Version 46.2 by Xiaoling on 2022/12/21 18:21

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16 {{toc/}}
17
18
19
20
21
22
23 = 1. Introduction =
24
25 == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26
27
28 (((
29 The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
30 )))
31
32 (((
33 It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
34 )))
35
36 (((
37 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
38 )))
39
40 (((
41 LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
42 )))
43
44 (((
45 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
46 )))
47
48
49 [[image:1654503236291-817.png]]
50
51
52 [[image:1654503265560-120.png]]
53
54
55 == 1.2 ​Features ==
56
57
58 * LoRaWAN 1.0.3 Class A
59 * Ultra low power consumption
60 * Monitor Soil Moisture
61 * Monitor Soil Temperature
62 * Monitor Soil Conductivity
63 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
64 * AT Commands to change parameters
65 * Uplink on periodically
66 * Downlink to change configure
67 * IP66 Waterproof Enclosure
68 * 4000mAh or 8500mAh Battery for long term use
69
70
71
72 == 1.3 Specification ==
73
74
75 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
76
77 [[image:image-20220606162220-5.png]]
78
79
80 == 1.4 Dimension ==
81
82
83 **Main Device Dimension:**
84
85 See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
86
87 [[image:image-20221008140228-2.png||height="358" width="571"]]
88
89
90 **Probe Dimension**
91
92 [[image:image-20221008135912-1.png]]
93
94
95 == ​1.5 Applications ==
96
97
98 * Smart Agriculture​
99
100
101
102 == 1.6 Firmware Change log ==
103
104
105 **LSE01 v1.0 :**  Release
106
107
108 = 2. Configure LSE01 to connect to LoRaWAN network =
109
110 == 2.1 How it works ==
111
112
113 (((
114 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
115 )))
116
117 (((
118 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
119 )))
120
121
122 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
123
124
125 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
126
127
128 [[image:1654503992078-669.png]]
129
130
131 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
132
133
134 (% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
135
136 Each LSE01 is shipped with a sticker with the default device EUI as below:
137
138 [[image:image-20220606163732-6.jpeg]]
139
140
141 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
142
143 **Add APP EUI in the application**
144
145
146 [[image:1654504596150-405.png]]
147
148
149
150 **Add APP KEY and DEV EUI**
151
152 [[image:1654504683289-357.png]]
153
154
155
156 (% style="color:blue" %)**Step 2**(%%): Power on LSE01
157
158
159 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
160
161 [[image:image-20220606163915-7.png]]
162
163
164 (% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
165
166 [[image:1654504778294-788.png]]
167
168
169 == 2.3 Uplink Payload ==
170
171 === 2.3.1 MOD~=0(Default Mode) ===
172
173
174 LSE01 will uplink payload via LoRaWAN with below payload format: 
175
176 (((
177 Uplink payload includes in total 11 bytes.
178 )))
179
180 (% border="1" cellspacing="5" style="background-color:#ffffcc; width:500px" %)
181 |=(% scope="row" %)(((
182 **Size(bytes)**
183 )))|**2**|**2**|**2**|**2**|**2**|**1**
184 |=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 Temperature
186 (Reserve, Ignore now)
187 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
188 MOD & Digital Interrupt(Optional)
189 )))
190
191
192
193 === 2.3.2 MOD~=1(Original value) ===
194
195
196 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
197
198 (% border="1" cellspacing="5" style="background-color:#ffffcc; width:500px" %)
199 |=(% scope="row" %)(((
200 **Size(bytes)**
201 )))|**2**|**2**|**2**|**2**|**2**|**1**
202 |=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 Temperature
204 (Reserve, Ignore now)
205 )))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Dielectric constant>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
206 MOD & Digital Interrupt(Optional)
207 )))
208
209
210
211 === 2.3.3 Battery Info ===
212
213
214 (((
215 Check the battery voltage for LSE01.
216 )))
217
218 (((
219 Ex1: 0x0B45 = 2885mV
220 )))
221
222 (((
223 Ex2: 0x0B49 = 2889mV
224 )))
225
226
227 === 2.3.4 Soil Moisture ===
228
229
230 (((
231 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 )))
233
234 (((
235 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 )))
237
238 (((
239
240 )))
241
242 (((
243 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 )))
245
246
247 === 2.3.5 Soil Temperature ===
248
249
250 (((
251 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 )))
253
254 (((
255 **Example**:
256 )))
257
258 (((
259 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
260 )))
261
262 (((
263 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 )))
265
266
267 === 2.3.6 Soil Conductivity (EC) ===
268
269
270 (((
271 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
272 )))
273
274 (((
275 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 )))
