Changes for page LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Last modified by Mengting Qiu on 2025/07/07 15:27
From version 60.1
edited by Mengting Qiu
on 2025/07/07 15:27
on 2025/07/07 15:27
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 6 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Xiaoling - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20220606151504-2.jpeg||data-xwiki-image-style-alignment="center" height="554" width="554"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 2 2 3 3 4 4 ... ... @@ -25,11 +25,11 @@ 25 25 26 26 27 27 ((( 28 -The Dragino LSE01 is a (% style="color:b lue" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.29 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 29 29 ))) 30 30 31 31 ((( 32 -It detects (% style="color:b lue" %)**Soil Moisture**(%%), (% style="color:blue" %)**Soil Temperature**(%%) and (% style="color:blue" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.33 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 33 33 ))) 34 34 35 35 ((( ... ... @@ -37,7 +37,7 @@ 37 37 ))) 38 38 39 39 ((( 40 -LES01 is powered by (% style="color:b lue" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.41 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 41 41 ))) 42 42 43 43 ((( ... ... @@ -71,8 +71,8 @@ 71 71 72 72 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 73 73 74 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)75 -|(% style="background-color:# 4f81bd; color:white; width:94px" %)**Parameter**|(% style="background-color:#4f81bd; color:white; width:145px" %)**Soil Moisture**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Conductivity**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Temperature**75 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %) 76 +|(% style="background-color:#d9e2f3; color:#0070c0; width:95px" %)**Parameter**|(% style="background-color:#d9e2f3; color:#0070c0; width:147px" %)**Soil Moisture**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Soil Conductivity**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Soil Temperature** 76 76 |(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)((( 77 77 0-20000uS/cm 78 78 (25℃)(0-20.0EC) ... ... @@ -147,57 +147,33 @@ 147 147 148 148 Each LSE01 is shipped with a sticker with the default device EUI as below: 149 149 150 -[[image:image-20230426084640-1.png||height="2 01" width="433"]]151 +[[image:image-20230426084640-1.png||height="241" width="519"]] 151 151 152 152 153 153 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 154 154 155 -** Createthe application.**156 +**Add APP EUI in the application** 156 156 157 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]] 158 158 159 -[[image: https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]159 +[[image:1654504596150-405.png]] 160 160 161 161 162 -**Add devices to the created Application.** 163 163 164 - [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]163 +**Add APP KEY and DEV EUI** 165 165 166 -[[image: https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]165 +[[image:1654504683289-357.png]] 167 167 168 168 169 -**Enter end device specifics manually.** 170 170 171 - [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]169 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 172 172 173 -**Add DevEUI and AppKey.** 174 174 175 -**Customize a platform ID for the device.** 176 - 177 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]] 178 - 179 - 180 -(% style="color:blue" %)**Step 2**(%%):** Add decoder.** 181 - 182 -In TTN, user can add a custom payload so it shows friendly reading. 183 - 184 -Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]] 185 - 186 -Below is TTN screen shot: 187 - 188 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]] 189 - 190 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png"]] 191 - 192 - 193 -(% style="color:blue" %)**Step 3**(%%): Power on LSE01 194 - 195 195 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 196 196 197 197 [[image:image-20220606163915-7.png]] 198 198 199 199 200 -The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 177 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 201 201 202 202 [[image:1654504778294-788.png]] 203 203 ... ... @@ -213,9 +213,9 @@ 213 213 Uplink payload includes in total 11 bytes. 