Last modified by Mengting Qiu on 2025/07/07 15:27

From version 61.1
edited by Mengting Qiu
on 2025/07/07 15:27
Change comment: There is no comment for this version
To version 42.4
edited by Xiaoling
on 2022/08/18 15:00
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -1,4 +1,5 @@
1 -[[image:image-20220606151504-2.jpeg||data-xwiki-image-style-alignment="center" height="554" width="554"]]
1 +(% style="text-align:center" %)
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 2  
3 3  
4 4  
... ... @@ -23,13 +23,14 @@
23 23  
24 24  == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 25  
26 -
27 27  (((
28 -The Dragino LSE01 is a (% style="color:blue" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
28 +
29 +
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
29 29  )))
30 30  
31 31  (((
32 -It detects (% style="color:blue" %)**Soil Moisture**(%%), (% style="color:blue" %)**Soil Temperature**(%%) and (% style="color:blue" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
33 33  )))
34 34  
35 35  (((
... ... @@ -37,7 +37,7 @@
37 37  )))
38 38  
39 39  (((
40 -LES01 is powered by (% style="color:blue" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
41 41  )))
42 42  
43 43  (((
... ... @@ -51,6 +51,7 @@
51 51  [[image:1654503265560-120.png]]
52 52  
53 53  
56 +
54 54  == 1.2 ​Features ==
55 55  
56 56  
... ... @@ -66,59 +66,40 @@
66 66  * IP66 Waterproof Enclosure
67 67  * 4000mAh or 8500mAh Battery for long term use
68 68  
69 -== 1.3 Specification ==
70 70  
71 71  
72 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 73  
74 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
75 -|(% style="background-color:#4f81bd; color:white; width:94px" %)**Parameter**|(% style="background-color:#4f81bd; color:white; width:145px" %)**Soil Moisture**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Conductivity**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Temperature**
76 -|(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)(((
77 -0-20000uS/cm
78 -(25℃)(0-20.0EC)
79 -)))|(% style="width:140px" %)-40.00℃~85.00℃
80 -|(% style="width:95px" %)Unit|(% style="width:146px" %)V/V %|(% style="width:137px" %)uS/cm|(% style="width:140px" %)℃
81 -|(% style="width:95px" %)Resolution|(% style="width:146px" %)0.01%|(% style="width:137px" %)1 uS/cm|(% style="width:140px" %)0.01℃
82 -|(% style="width:95px" %)Accuracy|(% style="width:146px" %)(((
83 -±3% (0-53%)
84 -±5% (>53%)
85 -)))|(% style="width:137px" %)2%FS|(% style="width:140px" %)(((
86 --10℃~50℃:<0.3℃
87 -All other: <0.6℃
88 -)))
89 -|(% style="width:95px" %)(((
90 -Measure
91 -Method
92 -)))|(% style="width:146px" %)FDR , with temperature &EC compensate|(% style="width:137px" %)Conductivity , with temperature compensate|(% style="width:140px" %)RTD, and calibrate
93 93  
94 -== 1.4 Dimension ==
76 +== 1.3 Specification ==
95 95  
96 96  
97 -(% style="color:blue" %)**Main Device Dimension:**
79 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
98 98  
99 -See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
81 +[[image:image-20220606162220-5.png]]
100 100  
101 -[[image:image-20221008140228-2.png||height="358" width="571"]]
102 102  
103 103  
104 -(% style="color:blue" %)**Probe Dimension**
85 +== ​1.4 Applications ==
105 105  
106 -[[image:image-20221008135912-1.png]]
107 107  
88 +* Smart Agriculture
108 108  
109 -== ​1.5 Applications ==
90 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
91 +​
110 110  
111 111  
112 -* Smart Agriculture​
113 113  
114 -== 1.6 Firmware Change log ==
115 115  
96 +== 1.5 Firmware Change log ==
116 116  
98 +
117 117  **LSE01 v1.0 :**  Release
118 118  
119 119  
102 +
120 120  = 2. Configure LSE01 to connect to LoRaWAN network =
121 121  
105 +
122 122  == 2.1 How it works ==
123 123  
124 124  
... ... @@ -131,6 +131,7 @@
131 131  )))
132 132  
133 133  
118 +
134 134  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
135 135  
136 136  
... ... @@ -147,66 +147,44 @@
147 147  
148 148  Each LSE01 is shipped with a sticker with the default device EUI as below:
149 149  
150 -[[image:image-20230426084640-1.png||height="201" width="433"]]
135 +[[image:image-20220606163732-6.jpeg]]
151 151  
152 152  
153 153  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
154 154  
155 -**Create the application.**
140 +**Add APP EUI in the application**
156 156  
157 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
158 158  
159 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
143 +[[image:1654504596150-405.png]]
160 160  
161 161  
162 -**Add devices to the created Application.**
163 163  
164 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
147 +**Add APP KEY and DEV EUI**
165 165  
166 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
149 +[[image:1654504683289-357.png]]
167 167  
168 168  
169 -**Enter end device specifics manually.**
170 170  
171 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
153 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
172 172  
173 -**Add DevEUI and AppKey.**
174 174  
175 -**Customize a platform ID for the device.**
176 -
177 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
178 -
179 -
180 -(% style="color:blue" %)**Step 2**(%%):** Add decoder.**
181 -
182 -In TTN, user can add a custom payload so it shows friendly reading.