277
278 (((
279 Generally, the EC value of irrigation water is less than 800uS / cm.
280 )))
281
282 (((
283
284 )))
285
286 === 2.3.7 MOD ===
287
288
289 Firmware version at least v2.1 supports changing mode.
290
291 For example, bytes[10]=90
292
293 mod=(bytes[10]>>7)&0x01=1.
294
295
296 **Downlink Command:**
297
298 If payload = 0x0A00, workmode=0
299
300 If** **payload =** **0x0A01, workmode=1
301
302
303 === 2.3.8 ​Decode payload in The Things Network ===
304
305
306 While using TTN network, you can add the payload format to decode the payload.
307
308
309 [[image:1654505570700-128.png]]
310
311 (((
312 The payload decoder function for TTN is here:
313 )))
314
315 (((
316 LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
317 )))
318
319
320 == 2.4 Uplink Interval ==
321
322
323 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
324
325
326 == 2.5 Downlink Payload ==
327
328
329 By default, LSE01 prints the downlink payload to console port.
330
331 [[image:image-20220606165544-8.png]]
332
333
334 (((
335 (% style="color:blue" %)**Examples:**
336 )))
337
338 (((
339
340 )))
341
342 * (((
343 (% style="color:blue" %)**Set TDC**
344 )))
345
346 (((
347 If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
348 )))
349
350 (((
351 Payload:    01 00 00 1E    TDC=30S
352 )))
353
354 (((
355 Payload:    01 00 00 3C    TDC=60S
356 )))
357
358 (((
359
360 )))
361
362 * (((
363 (% style="color:blue" %)**Reset**
364 )))
365
366 (((
367 If payload = 0x04FF, it will reset the LSE01
368 )))
369
370
371 * (% style="color:blue" %)**CFM**
372
373 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
374
375
376 == 2.6 ​Show Data in DataCake IoT Server ==
377
378
379 (((
380 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
381 )))
382
383 (((
384
385 )))
386
387 (((
388 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
389 )))
390
391 (((
392 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
393 )))
394
395
396 [[image:1654505857935-743.png]]
397
398
399 [[image:1654505874829-548.png]]
400
401
402 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
403
404 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
405
406
407 [[image:1654505905236-553.png]]
408
409
410 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
411
412 [[image:1654505925508-181.png]]
413
414
415 == 2.7 Frequency Plans ==
416
417
418 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
419
420
421 === 2.7.1 EU863-870 (EU868) ===
422
423
424 (% style="color:#037691" %)** Uplink:**
425
426 868.1 - SF7BW125 to SF12BW125
427
428 868.3 - SF7BW125 to SF12BW125 and SF7BW250
429
430 868.5 - SF7BW125 to SF12BW125
431
432 867.1 - SF7BW125 to SF12BW125
433
434 867.3 - SF7BW125 to SF12BW125
435
436 867.5 - SF7BW125 to SF12BW125
437
438 867.7 - SF7BW125 to SF12BW125
439
440 867.9 - SF7BW125 to SF12BW125
441
442 868.8 - FSK
443
444
445 (% style="color:#037691" %)** Downlink:**
446
447 Uplink channels 1-9 (RX1)
448
449 869.525 - SF9BW125 (RX2 downlink only)
450
451
452 === 2.7.2 US902-928(US915) ===
453
454
455 Used in USA, Canada and South America. Default use CHE=2
456
457 (% style="color:#037691" %)**Uplink:**
458
459 903.9 - SF7BW125 to SF10BW125
460
461 904.1 - SF7BW125 to SF10BW125
462
463 904.3 - SF7BW125 to SF10BW125
464
465 904.5 - SF7BW125 to SF10BW125
466
467 904.7 - SF7BW125 to SF10BW125
468
469 904.9 - SF7BW125 to SF10BW125
470
471 905.1 - SF7BW125 to SF10BW125
472