214 214 ))) 215 215 216 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:500px" %)217 -| (% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**218 -|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 193 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %) 194 +|**Size(bytes)**|**2**|**2**|**2**|**2**|**2**|**1** 195 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 219 219 Temperature 220 220 (Reserve, Ignore now) 221 221 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( ... ... @@ -227,12 +227,12 @@ 227 227 228 228 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 229 229 230 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:500px" %)231 -| (% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**232 -|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 207 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %) 208 +|**Size(bytes)**|**2**|**2**|**2**|**2**|**2**|**1** 209 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 233 233 Temperature 234 234 (Reserve, Ignore now) 235 -)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|Dielectric constant(raw)|((( 212 +)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Dielectric constant>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 236 236 MOD & Digital Interrupt(Optional) 237 237 ))) 238 238 ... ... @@ -260,10 +260,18 @@ 260 260 ))) 261 261 262 262 ((( 263 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is(% style="color:blue" %)**05DC(H) = 1500(D) /100 = 15%.**240 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 264 264 ))) 265 265 243 +((( 244 + 245 +))) 266 266 247 +((( 248 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 249 +))) 250 + 251 + 267 267 === 2.3.5 Soil Temperature === 268 268 269 269 ... ... @@ -306,7 +306,7 @@ 306 306 === 2.3.7 MOD === 307 307 308 308 309 -Firmware version at least v 1.2.1 supports changing mode.294 +Firmware version at least v2.1 supports changing mode. 310 310 311 311 For example, bytes[10]=90 312 312 ... ... @@ -333,7 +333,7 @@ 333 333 ))) 334 334 335 335 ((( 336 -LSE01 TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/ blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt]]321 +LSE01 TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSE01>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSE01]] 337 337 338 338 339 339 ))) ... ... @@ -349,8 +349,8 @@ 349 349 350 350 By default, LSE01 prints the downlink payload to console port. 351 351 352 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)353 -|=(% style="width: 183px; background-color:# 4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)**337 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479.818px" %) 338 +|=(% style="width: 183px; background-color:#D9E2F3;color:#0070C0" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#D9E2F3;color:#0070C0" %)FPort|=(% style="width: 93px; background-color:#D9E2F3;color:#0070C0" %)**Type Code**|=(% style="width: 146px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Downlink payload size(bytes)** 354 354 |(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4 355 355 |(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2 356 356 |(% style="width:183px" %)AT+CFM|(% style="width:55px" %)Any|(% style="width:93px" %)05|(% style="width:146px" %)4 ... ... @@ -361,6 +361,10 @@ 361 361 (% style="color:blue" %)**Examples:** 362 362 ))) 363 363 349 +((( 350 + 351 +))) 352 + 364 364 * ((( 365 365 (% style="color:blue" %)**Set TDC** 366 366 ))) ... ... @@ -390,7 +390,6 @@ 390 390 ))) 391 391 392 392 393 - 394 394 * (% style="color:blue" %)**CFM** 395 395 396 396 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 ... ... @@ -727,8 +727,10 @@ 727 727 728 728 **Measurement the soil surface** 729 729 718 + 730 730 [[image:1654506634463-199.png]] 731 731 721 + 732 732 ((( 733 733 ((( 734 734 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. ... ... @@ -736,8 +736,10 @@ 736 736 ))) 737 737 738 738 729 + 739 739 [[image:1654506665940-119.png]] 740 740 732 + 741 741 ((( 742 742 Dig a hole with diameter > 20CM. 743 743 ))) ... ... @@ -787,13 +787,13 @@ 787 787 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 788 788 789 789 790 -[[image: image-20231111095033-3.png||height="591" width="855"]]782 +[[image:1654501986557-872.png||height="391" width="800"]] 791 791 792 792 793 793 Or if you have below board, use below connection: 794 794 795 795 796 -[[image: image-20231109094023-1.png]]788 +[[image:1654502005655-729.png||height="503" width="801"]] 797 797 798 798 799 799 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: ... ... @@ -921,10 +921,18 @@ 921 921 ))) 922 922 923 923 ((( 916 + 917 +))) 918 + 919 +((( 924 924 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 925 925 ))) 926 926 927 927 ((( 924 + 925 +))) 926 + 927 +((( 928 928 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 929 929 ))) 930 930 ... ... @@ -935,8 +935,8 @@ 935 935 ((( 936 936 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 937 937 938 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)939 -|(% style="background-color:# 4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**938 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %) 939 +|(% style="background-color:#d9e2f3; color:#0070c0; width:47px" %)**CHE**|(% colspan="9" style="background-color:#d9e2f3; color:#0070c0; width:542px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)** 940 940 |(% style="width:47px" %)0|(% colspan="9" style="width:542px" %)ENABLE Channel 0-63 941 941 |(% style="width:47px" %)1|(% style="width:54px" %)902.3|(% style="width:53px" %)902.5|(% style="width:55px" %)902.7|(% style="width:53px" %)902.9|(% style="width:49px" %)903.1|(% style="width:52px" %)903.3|(% style="width:51px" %)903.5|(% style="width:51px" %)903.7|(% style="width:115px" %)Channel 0-7 942 942 |(% style="width:47px" %)2|(% style="width:54px" %)903.9|(% style="width:53px" %)904.1|(% style="width:55px" %)904.3|(% style="width:53px" %)904.5|(% style="width:49px" %)904.7|(% style="width:52px" %)904.9|(% style="width:51px" %)905.1|(% style="width:51px" %)905.3|(% style="width:115px" %)Channel 8-15 ... ... @@ -946,7 +946,7 @@ 946 946 |(% style="width:47px" %)6|(% style="width:54px" %)910.3|(% style="width:53px" %)910.5|(% style="width:55px" %)910.7|(% style="width:53px" %)910.9|(% style="width:49px" %)911.1|(% style="width:52px" %)911.3|(% style="width:51px" %)911.5|(% style="width:51px" %)911.7|(% style="width:115px" %)Channel 40-47 947 947 |(% style="width:47px" %)7|(% style="width:54px" %)911.9|(% style="width:53px" %)912.1|(% style="width:55px" %)912.3|(% style="width:53px" %)912.5|(% style="width:49px" %)912.7|(% style="width:52px" %)912.9|(% style="width:51px" %)913.1|(% style="width:51px" %)913.3|(% style="width:115px" %)Channel 48-55 948 948 |(% style="width:47px" %)8|(% style="width:54px" %)913.5|(% style="width:53px" %)913.7|(% style="width:55px" %)913.9|(% style="width:53px" %)914.1|(% style="width:49px" %)914.3|(% style="width:52px" %)914.5|(% style="width:51px" %)914.7|(% style="width:51px" %)914.9|(% style="width:115px" %)Channel 56-63 949 -|(% colspan="10" style=" background-color:#4f81bd;color:white; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**949 +|(% colspan="10" style="color:#0070c0; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)** 950 950 |(% style="width:47px" %) |(% style="width:54px" %)903|(% style="width:53px" %)904.6|(% style="width:55px" %)906.2|(% style="width:53px" %)907.8|(% style="width:49px" %)909.4|(% style="width:52px" %)911|(% style="width:51px" %)912.6|(% style="width:51px" %)914.2|(% style="width:115px" %)Channel 64-71 951 951 ))) 952 952 ... ... @@ -983,8 +983,8 @@ 983 983 ((( 984 984 The **AU915** band is similar. Below are the AU915 Uplink Channels. 985 985 986 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)987 -|(% style="background-color:# 4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**986 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %) 987 +|(% style="background-color:#d9e2f3; color:#0070c0; width:45px" %)**CHE**|(% colspan="9" style="background-color:#d9e2f3; color:#0070c0; width:540px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)** 988 988 |(% style="width:45px" %)0|(% colspan="9" style="width:540px" %)ENABLE Channel 0-63 989 989 |(% style="width:45px" %)1|(% style="width:51px" %)915.2|(% style="width:51px" %)915.4|(% style="width:51px" %)915.6|(% style="width:52px" %)915.8|(% style="width:51px" %)916|(% style="width:51px" %)916.2|(% style="width:53px" %)916.4|(% style="width:51px" %)916.6|(% style="width:115px" %)Channel 0-7 990 990 |(% style="width:45px" %)2|(% style="width:51px" %)916.8|(% style="width:51px" %)917|(% style="width:51px" %)917.2|(% style="width:52px" %)917.4|(% style="width:51px" %)917.6|(% style="width:51px" %)917.8|(% style="width:53px" %)918|(% style="width:51px" %)918.2|(% style="width:115px" %)Channel 