Version 47.8 by Xiaoling on 2023/05/23 14:06

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16 {{toc/}}
17
18
19
20
21
22
23 = 1. Introduction =
24
25 == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26
27
28 (((
29 The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
30 )))
31
32 (((
33 It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
34 )))
35
36 (((
37 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
38 )))
39
40 (((
41 LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
42 )))
43
44 (((
45 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
46 )))
47
48
49 [[image:1654503236291-817.png]]
50
51
52 [[image:1654503265560-120.png]]
53
54
55 == 1.2 ​Features ==
56
57
58 * LoRaWAN 1.0.3 Class A
59 * Ultra low power consumption
60 * Monitor Soil Moisture
61 * Monitor Soil Temperature
62 * Monitor Soil Conductivity
63 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
64 * AT Commands to change parameters
65 * Uplink on periodically
66 * Downlink to change configure
67 * IP66 Waterproof Enclosure
68 * 4000mAh or 8500mAh Battery for long term use
69
70 == 1.3 Specification ==
71
72
73 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74
75 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
76 |(% style="background-color:#d9e2f3; color:#0070c0; width:95px" %)**Parameter**|(% style="background-color:#d9e2f3; color:#0070c0; width:147px" %)**Soil Moisture**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Soil Conductivity**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Soil Temperature**
77 |(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)(((
78 0-20000uS/cm
79 (25℃)(0-20.0EC)
80 )))|(% style="width:140px" %)-40.00℃~85.00℃
81 |(% style="width:95px" %)Unit|(% style="width:146px" %)V/V %|(% style="width:137px" %)uS/cm|(% style="width:140px" %)℃
82 |(% style="width:95px" %)Resolution|(% style="width:146px" %)0.01%|(% style="width:137px" %)1 uS/cm|(% style="width:140px" %)0.01℃
83 |(% style="width:95px" %)Accuracy|(% style="width:146px" %)(((
84 ±3% (0-53%)
85 ±5% (>53%)
86 )))|(% style="width:137px" %)2%FS|(% style="width:140px" %)(((
87 -10℃~50℃:<0.3℃
88 All other: <0.6℃
89 )))
90 |(% style="width:95px" %)(((
91 Measure
92 Method
93 )))|(% style="width:146px" %)FDR , with temperature &EC compensate|(% style="width:137px" %)Conductivity , with temperature compensate|(% style="width:140px" %)RTD, and calibrate
94
95
96 == 1.4 Dimension ==
97
98
99 (% style="color:blue" %)**Main Device Dimension:**
100
101 See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
102
103 [[image:image-20221008140228-2.png||height="358" width="571"]]
104
105
106 (% style="color:blue" %)**Probe Dimension**
107
108 [[image:image-20221008135912-1.png]]
109
110
111 == ​1.5 Applications ==
112
113
114 * Smart Agriculture​
115
116 == 1.6 Firmware Change log ==
117
118
119 **LSE01 v1.0 :**  Release
120
121
122 = 2. Configure LSE01 to connect to LoRaWAN network =
123
124 == 2.1 How it works ==
125
126
127 (((
128 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
129 )))
130
131 (((
132 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
133 )))
134
135
136 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
137
138
139 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
140
141
142 [[image:1654503992078-669.png]]
143
144
145 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
146
147
148 (% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
149
150 Each LSE01 is shipped with a sticker with the default device EUI as below:
151
152 [[image:image-20230426084640-1.png||height="241" width="519"]]
153
154
155 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
156
157 **Add APP EUI in the application**
158
159
160 [[image:1654504596150-405.png]]
161
162
163
164 **Add APP KEY and DEV EUI**
165
166 [[image:1654504683289-357.png]]
167
168
169
170 (% style="color:blue" %)**Step 2**(%%): Power on LSE01
171
172
173 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
174
175 [[image:image-20220606163915-7.png]]
176
177
178 (% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
179
180 [[image:1654504778294-788.png]]