183 -
184 -Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
185 -
186 -Below is TTN screen shot:
187 -
188 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
189 -
190 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png"]]
191 -
192 -
193 -(% style="color:blue" %)**Step 3**(%%): Power on LSE01
194 -
195 195  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
196 196  
197 197  [[image:image-20220606163915-7.png]]
198 198  
199 199  
200 -The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
161 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
201 201  
202 202  [[image:1654504778294-788.png]]
203 203  
204 204  
166 +
205 205  == 2.3 Uplink Payload ==
206 206  
207 -=== 2.3.1 MOD~=0(Default Mode)(% style="display:none" %) (%%) ===
208 208  
170 +=== 2.3.1 MOD~=0(Default Mode) ===
209 209  
172 +
210 210  LSE01 will uplink payload via LoRaWAN with below payload format: 
211 211  
212 212  (((
... ... @@ -213,29 +213,51 @@
213 213  Uplink payload includes in total 11 bytes.
214 214  )))
215 215  
216 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
217 -|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
218 -|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
179 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
180 +|(((
181 +**Size**
182 +
183 +**(bytes)**
184 +)))|**2**|**2**|**2**|**2**|**2**|**1**
185 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
219 219  Temperature
187 +
220 220  (Reserve, Ignore now)
221 221  )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
222 -MOD & Digital Interrupt(Optional)
190 +MOD & Digital Interrupt
191 +
192 +(Optional)
223 223  )))
224 224  
195 +
196 +
197 +
198 +
225 225  === 2.3.2 MOD~=1(Original value) ===
226 226  
227 227  
228 228  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
229 229  
230 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
231 -|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
232 -|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
207 +
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
233 233  Temperature
212 +
234 234  (Reserve, Ignore now)
235 -)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|Dielectric constant(raw)|(((
236 -MOD & Digital Interrupt(Optional)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
216 +
217 +(Optional)
237 237  )))
238 238  
220 +
221 +
222 +
223 +
239 239  === 2.3.3 Battery Info ===
240 240  
241 241  
... ... @@ -252,6 +252,7 @@
252 252  )))
253 253  
254 254  
240 +
255 255  === 2.3.4 Soil Moisture ===
256 256  
257 257  
... ... @@ -260,15 +260,24 @@
260 260  )))
261 261  
262 262  (((
263 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is (% style="color:blue" %)**05DC(H) = 1500(D) /100 = 15%.**
249 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
264 264  )))
265 265  
252 +(((
253 +
254 +)))
266 266  
256 +(((
257 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
258 +)))
259 +
260 +
261 +
267 267  === 2.3.5 Soil Temperature ===
268 268  
269 269  
270 270  (((
271 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
266 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
272 272  )))
273 273  
274 274  (((
... ... @@ -284,6 +284,7 @@
284 284  )))
285 285  
286 286  
282 +
287 287  === 2.3.6 Soil Conductivity (EC) ===
288 288  
289 289  
... ... @@ -303,10 +303,14 @@
303 303  
304 304  )))
305 305  
302 +(((
303 +
304 +)))
305 +
306 306  === 2.3.7 MOD ===
307 307  
308 308  
309 -Firmware version at least v1.2.1 supports changing mode.
