make sure the sensor has a low power consumption in sleep mode ( less 50 uA) to get a long battery life.
1466 )))
1467 1. (((
1468 +5V output is only ON when sampling. And MCU will turn off it after sampling. So if sensor can support 5v, +5V out is the best choice. [[See here for more info>>||anchor="H2.4.10A02B5VOutput"]].
1469 )))
1470
1471 (((
1472 (% style="color:red" %)**Note: Always test the actually current pass by the JP2 jumper when connect to a new type of sensor.**
1473 )))
1474
1475
1476 == 2.9  Battery & Power Consumption ==
1477
1478
1479 LSN50v2 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1480
1481 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1482
1483
1484 = 3.  Using the AT Commands =
1485
1486 == 3.1  Access AT Commands ==
1487
1488
1489 LSN50 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSN50 for using AT command, as below.
1490
1491
1492 (% style="color:#4472c4" %)**LSN50 v1 UART connection photo**
1493
1494 [[image:image-20220627165424-24.png||height="495" width="486"]]
1495
1496
1497 (% style="color:#4472c4" %)**LSN50 v2 UART connection photo**
1498
1499 [[image:image-20220627165424-25.png||height="437" width="894"]]
1500
1501
1502 (((
1503 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSN50. LSN50 will output system info once power on as below:
1504 )))
1505
1506 [[image:image-20220627165531-26.png||height="624" width="893"]](% style="display:none" %)
1507
1508
1509 == 3.2  Common AT Command Sequence ==
1510
1511 === 3.2.1  Multi-channel ABP mode (Use with SX1301/LG308) ===
1512
1513
1514 (((
1515 (% style="color:#037691" %)**If device has not joined network via OTAA:**
1516 )))
1517
1518 (((
1519 (% style="background-color:#dcdcdc" %)**AT+FDR**
1520 )))
1521
1522 (((
1523 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1524 )))
1525
1526 (((
1527 (% style="background-color:#dcdcdc" %)**ATZ**
1528 )))
1529
1530
1531 (((
1532 (% style="color:#037691" %)**If device already joined network:**
1533 )))
1534
1535 (((
1536 (% style="background-color:#dcdcdc" %)**AT+NJM=0**
1537 )))
1538
1539 (((
1540 (% style="background-color:#dcdcdc" %)**ATZ**
1541 )))
1542
1543
1544 === 3.2.2  Single-channel ABP mode (Use with LG01/LG02) ===
1545
1546
1547 See [[Sect 6.7>>||anchor="H6.7A0HowtoconfiguretheEUIkeysinLSN503F"]]
1548
1549
1550 = 4.  Upload Firmware =
1551
1552
1553 (% style="color:red" %)**Notes**:
1554
1555 * Since image v1.3, the firmware will show version info during boot. If your device doesn't show version info, you may have a very old image version.
1556 * Always run AT+FDR to reset parameters to factory default after an update image.
1557 If the update is from image >= v1.3 to another image version >=v1.3, then the keys will be kept after running AT+FDR.
1558 Otherwise (e.g. from v1.2 to v1.3), AT+FDR may erase the keys.
1559
1560 == 4.1  Upload Firmware via Serial Port ==
1561
1562
1563 The LSN50's AT Command port can be used for firmware upgrade. The hardware connection for upgrade firmware is as below:
1564
1565 [[image:image-20220627163506-18.png||height="426" width="418"]]
1566
1567
1568 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1569
1570 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LSN50 Image files>>https://www.dropbox.com/scl/fo/e8tj75c12ecumt4qvx3w0/APfXGCagGqiDYqkl7cnItlk?rlkey=tfltr3b4xsa7gp0wg5silkpcw&st=5xb2s2ij&dl=0]].
1571
1572 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update
1573
1574 [[image:image-20220627163821-19.png]]
1575
1576
1577 [[image:image-20220627163930-20.png||height="450" width="751"]]
1578
1579
1580 [[image:image-20220627164030-21.png||height="459" width="750"]]
1581
1582
1583 (((
1584 (% style="color:blue" %)**Step4**(%%)**: **Switch SW1 back to flash state and push the RESET button.