181
182
183 == 2.3 Uplink Payload ==
184
185 === 2.3.1 MOD~=0(Default Mode)(% style="display:none" %) (%%) ===
186
187
188 LSE01 will uplink payload via LoRaWAN with below payload format: 
189
190 (((
191 Uplink payload includes in total 11 bytes.
192 )))
193
194 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
195 |=**Size(bytes)**|**2**|**2**|**2**|**2**|**2**|**1**
196 |=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
197 Temperature
198 (Reserve, Ignore now)
199 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
200 MOD & Digital Interrupt(Optional)
201 )))
202
203 === 2.3.2 MOD~=1(Original value) ===
204
205
206 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
207
208 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
209 |=**Size(bytes)**|**2**|**2**|**2**|**2**|**2**|**1**
210 |=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 Temperature
212 (Reserve, Ignore now)
213 )))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Dielectric constant>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
214 MOD & Digital Interrupt(Optional)
215 )))
216
217 === 2.3.3 Battery Info ===
218
219
220 (((
221 Check the battery voltage for LSE01.
222 )))
223
224 (((
225 Ex1: 0x0B45 = 2885mV
226 )))
227
228 (((
229 Ex2: 0x0B49 = 2889mV
230 )))
231
232
233 === 2.3.4 Soil Moisture ===
234
235
236 (((
237 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
238 )))
239
240 (((
241 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
242 )))
243
244 (((
245
246 )))
247
248 (((
249 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
250 )))
251
252
253 === 2.3.5 Soil Temperature ===
254
255
256 (((
257 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
258 )))
259
260 (((
261 **Example**:
262 )))
263
264 (((
265 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
266 )))
267
268 (((
269 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
270 )))
271
272
273 === 2.3.6 Soil Conductivity (EC) ===
274
275
276 (((
277 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
278 )))
279
280 (((
281 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
282 )))
283
284 (((
285 Generally, the EC value of irrigation water is less than 800uS / cm.
286 )))
287
288 (((
289
290 )))
291
292 === 2.3.7 MOD ===
293
294
295 Firmware version at least v2.1 supports changing mode.
296
297 For example, bytes[10]=90
298
299 mod=(bytes[10]>>7)&0x01=1.
300
301
302 **Downlink Command:**
303
304 If payload = 0x0A00, workmode=0
305
306 If** **payload =** **0x0A01, workmode=1
307
308
309 === 2.3.8 ​Decode payload in The Things Network ===
310
311
312 While using TTN network, you can add the payload format to decode the payload.
313
314
315 [[image:1654505570700-128.png]]
316
317 (((
318 The payload decoder function for TTN is here:
319 )))
320
321 (((
322 LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
323 )))
324
325
326 == 2.4 Uplink Interval ==
327
328
329 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
330
331
332 == 2.5 Downlink Payload ==
333
334
335 By default, LSE01 prints the downlink payload to console port.
336
337 [[image:image-20220606165544-8.png]]
338
339
340 (((
341 (% style="color:blue" %)**Examples:**
342 )))
343
344 (((
345
346 )))
347
348 * (((
349 (% style="color:blue" %)**Set TDC**
350 )))
351
352 (((
353 If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
354 )))
355
356 (((
357 Payload:    01 00 00 1E    TDC=30S
358 )))
359
360 (((
361 Payload:    01 00 00 3C    TDC=60S
362 )))
363
364 (((
365
366 )))
367
368 * (((
369 (% style="color:blue" %)**Reset**
370 )))
371
372 (((
373 If payload = 0x04FF, it will reset the LSE01
374 )))
375
376
377 * (% style="color:blue" %)**CFM**
378
379 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
380
381
382 == 2.6 ​Show Data in DataCake IoT Server ==
383
384
385 (((