309 +Firmware version at least v2.1 supports changing mode.
310 310  
311 311  For example, bytes[10]=90
312 312  
... ... @@ -313,7 +313,7 @@
313 313  mod=(bytes[10]>>7)&0x01=1.
314 314  
315 315  
316 -(% style="color:blue" %)**Downlink Command:**
316 +**Downlink Command:**
317 317  
318 318  If payload = 0x0A00, workmode=0
319 319  
... ... @@ -320,6 +320,7 @@
320 320  If** **payload =** **0x0A01, workmode=1
321 321  
322 322  
323 +
323 323  === 2.3.8 ​Decode payload in The Things Network ===
324 324  
325 325  
... ... @@ -333,11 +333,11 @@
333 333  )))
334 334  
335 335  (((
336 -LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt]]
337 -
338 -
337 +LSE01 TTN Payload Decoder:  [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
339 339  )))
340 340  
340 +
341 +
341 341  == 2.4 Uplink Interval ==
342 342  
343 343  
... ... @@ -344,23 +344,22 @@
344 344  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
345 345  
346 346  
348 +
347 347  == 2.5 Downlink Payload ==
348 348  
349 -
350 350  By default, LSE01 prints the downlink payload to console port.
351 351  
352 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
353 -|=(% style="width: 183px; background-color:#4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)**
354 -|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
355 -|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
356 -|(% style="width:183px" %)AT+CFM|(% style="width:55px" %)Any|(% style="width:93px" %)05|(% style="width:146px" %)4
357 -|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
358 -|(% style="width:183px" %)MOD|(% style="width:55px" %)Any|(% style="width:93px" %)0A|(% style="width:146px" %)2
353 +[[image:image-20220606165544-8.png]]
359 359  
355 +
360 360  (((
361 361  (% style="color:blue" %)**Examples:**
362 362  )))
363 363  
360 +(((
361 +
362 +)))
363 +
364 364  * (((
365 365  (% style="color:blue" %)**Set TDC**
366 366  )))
... ... @@ -390,16 +390,14 @@
390 390  )))
391 391  
392 392  
393 -
394 -
395 395  * (% style="color:blue" %)**CFM**
396 396  
397 397  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
398 398  
399 399  
398 +
400 400  == 2.6 ​Show Data in DataCake IoT Server ==
401 401  
402 -
403 403  (((
404 404  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
405 405  )))
... ... @@ -436,15 +436,14 @@
436 436  [[image:1654505925508-181.png]]
437 437  
438 438  
437 +
439 439  == 2.7 Frequency Plans ==
440 440  
441 -
442 442  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
443 443  
444 444  
445 445  === 2.7.1 EU863-870 (EU868) ===
446 446  
447 -
448 448  (% style="color:#037691" %)** Uplink:**
449 449  
450 450  868.1 - SF7BW125 to SF12BW125
... ... @@ -473,9 +473,9 @@
473 473  869.525 - SF9BW125 (RX2 downlink only)
474 474  
475 475  
473 +
476 476  === 2.7.2 US902-928(US915) ===
477 477  
478 -
479 479  Used in USA, Canada and South America. Default use CHE=2
480 480  
481 481  (% style="color:#037691" %)**Uplink:**
... ... @@ -518,9 +518,9 @@
518 518  923.3 - SF12BW500(RX2 downlink only)
519 519  
520 520  
518 +
521 521  === 2.7.3 CN470-510 (CN470) ===
522 522  
523 -
524 524  Used in China, Default use CHE=1
525 525  
526 526  (% style="color:#037691" %)**Uplink:**
... ... @@ -563,9 +563,9 @@
563 563  505.3 - SF12BW125 (RX2 downlink only)
564 564  
565 565  
563 +
566 566  === 2.7.4 AU915-928(AU915) ===
567 567  
568 -
569 569  Default use CHE=2
570 570  
571 571  (% style="color:#037691" %)**Uplink:**
... ... @@ -608,9 +608,9 @@
608 608  923.3 - SF12BW500(RX2 downlink only)
609 609  
610 610  
608 +
611 611  === 2.7.5 AS920-923 & AS923-925 (AS923) ===
612 612  
613 -
614 614  (% style="color:#037691" %)**Default Uplink channel:**
615 615  
616 616  923.2 - SF7BW125 to SF10BW125
... ... @@ -659,9 +659,9 @@
659 659  923.2 - SF10BW125 (RX2)
660 660  
661 661  
659 +