1585 )))
1586
1587 (((
1588 The LSN50 will then run the new firmware.
1589 )))
1590
1591
1592 == 4.2  Upload Firmware via ST-Link V2 ==
1593
1594
1595 You can use ST-LINK to upgrade firmware into LSN50. The hardware connection for upgrade firmware is as below:
1596
1597 [[image:1656319349131-664.png]]
1598
1599
1600 (% style="color:blue" %)**Connection:**
1601
1602 * (% style="background-color:yellow" %)**ST-LINK v2 GND  <~-~-> LSN50 GND**
1603 * (% style="background-color:yellow" %)**ST-LINK v2 SWCLK <~-~-> LSN50 PA14**
1604 * (% style="background-color:yellow" %)**ST-LINK v2 SWDIO <~-~-> LSN50 PA13**
1605 * (% style="background-color:yellow" %)**ST-LINK v2 RST  <~-~->  LSN50 NRST**
1606
1607 (% style="color:blue" %)**Step1:**(%%) Install [[ST-LINK driver>>url:https://www.stmicroelectronics.com.cn/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-utilities/stsw-link009.html]] first and then install [[ST-LINK Utility>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/stsw-link004.html]]
1608
1609 (% style="color:blue" %)**Step2**(%%): Download the [[LSN50 Image files>>url:https://github.com/dragino/LoRa_STM32/tree/master/LSN50.hex]].
1610
1611 (% style="color:blue" %)**Step3:**(%%)** **Open ST-LINK utility, (% style="color:blue" %)**file ~-~-> open file**(%%) to select the image to be upgraded.
1612
1613 (% style="color:blue" %)**Step4:**(%%)** **Click the “(% style="color:blue" %)**Program Verify**”(%%) button on ST-LINK.
1614
1615 [[image:image-20220627164303-22.png]]
1616
1617
1618 (((
1619 (% style="color:blue" %)**Step5:**(%%)** **The led on the ST-LINK adapter will now blinking, and the ST-Link utility will pop up a download window. Click the start button to download the image to LSN50.
1620 )))
1621
1622 (((
1623 (% style="color:red" %)**NOTE: If this step fails, ST-LINK can't establish connection to LSN50, please try to swap SWDIO & SWCLK pin. Some ST-LINK v2 devices are incorrectly marked.**
1624 )))
1625
1626
1627 [[image:image-20220627164303-23.png]]
1628
1629
1630 = 5.  Developer Guide =
1631
1632
1633 * (((
1634 Software Source Code Download : [[https:~~/~~/github.com/dragino/LoRa_STM32/tree/master/STM32CubeExpansion_LRWAN>>https://github.com/dragino/LoRa_STM32/tree/master/STM32CubeExpansion_LRWAN]]
1635 )))
1636 * (((
1637 Hardware Source Code Download: [[https:~~/~~/github.com/dragino/Lora/tree/master/LSN50>>https://github.com/dragino/Lora/tree/master/LSN50]]
1638 )))
1639
1640 (((
1641 LSN50 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
1642 )))
1643
1644 * (((
1645 Software Source Code: [[https:~~/~~/github.com/dragino/LoRa_STM32/tree/master/STM32CubeExpansion_LRWAN>>url:https://github.com/dragino/LoRa_STM32/tree/master/STM32CubeExpansion_LRWAN||_mstmutation="1"]]
1646 )))
1647 * (((
1648 Hardware Design files:  [[https:~~/~~/github.com/dragino/Lora/tree/master/LSN50>>url:https://github.com/dragino/Lora/tree/master/LSN50]]
1649 )))
1650 * (((
1651 Compile instruction:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Compile%20Instruction%20~~-~~-%20STM32/>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Compile%20Instruction%20--%20STM32/]]
1652 )))
1653
1654 (((
1655 Use Keil to open project file:
1656 )))
1657
1658 (((
1659 STM32CubeExpansion_LRWAN/Projects/Multi/Applications/LoRa/DRAGINO-LRWAN(AT)/MDK-ARM/STM32L072CZ-Nucleo/Lora.uvprojx
1660 )))
1661
1662 (((
1663
1664 )))
1665
1666 (((
1667 In Keil, you can see what frequency band the code support.
1668 )))
1669
1670 [[image:image-20220627162417-15.png]]
1671
1672
1673 **~1. If you want to change frequency, modify the Preprocessor Symbols.**
1674
1675
1676 For example, change EU868 to US915
1677
1678 [[image:1656318662202-530.png]]
1679
1680
1681 **2. Compile and build**
1682
1683 [[image:image-20220627163212-17.png]]
1684
1685
1686 = 6.  FAQ =
1687
1688 == 6.1  Why there is 433/868/915 version? ==
1689
1690
1691 (((
1692 Different countries have different rules for the ISM band for LoRa. Although the LoRa chip can support a wide range of Frequencies, we provide different versions of the hardware for best tune of the LoRa hardware part.