473 905.3 - SF7BW125 to SF10BW125
474
475
476 (% style="color:#037691" %)**Downlink:**
477
478 923.3 - SF7BW500 to SF12BW500
479
480 923.9 - SF7BW500 to SF12BW500
481
482 924.5 - SF7BW500 to SF12BW500
483
484 925.1 - SF7BW500 to SF12BW500
485
486 925.7 - SF7BW500 to SF12BW500
487
488 926.3 - SF7BW500 to SF12BW500
489
490 926.9 - SF7BW500 to SF12BW500
491
492 927.5 - SF7BW500 to SF12BW500
493
494 923.3 - SF12BW500(RX2 downlink only)
495
496
497 === 2.7.3 CN470-510 (CN470) ===
498
499
500 Used in China, Default use CHE=1
501
502 (% style="color:#037691" %)**Uplink:**
503
504 486.3 - SF7BW125 to SF12BW125
505
506 486.5 - SF7BW125 to SF12BW125
507
508 486.7 - SF7BW125 to SF12BW125
509
510 486.9 - SF7BW125 to SF12BW125
511
512 487.1 - SF7BW125 to SF12BW125
513
514 487.3 - SF7BW125 to SF12BW125
515
516 487.5 - SF7BW125 to SF12BW125
517
518 487.7 - SF7BW125 to SF12BW125
519
520
521 (% style="color:#037691" %)**Downlink:**
522
523 506.7 - SF7BW125 to SF12BW125
524
525 506.9 - SF7BW125 to SF12BW125
526
527 507.1 - SF7BW125 to SF12BW125
528
529 507.3 - SF7BW125 to SF12BW125
530
531 507.5 - SF7BW125 to SF12BW125
532
533 507.7 - SF7BW125 to SF12BW125
534
535 507.9 - SF7BW125 to SF12BW125
536
537 508.1 - SF7BW125 to SF12BW125
538
539 505.3 - SF12BW125 (RX2 downlink only)
540
541
542 === 2.7.4 AU915-928(AU915) ===
543
544
545 Default use CHE=2
546
547 (% style="color:#037691" %)**Uplink:**
548
549 916.8 - SF7BW125 to SF12BW125
550
551 917.0 - SF7BW125 to SF12BW125
552
553 917.2 - SF7BW125 to SF12BW125
554
555 917.4 - SF7BW125 to SF12BW125
556
557 917.6 - SF7BW125 to SF12BW125
558
559 917.8 - SF7BW125 to SF12BW125
560
561 918.0 - SF7BW125 to SF12BW125
562
563 918.2 - SF7BW125 to SF12BW125
564
565
566 (% style="color:#037691" %)**Downlink:**
567
568 923.3 - SF7BW500 to SF12BW500
569
570 923.9 - SF7BW500 to SF12BW500
571
572 924.5 - SF7BW500 to SF12BW500
573
574 925.1 - SF7BW500 to SF12BW500
575
576 925.7 - SF7BW500 to SF12BW500
577
578 926.3 - SF7BW500 to SF12BW500
579
580 926.9 - SF7BW500 to SF12BW500
581
582 927.5 - SF7BW500 to SF12BW500
583
584 923.3 - SF12BW500(RX2 downlink only)
585
586
587 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
588
589
590 (% style="color:#037691" %)**Default Uplink channel:**
591
592 923.2 - SF7BW125 to SF10BW125
593
594 923.4 - SF7BW125 to SF10BW125
595
596
597 (% style="color:#037691" %)**Additional Uplink Channel**:
598
599 (OTAA mode, channel added by JoinAccept message)
600
601 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
602
603 922.2 - SF7BW125 to SF10BW125
604
605 922.4 - SF7BW125 to SF10BW125
606
607 922.6 - SF7BW125 to SF10BW125
608
609 922.8 - SF7BW125 to SF10BW125
610
611 923.0 - SF7BW125 to SF10BW125
612
613 922.0 - SF7BW125 to SF10BW125
614
615
616 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
617
618 923.6 - SF7BW125 to SF10BW125
619
620 923.8 - SF7BW125 to SF10BW125
621
622 924.0 - SF7BW125 to SF10BW125
623
624 924.2 - SF7BW125 to SF10BW125
625
626 924.4 - SF7BW125 to SF10BW125
627
628 924.6 - SF7BW125 to SF10BW125
629
630
631 (% style="color:#037691" %)** Downlink:**
632
633 Uplink channels 1-8 (RX1)
634
635 923.2 - SF10BW125 (RX2)
636
637
638 === 2.7.6 KR920-923 (KR920) ===
639
640
641 Default channel:
642
643 922.1 - SF7BW125 to SF12BW125
644
645 922.3 - SF7BW125 to SF12BW125
646
647 922.5 - SF7BW125 to SF12BW125
648
649
650 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
651
652 922.1 - SF7BW125 to SF12BW125