662 662  === 2.7.6 KR920-923 (KR920) ===
663 663  
664 -
665 665  Default channel:
666 666  
667 667  922.1 - SF7BW125 to SF12BW125
... ... @@ -695,9 +695,9 @@
695 695  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
696 696  
697 697  
695 +
698 698  === 2.7.7 IN865-867 (IN865) ===
699 699  
700 -
701 701  (% style="color:#037691" %)** Uplink:**
702 702  
703 703  865.0625 - SF7BW125 to SF12BW125
... ... @@ -714,9 +714,10 @@
714 714  866.550 - SF10BW125 (RX2)
715 715  
716 716  
717 -== 2.8 LED Indicator ==
718 718  
719 719  
716 +== 2.8 LED Indicator ==
717 +
720 720  The LSE01 has an internal LED which is to show the status of different state.
721 721  
722 722  * Blink once when device power on.
... ... @@ -723,11 +723,12 @@
723 723  * Solid ON for 5 seconds once device successful Join the network.
724 724  * Blink once when device transmit a packet.
725 725  
724 +
726 726  == 2.9 Installation in Soil ==
727 727  
728 -
729 729  **Measurement the soil surface**
730 730  
729 +
731 731  [[image:1654506634463-199.png]] ​
732 732  
733 733  (((
... ... @@ -737,6 +737,7 @@
737 737  )))
738 738  
739 739  
739 +
740 740  [[image:1654506665940-119.png]]
741 741  
742 742  (((
... ... @@ -750,12 +750,19 @@
750 750  
751 751  == 2.10 ​Firmware Change Log ==
752 752  
753 +(((
754 +**Firmware download link:**
755 +)))
753 753  
754 754  (((
755 -**Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0>>https://www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0]]
758 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
756 756  )))
757 757  
758 758  (((
762 +
763 +)))
764 +
765 +(((
759 759  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
760 760  )))
761 761  
... ... @@ -772,14 +772,62 @@
772 772  )))
773 773  
774 774  
775 -== 2.11 Battery & Power Consumption ==
782 +== 2.11 Battery Analysis ==
776 776  
784 +=== 2.11.1 ​Battery Type ===
777 777  
778 -LSE01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
786 +(((
787 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
788 +)))
779 779  
780 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
790 +(((
791 +The battery is designed to last for more than 5 years for the LSN50.
792 +)))
781 781  
794 +(((
795 +(((
796 +The battery-related documents are as below:
797 +)))
798 +)))
782 782  
800 +* (((
801 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
802 +)))
803 +* (((
804 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
805 +)))
806 +* (((
807 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
808 +)))
809 +
810 + [[image:image-20220610172436-1.png]]
811 +
812 +
813 +
814 +=== 2.11.2 ​Battery Note ===
815 +
816 +(((
817 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
818 +)))
819 +
820 +
821 +
822 +=== 2.11.3 Replace the battery ===
823 +
824 +(((
825 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
826 +)))
827 +
828 +(((
829 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
830 +)))
831 +
832 +(((
833 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
834 +)))
835 +
836 +
837 +
783 783  = 3. ​Using the AT Commands =
784 784  
785 785  == 3.1 Access AT Commands ==
... ... @@ -787,16 +787,16 @@
787 787  
788 788  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
789 789  
845 +[[image:1654501986557-872.png||height="391" width="800"]]
790 790  
791 -[[image:image-20231111095033-3.png||height="591" width="855"]]
792 792  
793 -
794 794  Or if you have below board, use below connection:
795 795  
796 796  
797 -[[image:image-20231109094023-1.png]]
851 +[[image:1654502005655-729.png||height="503" width="801"]]
798 798  
799 799  
854 +
800 800  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
801 801  
802 802  
... ... @@ -803,7 +803,7 @@
803 803   [[image:1654502050864-459.png||height="564" width="806"]]
804 804  
805 805  
806 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]].