1693 )))
1694
1695
1696 == 6.2 What is the frequency range of LT LoRa part? ==
1697
1698
1699 Different LT version supports different frequency range, below is the table for the working frequency and recommend bands for each model:
1700
1701 [[image:image-20220627155456-9.png]]
1702
1703
1704 == 6.3  How to change the LoRa Frequency Bands/Region? ==
1705
1706
1707 You can follow the instructions for [[how to upgrade image>>||anchor="H2.7200BFirmwareChangeLog"]].
1708 When downloading the images, choose the required image file for download.
1709
1710
1711 == 6.4  Can I use Private LoRa protocol? ==
1712
1713
1714 (((
1715 (((
1716 The stock firmware is based on LoRaWAN protocol. You can use a private LoRa protocol in LSN50. This section describes an example for base LoRa transfer. It is a reference/demo and we do not provide further software development support on this topic.
1717 )))
1718
1719 (((
1720 In this demo, we will show the communication between LoRa Shield and LSN50, both of them using the basic LoRa library. LSN50 will send a message to a LoRa Shield and the LoRa Shield will print it to the console.
1721 )))
1722
1723
1724 )))
1725
1726 (% style="color:#4472c4" %)**LoRa Shield + UNO**:
1727
1728 Use the [[LoRa Library>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/LoRa_Raw_Example/Arduino/&file=LoRa.zip]] and upload the [[LoRa Receive>>http://www.dragino.com/downloads/downloads/LSN50-LoRaST/LoRa_Raw_Example/Arduino/LoRaReceiver.ino]] Sketch to Arduino.
1729
1730
1731 Refs:  [[https:~~/~~/www.dropbox.com/sh/u9s41qdx5yujwcb/AAAT5r4QkMaeOogWrzJt7Wn4a?dl=0>>https://www.dropbox.com/sh/u9s41qdx5yujwcb/AAAT5r4QkMaeOogWrzJt7Wn4a?dl=0]]
1732
1733
1734 Open the serial monitor to Arduino. The device acts as a LoRa Receiver and listen on the frequency 868.3Mhz by default.
1735
1736
1737 (% style="color:#4472c4" %)**LSN50**:
1738
1739 Use the <[[LoRa RAW code>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/LoRa_Raw_Example/LSN50/&file=lora_send.zip]]> . The project file is in: MDK-ARM\STM32L072CZ-Nucleo\ Lora.uvprojx
1740
1741 Compile it and Upload it to LSN50, the LSN50 will transfer on the frequency 868.3Mhz.
1742
1743 In the Arduino Console, it will see the received packets as below.
1744
1745
1746 [[image:image-20220627160116-10.png]]
1747
1748
1749 == 6.5  How to set up LSN50 to work in 8 channel mode ==
1750
1751
1752 (((
1753 By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1754 )))
1755
1756 (((
1757 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1758 )))
1759
1760 (((
1761
1762 )))
1763
1764 (((
1765 For example, in (% style="color:blue" %)**US915**(%%) band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1766 )))
1767
1768 [[image:image-20220627160940-13.png]]
1769
1770
1771 (((
1772 When you use the TTN V3 network, the US915 frequency bands use are:
1773 )))
1774
1775 * (((
1776 903.9 - SF7BW125 to SF10BW125
1777 )))
1778 * (((
1779 904.1 - SF7BW125 to SF10BW125
1780 )))
1781 * (((
1782 904.3 - SF7BW125 to SF10BW125
1783 )))
1784 * (((
1785 904.5 - SF7BW125 to SF10BW125
1786 )))
1787 * (((
1788 904.7 - SF7BW125 to SF10BW125
1789 )))
1790 * (((
1791 904.9 - SF7BW125 to SF10BW125
1792 )))
1793 * (((
1794 905.1 - SF7BW125 to SF10BW125
1795 )))
1796 * (((
1797 905.3 - SF7BW125 to SF10BW125
1798 )))
1799 * (((
1800 904.6 - SF8BW500
1801 )))
1802
1803 (((
1804 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN V3 network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1805 )))
1806
1807 (((
1808 (% style="color:blue" %)**AT+CHE=2**
1809 )))
1810
1811 (((
1812 (% style="color:blue" %)**ATZ**
1813 )))
1814
1815
1816 (((
1817 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1818 )))