8-15 ... ... @@ -994,18 +994,17 @@ 994 994 |(% style="width:45px" %)6|(% style="width:51px" %)923.2|(% style="width:51px" %)923.4|(% style="width:51px" %)923.6|(% style="width:52px" %)923.8|(% style="width:51px" %)924|(% style="width:51px" %)924.2|(% style="width:53px" %)924.4|(% style="width:51px" %)924.6|(% style="width:115px" %)Channel 40-47 995 995 |(% style="width:45px" %)7|(% style="width:51px" %)924.8|(% style="width:51px" %)925|(% style="width:51px" %)925.2|(% style="width:52px" %)925.4|(% style="width:51px" %)925.6|(% style="width:51px" %)925.8|(% style="width:53px" %)926|(% style="width:51px" %)926.2|(% style="width:115px" %)Channel 48-55 996 996 |(% style="width:45px" %)8|(% style="width:51px" %)926.4|(% style="width:51px" %)926.6|(% style="width:51px" %)926.8|(% style="width:52px" %)927|(% style="width:51px" %)927.2|(% style="width:51px" %)927.4|(% style="width:53px" %)927.6|(% style="width:51px" %)927.8|(% style="width:115px" %)Channel 56-63 997 -|(% colspan="10" style=" background-color:#4f81bd;color:white; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**997 +|(% colspan="10" style="color:#0070c0; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)** 998 998 |(% style="width:45px" %) |(% style="width:51px" %)915.9|(% style="width:51px" %)917.5|(% style="width:51px" %)919.1|(% style="width:52px" %)920.7|(% style="width:51px" %)922.3|(% style="width:51px" %)923.9|(% style="width:53px" %)925.5|(% style="width:51px" %)927.1|(% style="width:115px" %)Channel 64-71 999 999 ))) 1000 1000 1001 1001 1002 1002 1003 - 1004 1004 == 4.2 Can I calibrate LSE01 to different soil types? == 1005 1005 1006 1006 1007 1007 ((( 1008 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/ downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20230522.pdf]].1007 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1009 1009 ))) 1010 1010 1011 1011 ... ... @@ -1049,56 +1049,6 @@ 1049 1049 [[image:1654500929571-736.png||height="458" width="832"]] 1050 1050 1051 1051 1052 -== 5.4 Possible reasons why the device is unresponsive: == 1053 - 1054 -~1. Check whether the battery voltage is lower than 2.8V 1055 -2. Check whether the jumper of the device is correctly connected 1056 - 1057 -[[image:image-20240330173910-1.png]] 1058 -3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN) 1059 - 1060 -[[image:image-20240330173932-2.png]] 1061 - 1062 -= = 1063 - 1064 - 1065 -== 5.4 The node cannot read the sensor data == 1066 - 1067 -This may be caused by a software firmware(≤1.1.6 version) bug, which we fixed in the latest firmware (>1.1.6 version) 1068 - 1069 -The user can fix this problem via upgrade firmware. 1070 - 1071 -By default, The latest firmware value of POWERIC is 1, while the 3322 version requires POWERIC to be set to 0 in order to function properly 1072 - 1073 -* **//1. Check if the hardware version is 3322//** 1074 - 1075 -If the sensor hardware version is 3322 or earlier, the user can change the POWERIC value to 0 after a firmware upgrade using one of the following methods 1076 - 1077 - 1078 -**a. Using AT command** 1079 - 1080 -(% class="box infomessage" %) 1081 -((( 1082 -AT+POWERIC=0. 1083 -))) 1084 - 1085 - 1086 -**b. Using Downlink** 1087 - 1088 -(% class="box infomessage" %) 1089 -((( 1090 -FF 00(AT+POWERIC=0). 1091 -))) 1092 - 1093 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20240531090837-1.png?rev=1.1||alt="image-20240531090837-1.png"]] 1094 - 1095 -Please check your hardware production date 1096 - 1097 -The first two digits are the week of the year, and the last two digits are the year. 1098 - 1099 -The number 3322 is the first batch we changed the power IC. 1100 - 1101 - 1102 1102 = 6. Order Info = 1103 1103 1104 1104
- image-20231109094023-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -809.6 KB - Content
- image-20231111093716-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20231111095027-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.7 MB - Content
- image-20231111095033-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.7 MB - Content
- image-20240330173910-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -445.4 KB - Content
- image-20240330173932-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Bei - Size
-
... ... @@ -1,1 +1,0 @@ 1 -445.4 KB - Content