861 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
807 807  
808 808  
809 809  (% style="background-color:#dcdcdc" %)**AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -915,7 +915,6 @@
915 915  
916 916  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
917 917  
918 -
919 919  (((
920 920  You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
921 921  When downloading the images, choose the required image file for download. ​
... ... @@ -922,10 +922,18 @@
922 922  )))
923 923  
924 924  (((
979 +
980 +)))
981 +
982 +(((
925 925  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
926 926  )))
927 927  
928 928  (((
987 +
988 +)))
989 +
990 +(((
929 929  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
930 930  )))
931 931  
... ... @@ -935,23 +935,11 @@
935 935  
936 936  (((
937 937  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
938 -
939 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
940 -|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
941 -|(% style="width:47px" %)0|(% colspan="9" style="width:542px" %)ENABLE Channel 0-63
942 -|(% style="width:47px" %)1|(% style="width:54px" %)902.3|(% style="width:53px" %)902.5|(% style="width:55px" %)902.7|(% style="width:53px" %)902.9|(% style="width:49px" %)903.1|(% style="width:52px" %)903.3|(% style="width:51px" %)903.5|(% style="width:51px" %)903.7|(% style="width:115px" %)Channel 0-7
943 -|(% style="width:47px" %)2|(% style="width:54px" %)903.9|(% style="width:53px" %)904.1|(% style="width:55px" %)904.3|(% style="width:53px" %)904.5|(% style="width:49px" %)904.7|(% style="width:52px" %)904.9|(% style="width:51px" %)905.1|(% style="width:51px" %)905.3|(% style="width:115px" %)Channel 8-15
944 -|(% style="width:47px" %)3|(% style="width:54px" %)905.5|(% style="width:53px" %)905.7|(% style="width:55px" %)905.9|(% style="width:53px" %)906.1|(% style="width:49px" %)906.3|(% style="width:52px" %)906.5|(% style="width:51px" %)906.7|(% style="width:51px" %)906.9|(% style="width:115px" %)Channel 16-23
945 -|(% style="width:47px" %)4|(% style="width:54px" %)907.1|(% style="width:53px" %)907.3|(% style="width:55px" %)907.5|(% style="width:53px" %)907.7|(% style="width:49px" %)907.9|(% style="width:52px" %)908.1|(% style="width:51px" %)908.3|(% style="width:51px" %)908.5|(% style="width:115px" %)Channel 24-31
946 -|(% style="width:47px" %)5|(% style="width:54px" %)908.7|(% style="width:53px" %)908.9|(% style="width:55px" %)909.1|(% style="width:53px" %)909.3|(% style="width:49px" %)909.5|(% style="width:52px" %)909.7|(% style="width:51px" %)909.9|(% style="width:51px" %)910.1|(% style="width:115px" %)Channel 32-39
947 -|(% style="width:47px" %)6|(% style="width:54px" %)910.3|(% style="width:53px" %)910.5|(% style="width:55px" %)910.7|(% style="width:53px" %)910.9|(% style="width:49px" %)911.1|(% style="width:52px" %)911.3|(% style="width:51px" %)911.5|(% style="width:51px" %)911.7|(% style="width:115px" %)Channel 40-47
948 -|(% style="width:47px" %)7|(% style="width:54px" %)911.9|(% style="width:53px" %)912.1|(% style="width:55px" %)912.3|(% style="width:53px" %)912.5|(% style="width:49px" %)912.7|(% style="width:52px" %)912.9|(% style="width:51px" %)913.1|(% style="width:51px" %)913.3|(% style="width:115px" %)Channel 48-55
949 -|(% style="width:47px" %)8|(% style="width:54px" %)913.5|(% style="width:53px" %)913.7|(% style="width:55px" %)913.9|(% style="width:53px" %)914.1|(% style="width:49px" %)914.3|(% style="width:52px" %)914.5|(% style="width:51px" %)914.7|(% style="width:51px" %)914.9|(% style="width:115px" %)Channel 56-63
950 -|(% colspan="10" style="background-color:#4f81bd; color:white; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
951 -|(% style="width:47px" %) |(% style="width:54px" %)903|(% style="width:53px" %)904.6|(% style="width:55px" %)906.2|(% style="width:53px" %)907.8|(% style="width:49px" %)909.4|(% style="width:52px" %)911|(% style="width:51px" %)912.6|(% style="width:51px" %)914.2|(% style="width:115px" %)Channel 64-71
952 952  )))
953 953  
1002 +[[image:image-20220606154726-3.png]]
954 954  
1004 +
955 955  When you use the TTN network, the US915 frequency bands use are:
956 956  
957 957  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -983,45 +983,25 @@
983 983  
984 984  (((
985 985  The **AU915** band is similar. Below are the AU915 Uplink Channels.