1819
1820 (((
1821 The (% style="color:blue" %)**AU915**(%%) band is similar. Below are the AU915 Uplink Channels.
1822 )))
1823
1824 [[image:image-20220627161124-14.png]]
1825
1826
1827 == 6.6  How to set up LSN50 to work with Single Channel Gateway such as LG01/LG02? ==
1828
1829
1830 (((
1831 In this case, users need to set LSN50 to work in ABP mode and transmit in only one frequency.
1832 )))
1833
1834 (((
1835 Assume we have a LG02 working in the frequency 868400000 now, below is the steps.
1836 )))
1837
1838
1839 (((
1840 (% style="color:blue" %)**Step1: **(%%)Log in TTN V3, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
1841 )))
1842
1843
1844 [[image:image-20220627160542-11.png]]
1845
1846
1847 (((
1848 (% style="color:red" %)**Note: You need to make sure the above three keys match in the device and in TTN V3. You can change them either in TTN V3 or in the Device to make them match. In TTN V3, NETSKEY and APPSKEY can be configured in the setting page, but the Device Addr is generated by TTN V3.**
1849 )))
1850
1851
1852 (((
1853 (% style="color:red" %)**You can also change the Device ADDR in TTN V3 by using the [[The Things Network CLI>>url:https://www.thethingsnetwork.org/docs/network/cli/quick-start.html]].**
1854 )))
1855
1856
1857 (((
1858 (% style="color:blue" %)**Step2:  **(%%)Run AT commands to make the LSN50 work in Single frequency and ABP mode. Below are the AT commands:
1859 )))
1860
1861
1862 (((
1863 (% style="background-color:#dcdcdc" %)AT+FDR(%%)  :  Reset Parameters to Factory Default, Keys Reserve
1864 )))
1865
1866 (((
1867 (% style="background-color:#dcdcdc" %)AT+NJM=0(%%) : Set to ABP mode
1868 )))
1869
1870 (((
1871 (% style="background-color:#dcdcdc" %)AT+ADR=0(%%) : Set the Adaptive Data Rate Off
1872 )))
1873
1874 (((
1875 (% style="background-color:#dcdcdc" %)AT+DR=5(%%)  : Set Data Rate (Set AT+DR=3 for 915 band)
1876 )))
1877
1878 (((
1879 (% style="background-color:#dcdcdc" %)AT+TDC=300000(%%)  :  Set transmit interval to 5 minutes
1880 )))
1881
1882 (((
1883 (% style="background-color:#dcdcdc" %)AT+CHS=868400000(%%) : Set transmit frequency to 868.4Mhz
1884 )))
1885
1886 (((
1887 (% style="background-color:#dcdcdc" %)AT+DADDR=26 01 1A F1(%%)  :Set Device Address to 26 01 1A F1
1888 )))
1889
1890 (((
1891 (% style="background-color:#dcdcdc" %)ATZ(%%)  :  Reset MCU
1892 )))
1893
1894
1895 (((
1896 As shown  below:
1897 )))
1898
1899 [[image:image-20220627160542-12.png]]
1900
1901
1902 == 6.7  How to configure the EUI keys in LSN50? ==
1903
1904
1905 (((
1906 The early version of LSN50 firmware doesn't have pre-configured keys.
1907 It is recommended that you update the image to the latest version before configure the keys. Refer [[upgrade_image>>||anchor="H2.7200BFirmwareChangeLog"]] to update the firmware to the latest version.
1908
1909 Run AT commands to set the keys to desired keys; refer [[AT Command manual>>https://www.dragino.com/downloads/downloads/LSN50-LoRaST/DRAGINO_LSN50_AT_Commands_v1.6.3.pdf]].
1910
1911
1912 (((
1913
1914 )))
1915
1916 == 6.8 Why can't users switch working modes? ==
1917
1918
1919 LSN50v2 and LSNS0v2-S31B use different firmware. If the user purchased LSN50V2-S31B, the working mode cannot be switched according to this manual.
1920
1921 LSN50v2 and LSN50V2-S31b use the same motherboard, users can refer to the following burning instructions to change the LSN50V2-S31B firmware to LSN50v2.