653
654 922.3 - SF7BW125 to SF12BW125
655
656 922.5 - SF7BW125 to SF12BW125
657
658 922.7 - SF7BW125 to SF12BW125
659
660 922.9 - SF7BW125 to SF12BW125
661
662 923.1 - SF7BW125 to SF12BW125
663
664 923.3 - SF7BW125 to SF12BW125
665
666
667 (% style="color:#037691" %)**Downlink:**
668
669 Uplink channels 1-7(RX1)
670
671 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
672
673
674 === 2.7.7 IN865-867 (IN865) ===
675
676
677 (% style="color:#037691" %)** Uplink:**
678
679 865.0625 - SF7BW125 to SF12BW125
680
681 865.4025 - SF7BW125 to SF12BW125
682
683 865.9850 - SF7BW125 to SF12BW125
684
685
686 (% style="color:#037691" %) **Downlink:**
687
688 Uplink channels 1-3 (RX1)
689
690 866.550 - SF10BW125 (RX2)
691
692
693 == 2.8 LED Indicator ==
694
695
696 The LSE01 has an internal LED which is to show the status of different state.
697
698 * Blink once when device power on.
699 * Solid ON for 5 seconds once device successful Join the network.
700 * Blink once when device transmit a packet.
701
702
703
704 == 2.9 Installation in Soil ==
705
706
707 **Measurement the soil surface**
708
709
710 [[image:1654506634463-199.png]] ​
711
712
713 (((
714 (((
715 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
716 )))
717 )))
718
719
720
721 [[image:1654506665940-119.png]]
722
723
724 (((
725 Dig a hole with diameter > 20CM.
726 )))
727
728 (((
729 Horizontal insert the probe to the soil and fill the hole for long term measurement.
730 )))
731
732
733 == 2.10 ​Firmware Change Log ==
734
735
736 (((
737 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0>>https://www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0]]
738 )))
739
740 (((
741 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
742 )))
743
744 (((
745
746 )))
747
748 (((
749 **V1.0.**
750 )))
751
752 (((
753 Release
754 )))
755
756
757 == 2.11 ​Battery Analysis ==
758
759 === 2.11.1 ​Battery Type ===
760
761
762 (((
763 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
764 )))
765
766 (((
767 The battery is designed to last for more than 5 years for the LSN50.
768 )))
769
770 (((
771 (((
772 The battery-related documents are as below:
773 )))
774 )))
775
776 * (((
777 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
778 )))
779 * (((
780 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
781 )))
782 * (((
783 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
784 )))
785
786 [[image:image-20220610172436-1.png]]
787
788
789 === 2.11.2 ​Battery Note ===
790
791
792 (((
793 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
794 )))
795
796
797 === 2.11.3 Replace the battery ===
798
799
800 (((
801 If Battery is lower than 2.7v, user should replace the battery of LSE01.
802 )))
803
804 (((
805 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
806 )))
807
808 (((
809 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
810 )))
811
812
813 = 3. ​Using the AT Commands =
814
815 == 3.1 Access AT Commands ==
816
817
818 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
819
820
821 [[image:1654501986557-872.png||height="391" width="800"]]
822
823
824 Or if you have below board, use below connection:
825
826
827 [[image:1654502005655-729.png||height="503" width="801"]]
828
829
830 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
831
832
833 [[image:1654502050864-459.png||height="564" width="806"]]
834
835
836 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]].