986 -
987 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
988 -|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
989 -|(% style="width:45px" %)0|(% colspan="9" style="width:540px" %)ENABLE Channel 0-63
990 -|(% style="width:45px" %)1|(% style="width:51px" %)915.2|(% style="width:51px" %)915.4|(% style="width:51px" %)915.6|(% style="width:52px" %)915.8|(% style="width:51px" %)916|(% style="width:51px" %)916.2|(% style="width:53px" %)916.4|(% style="width:51px" %)916.6|(% style="width:115px" %)Channel 0-7
991 -|(% style="width:45px" %)2|(% style="width:51px" %)916.8|(% style="width:51px" %)917|(% style="width:51px" %)917.2|(% style="width:52px" %)917.4|(% style="width:51px" %)917.6|(% style="width:51px" %)917.8|(% style="width:53px" %)918|(% style="width:51px" %)918.2|(% style="width:115px" %)Channel 8-15
992 -|(% style="width:45px" %)3|(% style="width:51px" %)918.4|(% style="width:51px" %)918.6|(% style="width:51px" %)918.8|(% style="width:52px" %)919|(% style="width:51px" %)919.2|(% style="width:51px" %)919.4|(% style="width:53px" %)919.6|(% style="width:51px" %)919.8|(% style="width:115px" %)Channel 16-23
993 -|(% style="width:45px" %)4|(% style="width:51px" %)920|(% style="width:51px" %)920.2|(% style="width:51px" %)920.4|(% style="width:52px" %)920.6|(% style="width:51px" %)920.8|(% style="width:51px" %)921|(% style="width:53px" %)921.2|(% style="width:51px" %)921.4|(% style="width:115px" %)Channel 24-31
994 -|(% style="width:45px" %)5|(% style="width:51px" %)921.6|(% style="width:51px" %)921.8|(% style="width:51px" %)922|(% style="width:52px" %)922.2|(% style="width:51px" %)922.4|(% style="width:51px" %)922.6|(% style="width:53px" %)922.8|(% style="width:51px" %)923|(% style="width:115px" %)Channel 32-39
995 -|(% style="width:45px" %)6|(% style="width:51px" %)923.2|(% style="width:51px" %)923.4|(% style="width:51px" %)923.6|(% style="width:52px" %)923.8|(% style="width:51px" %)924|(% style="width:51px" %)924.2|(% style="width:53px" %)924.4|(% style="width:51px" %)924.6|(% style="width:115px" %)Channel 40-47
996 -|(% style="width:45px" %)7|(% style="width:51px" %)924.8|(% style="width:51px" %)925|(% style="width:51px" %)925.2|(% style="width:52px" %)925.4|(% style="width:51px" %)925.6|(% style="width:51px" %)925.8|(% style="width:53px" %)926|(% style="width:51px" %)926.2|(% style="width:115px" %)Channel 48-55
997 -|(% style="width:45px" %)8|(% style="width:51px" %)926.4|(% style="width:51px" %)926.6|(% style="width:51px" %)926.8|(% style="width:52px" %)927|(% style="width:51px" %)927.2|(% style="width:51px" %)927.4|(% style="width:53px" %)927.6|(% style="width:51px" %)927.8|(% style="width:115px" %)Channel 56-63
998 -|(% colspan="10" style="background-color:#4f81bd; color:white; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
999 -|(% style="width:45px" %) |(% style="width:51px" %)915.9|(% style="width:51px" %)917.5|(% style="width:51px" %)919.1|(% style="width:52px" %)920.7|(% style="width:51px" %)922.3|(% style="width:51px" %)923.9|(% style="width:53px" %)925.5|(% style="width:51px" %)927.1|(% style="width:115px" %)Channel 64-71
1000 1000  )))
1001 1001  
1038 +[[image:image-20220606154825-4.png]]
1002 1002  
1003 1003  
1004 -
1005 -
1006 1006  == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1007 1007  
1043 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1008 1008  
1009 -(((
1010 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20230522.pdf]].