1922
1923 [[Firmware Upgrade Instruction for STM32 base products - DRAGINO>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.1.2LSN50v22FLSN50v2-D222FLSN50v2-D232FLSN50v2-S31B]]
1924
1925
1926 )))
1927
1928 = 7.  Trouble Shooting =
1929
1930 == 7.1  Connection problem when uploading firmware. ==
1931
1932
1933 (((
1934 (% style="color:red" %)**Issue**(%%): While using USB to TTL to upload firmware via UART interface. It works for several times but most of times it fails.
1935 )))
1936
1937 (((
1938
1939 )))
1940
1941 (((
1942 (% style="color:green" %)**Checklist**:
1943 )))
1944
1945 (((
1946 ~1. Double check if follow up exactly the steps as manual.
1947 )))
1948
1949 (((
1950 2. Check if hardware works fine: a) check if AT command works, b) check if ISP / flash switch works: PA12 will have different output level while set the ISP/Flash Switch in different position. c) check if reset button works.
1951 )))
1952
1953 (((
1954 3. If you use Windows10 system. Please change the flash loader to run in Windows7 compatibility mode.
1955 )))
1956
1957 [[image:image-20220627153421-8.png]]
1958
1959
1960 (((
1961 4. We have seen cases where the FT232 USB TTL adapter has a reliability issue with the PC USB chipset (Intel). In this case, even though points 1 and 2 above work, it still has a reliability issue for uploading. If this happens, change to a different PC or change the USB to TTL adapter to solve the issue.
1962 )))
1963
1964
1965 == 7.2  Why I can't join TTN V3 in US915 / AU915 bands? ==
1966
1967
1968 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1969
1970
1971 == 7.3  AT Command input doesn't work ==
1972
1973
1974 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:red" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:red" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1975
1976
1977 = 8.  Order Info =
1978
1979
1980 Part Number: (% style="color:blue" %)**LSN50-XX-YY  **(%%)**or  (% style="color:blue" %)LSN50v2-XX-YY-ZZ(%%)**
1981
1982 (% style="color:blue" %)**XX**(%%): The default frequency band
1983
1984 * (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1985 * (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1986 * (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1987 * (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1988 * (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1989 * (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1990 * (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1991 * (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1992
1993 (% style="color:blue" %)**YY**(%%)**: **Hole Option
1994
1995 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1996 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1997 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole (LSN50 v2 doesn't have this version)
1998 * (% style="color:red" %)**NH**(%%): No Hole
1999
2000 (% style="color:blue" %)**ZZ**(%%)**: **Battery Option ( Only valid for v2 model)
2001
2002 * (% style="color:red" %)**4**(%%): with 4000mAh battery
2003 * (% style="color:red" %)**8**(%%): with 8500mAg battery
2004
2005 = 9. ​ Packing Info =
2006
2007
2008 (% style="color:blue" %)**For LSN50**(%%)**:**
2009
2010 **Package Includes**:
2011
2012 * LSN50 LoRa Sensor Node x 1
2013
2014 **Dimension and weight**:
2015
2016 * Device Size: 8 x 6.5 x 5 cm
2017 * Device Weight: 137g
2018 * Package Size / pcs : 9 x 7 x 6cm
2019 * Weight / pcs : 160g
2020
2021 (% style="color:blue" %)**For LSN50 v2**(%%)**:**
2022
2023 **Package Includes**:
2024
2025 * LSN50v2 LoRa Sensor Node x 1
2026 * External antenna x 1
2027 * Spring Antenna (evaluate purpose)
2028
2029 **Dimension and weight**:
2030
2031 * Device Size: 9.7 x 6.5 x 4.7 cm
2032 * Device Weight: 150g
2033 * Package Size / pcs : 14.0 x 8x 5 cm
2034 * Weight / pcs : 180g
2035
2036 = 10.  ​Support =
2037
2038
2039 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2040 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
2041
2042 = 11.  References =
2043
2044
2045 * [[Product Page>>url:http://www.dragino.com/products/lora/item/128-lsn50.html]]
2046 * [[Data Sheet, Document Base>>https://www.dropbox.com/sh/djkxs7mr17y94mi/AABVlWbM9uzK9OA3mXyAT10Za?dl=0]]
2047 * [[Image Download>>url:https://github.com/dragino/LoRa_STM32/tree/master/LSN50.hex]]
2048 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0