386 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
387 )))
388
389 (((
390
391 )))
392
393 (((
394 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
395 )))
396
397 (((
398 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
399 )))
400
401
402 [[image:1654505857935-743.png]]
403
404
405 [[image:1654505874829-548.png]]
406
407
408 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
409
410 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
411
412
413 [[image:1654505905236-553.png]]
414
415
416 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
417
418 [[image:1654505925508-181.png]]
419
420
421 == 2.7 Frequency Plans ==
422
423
424 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
425
426
427 === 2.7.1 EU863-870 (EU868) ===
428
429
430 (% style="color:#037691" %)** Uplink:**
431
432 868.1 - SF7BW125 to SF12BW125
433
434 868.3 - SF7BW125 to SF12BW125 and SF7BW250
435
436 868.5 - SF7BW125 to SF12BW125
437
438 867.1 - SF7BW125 to SF12BW125
439
440 867.3 - SF7BW125 to SF12BW125
441
442 867.5 - SF7BW125 to SF12BW125
443
444 867.7 - SF7BW125 to SF12BW125
445
446 867.9 - SF7BW125 to SF12BW125
447
448 868.8 - FSK
449
450
451 (% style="color:#037691" %)** Downlink:**
452
453 Uplink channels 1-9 (RX1)
454
455 869.525 - SF9BW125 (RX2 downlink only)
456
457
458 === 2.7.2 US902-928(US915) ===
459
460
461 Used in USA, Canada and South America. Default use CHE=2
462
463 (% style="color:#037691" %)**Uplink:**
464
465 903.9 - SF7BW125 to SF10BW125
466
467 904.1 - SF7BW125 to SF10BW125
468
469 904.3 - SF7BW125 to SF10BW125
470
471 904.5 - SF7BW125 to SF10BW125
472
473 904.7 - SF7BW125 to SF10BW125
474
475 904.9 - SF7BW125 to SF10BW125
476
477 905.1 - SF7BW125 to SF10BW125
478
479 905.3 - SF7BW125 to SF10BW125
480
481
482 (% style="color:#037691" %)**Downlink:**
483
484 923.3 - SF7BW500 to SF12BW500
485
486 923.9 - SF7BW500 to SF12BW500
487
488 924.5 - SF7BW500 to SF12BW500
489
490 925.1 - SF7BW500 to SF12BW500
491
492 925.7 - SF7BW500 to SF12BW500
493
494 926.3 - SF7BW500 to SF12BW500
495
496 926.9 - SF7BW500 to SF12BW500
497
498 927.5 - SF7BW500 to SF12BW500
499
500 923.3 - SF12BW500(RX2 downlink only)
501
502
503 === 2.7.3 CN470-510 (CN470) ===
504
505
506 Used in China, Default use CHE=1
507
508 (% style="color:#037691" %)**Uplink:**
509
510 486.3 - SF7BW125 to SF12BW125
511
512 486.5 - SF7BW125 to SF12BW125
513
514 486.7 - SF7BW125 to SF12BW125
515
516 486.9 - SF7BW125 to SF12BW125
517
518 487.1 - SF7BW125 to SF12BW125
519
520 487.3 - SF7BW125 to SF12BW125
521
522 487.5 - SF7BW125 to SF12BW125
523
524 487.7 - SF7BW125 to SF12BW125
525
526
527 (% style="color:#037691" %)**Downlink:**
528
529 506.7 - SF7BW125 to SF12BW125
530
531 506.9 - SF7BW125 to SF12BW125
532
533 507.1 - SF7BW125 to SF12BW125
534
535 507.3 - SF7BW125 to SF12BW125
536
537 507.5 - SF7BW125 to SF12BW125
538
539 507.7 - SF7BW125 to SF12BW125
540
541 507.9 - SF7BW125 to SF12BW125
542
543 508.1 - SF7BW125 to SF12BW125
544
545 505.3 - SF12BW125 (RX2 downlink only)
546
547
548 === 2.7.4 AU915-928(AU915) ===
549
550
551 Default use CHE=2
552
553 (% style="color:#037691" %)**Uplink:**
554
555 916.8 - SF7BW125 to SF12BW125
556
557 917.0 - SF7BW125 to SF12BW125
558
559 917.2 - SF7BW125 to SF12BW125
560
561 917.4 - SF7BW125 to SF12BW125
562
563 917.6 - SF7BW125 to SF12BW125
564
565 917.8 - SF7BW125 to SF12BW125
566
567 918.0 - SF7BW125 to SF12BW125
568
569 918.2 - SF7BW125 to SF12BW125
570
571
572 (% style="color:#037691" %)**Downlink:**
573
574 923.3 - SF7BW500 to SF12BW500
575
576 923.9 - SF7BW500 to SF12BW500
577
578 924.5 - SF7BW500 to SF12BW500
579
580 925.1 - SF7BW500 to SF12BW500
581
582 925.7 - SF7BW500 to SF12BW500
583
584 926.3 - SF7BW500 to SF12BW500
585
586 926.9 - SF7BW500 to SF12BW500
587
588 927.5 - SF7BW500 to SF12BW500
589
590 923.3 - SF12BW500(RX2 downlink only)
591
592
593 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