837
838
839 (% style="background-color:#dcdcdc" %)**AT+<CMD>? **(%%) : Help on <CMD>
840
841 (% style="background-color:#dcdcdc" %)**AT+<CMD> **(%%) : Run <CMD>
842
843 (% style="background-color:#dcdcdc" %)**AT+<CMD>=<value>**(%%)  : Set the value
844
845 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?**(%%)  : Get the value
846
847
848 (% style="color:#037691" %)**General Commands**(%%)      
849
850 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
851
852 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
853
854 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
855
856 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
857
858
859 (% style="color:#037691" %)**Keys, IDs and EUIs management**
860
861 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
862
863 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
864
865 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
866
867 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
868
869 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
870
871 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
872
873 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
874
875 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
876
877 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
878
879 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
880
881 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
882
883 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
884
885 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
886
887 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
888
889 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
890
891 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
892
893
894 (% style="color:#037691" %)**LoRa Network Management**
895
896 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
897
898 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
899
900 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
901
902 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
903
904 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
905
906 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
907
908 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
909
910 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
911
912 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
913
914 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
915
916 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
917
918 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
919
920 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
921
922 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
923
924 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
925
926
927 (% style="color:#037691" %)**Information** 
928
929 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
930
931 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
932
933 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
934
935 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
936
937 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
938
939 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
940
941 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
942
943
944 = ​4. FAQ =
945
946 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
947
948
949 (((
950 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
951 When downloading the images, choose the required image file for download. ​
952 )))
953
954 (((
955
956 )))
957
958 (((
959 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
960 )))
961
962 (((
963
964 )))
965
966 (((
967 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
968 )))
969
970 (((
971
972 )))
973
974 (((
975 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
976 )))
977
978 [[image:image-20220606154726-3.png]]
979
980
981 When you use the TTN network, the US915 frequency bands use are:
982
983 * 903.9 - SF7BW125 to SF10BW125
984 * 904.1 - SF7BW125 to SF10BW125
985 * 904.3 - SF7BW125 to SF10BW125
986 * 904.5 - SF7BW125 to SF10BW125
987 * 904.7 - SF7BW125 to SF10BW125
988 * 904.9 - SF7BW125 to SF10BW125
989 * 905.1 - SF7BW125 to SF10BW125
990 * 905.3 - SF7BW125 to SF10BW125
991 * 904.6 - SF8BW500
992
993 (((
994 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
995
996 * (% style="color:#037691" %)**AT+CHE=2**
997 * (% style="color:#037691" %)**ATZ**
998 )))
999
1000 (((
1001
1002
1003 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1004 )))
1005
1006 (((
1007
1008 )))
1009
1010 (((
1011 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1012 )))
1013
1014 [[image:image-20220606154825-4.png]]
1015
1016
1017 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1018
1019
1020 (((
1021 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1022 )))
1023
1024
1025 = 5. Trouble Shooting =
1026
1027 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028
1029
1030 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1031
1032
1033 == 5.2 AT Command input doesn't work ==
1034
1035
1036 (((
1037 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1038 )))
1039
1040
1041 == 5.3 Device rejoin in at the second uplink packet ==
1042
1043
1044 (% style="color:#4f81bd" %)**Issue describe as below:**
1045
1046 [[image:1654500909990-784.png]]
1047
1048
1049 (% style="color:#4f81bd" %)**Cause for this issue:**
1050
1051 (((
1052 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1053 )))
1054
1055
1056 (% style="color:#4f81bd" %)**Solution: **
1057
1058 (((
1059 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1060 )))
1061
1062 [[image:1654500929571-736.png||height="458" width="832"]]
1063
1064
1065 = 6. ​Order Info =
1066
1067
1068 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1069
1070
1071 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1072
1073 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1074 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1075 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1076 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1077 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1078 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1079 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1080 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1081
1082 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1083
1084 * (% style="color:red" %)**4**(%%): 4000mAh battery
1085 * (% style="color:red" %)**8**(%%): 8500mAh battery
1086
1087 (% class="wikigeneratedid" %)
1088 (((
1089
1090
1091
1092 )))
1093
1094 = 7. Packing Info =
1095
1096 (((
1097
1098
1099 (% style="color:#037691" %)**Package Includes**:
1100 )))
1101
1102 * (((
1103 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1104 )))
1105
1106 (((
1107
1108
1109 (% style="color:#037691" %)**Dimension and weight**:
1110 )))
1111
1112 * (((
1113 Device Size: cm
1114 )))
1115 * (((
1116 Device Weight: g
1117 )))
1118 * (((
1119 Package Size / pcs : cm
1120 )))
1121 * (((
1122 Weight / pcs : g
1123
1124
1125
1126 )))
1127
1128 = 8. Support =
1129
1130
1131 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1132 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1133
1134
1135