1011 -)))
1012 1012  
1013 -
1014 1014  = 5. Trouble Shooting =
1015 1015  
1016 1016  == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1017 1017  
1018 -
1019 1019  It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1020 1020  
1021 1021  
1022 1022  == 5.2 AT Command input doesn't work ==
1023 1023  
1024 -
1025 1025  (((
1026 1026  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1027 1027  )))
... ... @@ -1029,7 +1029,6 @@
1029 1029  
1030 1030  == 5.3 Device rejoin in at the second uplink packet ==
1031 1031  
1032 -
1033 1033  (% style="color:#4f81bd" %)**Issue describe as below:**
1034 1034  
1035 1035  [[image:1654500909990-784.png]]
... ... @@ -1044,63 +1044,11 @@
1044 1044  
1045 1045  (% style="color:#4f81bd" %)**Solution: **
1046 1046  
1047 -(((
1048 1048  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1049 -)))
1050 1050  
1051 1051  [[image:1654500929571-736.png||height="458" width="832"]]
1052 1052  
1053 1053  
1054 -== 5.4 Possible reasons why the device is unresponsive: ==
1055 -
1056 -~1. Check whether the battery voltage is lower than 2.8V
1057 -2. Check whether the jumper of the device is correctly connected
1058 -
1059 -[[image:image-20240330173910-1.png]]
1060 -3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1061 -
1062 -[[image:image-20240330173932-2.png]]
1063 -
1064 -= =
1065 -
1066 -
1067 -== 5.5 The node cannot read the sensor data ==
1068 -
1069 -This may be caused by a software firmware(≤1.1.6 version) bug, which we fixed in the latest firmware (>1.1.6 version)
1070 -
1071 -The user can fix this problem via upgrade firmware.
1072 -
1073 -By default, The latest firmware value of POWERIC is 1, while the 3322 version requires POWERIC to be set to 0 in order to function properly
1074 -
1075 -* **//1. Check if the hardware version is 3322//**
1076 -
1077 -If the sensor hardware version is 3322 or earlier, the user can change the POWERIC value to 0 after a firmware upgrade using one of the following methods
1078 -
1079 -
1080 -**a. Using AT command**
1081 -
1082 -(% class="box infomessage" %)
1083 -(((
1084 -AT+POWERIC=0.
1085 -)))
1086 -
1087 -
1088 -**b. Using Downlink**
1089 -
1090 -(% class="box infomessage" %)
1091 -(((
1092 -FF 00(AT+POWERIC=0).
1093 -)))
1094 -
1095 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20240531090837-1.png?rev=1.1||alt="image-20240531090837-1.png"]]
1096 -
1097 -Please check your hardware production date
1098 -
1099 -The first two digits are the week of the year, and the last two digits are the year.
1100 -
1101 -The number 3322 is the first batch we changed the power IC.
1102 -
1103 -
1104 1104  = 6. ​Order Info =
1105 1105  
1106 1106  
... ... @@ -1166,7 +1166,5 @@
1166 1166  
1167 1167  = 8. Support =
1168 1168  
1169 -
1170 1170  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1171 -
1172 1172  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20221008135912-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -65.9 KB
Content
image-20221008140228-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -37.3 KB
Content
image-20230426084640-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.0 KB
Content
image-20231109094023-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -809.6 KB
Content
image-20231111093716-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20231111095027-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.7 MB
Content
image-20231111095033-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.7 MB
Content
image-20240330173910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -445.4 KB
Content
image-20240330173932-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -445.4 KB
Content