594
595
596 (% style="color:#037691" %)**Default Uplink channel:**
597
598 923.2 - SF7BW125 to SF10BW125
599
600 923.4 - SF7BW125 to SF10BW125
601
602
603 (% style="color:#037691" %)**Additional Uplink Channel**:
604
605 (OTAA mode, channel added by JoinAccept message)
606
607 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
608
609 922.2 - SF7BW125 to SF10BW125
610
611 922.4 - SF7BW125 to SF10BW125
612
613 922.6 - SF7BW125 to SF10BW125
614
615 922.8 - SF7BW125 to SF10BW125
616
617 923.0 - SF7BW125 to SF10BW125
618
619 922.0 - SF7BW125 to SF10BW125
620
621
622 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
623
624 923.6 - SF7BW125 to SF10BW125
625
626 923.8 - SF7BW125 to SF10BW125
627
628 924.0 - SF7BW125 to SF10BW125
629
630 924.2 - SF7BW125 to SF10BW125
631
632 924.4 - SF7BW125 to SF10BW125
633
634 924.6 - SF7BW125 to SF10BW125
635
636
637 (% style="color:#037691" %)** Downlink:**
638
639 Uplink channels 1-8 (RX1)
640
641 923.2 - SF10BW125 (RX2)
642
643
644 === 2.7.6 KR920-923 (KR920) ===
645
646
647 Default channel:
648
649 922.1 - SF7BW125 to SF12BW125
650
651 922.3 - SF7BW125 to SF12BW125
652
653 922.5 - SF7BW125 to SF12BW125
654
655
656 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
657
658 922.1 - SF7BW125 to SF12BW125
659
660 922.3 - SF7BW125 to SF12BW125
661
662 922.5 - SF7BW125 to SF12BW125
663
664 922.7 - SF7BW125 to SF12BW125
665
666 922.9 - SF7BW125 to SF12BW125
667
668 923.1 - SF7BW125 to SF12BW125
669
670 923.3 - SF7BW125 to SF12BW125
671
672
673 (% style="color:#037691" %)**Downlink:**
674
675 Uplink channels 1-7(RX1)
676
677 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
678
679
680 === 2.7.7 IN865-867 (IN865) ===
681
682
683 (% style="color:#037691" %)** Uplink:**
684
685 865.0625 - SF7BW125 to SF12BW125
686
687 865.4025 - SF7BW125 to SF12BW125
688
689 865.9850 - SF7BW125 to SF12BW125
690
691
692 (% style="color:#037691" %) **Downlink:**
693
694 Uplink channels 1-3 (RX1)
695
696 866.550 - SF10BW125 (RX2)
697
698
699 == 2.8 LED Indicator ==
700
701
702 The LSE01 has an internal LED which is to show the status of different state.
703
704 * Blink once when device power on.
705 * Solid ON for 5 seconds once device successful Join the network.
706 * Blink once when device transmit a packet.
707
708 == 2.9 Installation in Soil ==
709
710
711 **Measurement the soil surface**
712
713
714 [[image:1654506634463-199.png]] ​
715
716
717 (((
718 (((
719 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
720 )))
721 )))
722
723
724
725 [[image:1654506665940-119.png]]
726
727
728 (((
729 Dig a hole with diameter > 20CM.
730 )))
731
732 (((
733 Horizontal insert the probe to the soil and fill the hole for long term measurement.
734 )))
735
736
737 == 2.10 ​Firmware Change Log ==
738
739
740 (((
741 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0>>https://www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0]]
742 )))
743
744 (((
745 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 )))
747
748 (((
749
750 )))
751
752 (((
753 **V1.0.**
754 )))
755
756 (((
757 Release
758 )))
759
760
761 == 2.11 Battery & Power Consumption ==
762
763
764 LSE01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
765
766 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
767
768
769 = 3. ​Using the AT Commands =
770
771 == 3.1 Access AT Commands ==
772
773
774 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
775
776
777 [[image:1654501986557-872.png||height="391" width="800"]]
778
779
780 Or if you have below board, use below connection:
781
782
783 [[image:1654502005655-729.png||height="503" width="801"]]
784
785
786 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
787
788
789 [[image:1654502050864-459.png||height="564" width="806"]]
790
791
792 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]].
793
794
795 (% style="background-color:#dcdcdc" %)**AT+<CMD>? **(%%) : Help on <CMD>
796
797 (% style="background-color:#dcdcdc" %)**AT+<CMD> **(%%) : Run <CMD>
798
799 (% style="background-color:#dcdcdc" %)**AT+<CMD>=<value>**(%%)  : Set the value
800
801 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?**(%%)  : Get the value
802
803
804 (% style="color:#037691" %)**General Commands**(%%)      
805
806 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
807
808 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
809
810 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
811
812 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
813
814
815 (% style="color:#037691" %)**Keys, IDs and EUIs management**
816
817 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
818
819 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
820
821 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
822
823 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
824
825 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
826
827 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
828
829 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
830
831 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
832
833 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
834
835 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
836
837 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
838
839 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
840
841 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
842
843 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
844
845 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
846
847 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
848
849
850 (% style="color:#037691" %)**LoRa Network Management**
851
852 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
853
854 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
855
856 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
857
858 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
859
860 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
861
862 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
863
864 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
865
866 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
867
868 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
869
870 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
871
872 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
873
874 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
875
876 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
877
878 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
879
880 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
881
882
883 (% style="color:#037691" %)**Information** 
884
885 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
886
887 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
888
889 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
890
891 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
892
893 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
894
895 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
896
897 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
898
899
900 = ​4. FAQ =
901
902 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
903
904
905 (((
906 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
907 When downloading the images, choose the required image file for download. ​
908 )))
909
910 (((
911
912 )))
913
914 (((
915 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
916 )))
917
918 (((
919
920 )))
921
922 (((
923 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
924 )))
925
926 (((
927
928 )))
929
930 (((
931 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
932 )))
933
934 [[image:image-20220606154726-3.png]]
935
936
937 When you use the TTN network, the US915 frequency bands use are:
938
939 * 903.9 - SF7BW125 to SF10BW125
940 * 904.1 - SF7BW125 to SF10BW125
941 * 904.3 - SF7BW125 to SF10BW125
942 * 904.5 - SF7BW125 to SF10BW125
943 * 904.7 - SF7BW125 to SF10BW125
944 * 904.9 - SF7BW125 to SF10BW125
945 * 905.1 - SF7BW125 to SF10BW125
946 * 905.3 - SF7BW125 to SF10BW125
947 * 904.6 - SF8BW500
948
949 (((
950 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
951
952 * (% style="color:#037691" %)**AT+CHE=2**
953 * (% style="color:#037691" %)**ATZ**
954 )))
955
956 (((
957
958
959 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
960 )))
961
962 (((
963
964 )))
965
966 (((
967 The **AU915** band is similar. Below are the AU915 Uplink Channels.
968 )))
969
970 [[image:image-20220606154825-4.png]]
971
972
973 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
974
975
976 (((
977 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
978 )))
979
980
981 = 5. Trouble Shooting =
982
983 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
984
985
986 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
987
988
989 == 5.2 AT Command input doesn't work ==
990
991
992 (((
993 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
994 )))
995
996
997 == 5.3 Device rejoin in at the second uplink packet ==
998
999
1000 (% style="color:#4f81bd" %)**Issue describe as below:**
1001
1002 [[image:1654500909990-784.png]]
1003
1004
1005 (% style="color:#4f81bd" %)**Cause for this issue:**
1006
1007 (((
1008 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1009 )))
1010
1011
1012 (% style="color:#4f81bd" %)**Solution: **
1013
1014 (((
1015 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1016 )))
1017
1018 [[image:1654500929571-736.png||height="458" width="832"]]
1019
1020
1021 = 6. ​Order Info =
1022
1023
1024 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1025
1026
1027 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1028
1029 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1030 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1031 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1032 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1033 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1034 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1035 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1036 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1037
1038 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1039
1040 * (% style="color:red" %)**4**(%%): 4000mAh battery
1041 * (% style="color:red" %)**8**(%%): 8500mAh battery
1042
1043 (% class="wikigeneratedid" %)
1044 (((
1045
1046
1047
1048 )))
1049
1050 = 7. Packing Info =
1051
1052 (((
1053
1054
1055 (% style="color:#037691" %)**Package Includes**:
1056 )))
1057
1058 * (((
1059 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1060 )))
1061
1062 (((
1063
1064
1065 (% style="color:#037691" %)**Dimension and weight**:
1066 )))
1067
1068 * (((
1069 Device Size: cm
1070 )))
1071 * (((
1072 Device Weight: g
1073 )))
1074 * (((
1075 Package Size / pcs : cm
1076 )))
1077 * (((
1078 Weight / pcs : g
1079
1080
1081
1082 )))
1083
1084 = 8. Support =
1085
1086
1087 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1088 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]