Last modified by Mengting Qiu on 2025/07/07 15:27

From version 59.1
edited by Xiaoling
on 2025/04/25 10:32
Change comment: There is no comment for this version
To version 47.18
edited by Xiaoling
on 2023/05/23 14:48
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -26,11 +26,11 @@
26 26  
27 27  
28 28  (((
29 -The Dragino LSE01 is a (% style="color:blue" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
29 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
30 30  )))
31 31  
32 32  (((
33 -It detects (% style="color:blue" %)**Soil Moisture**(%%), (% style="color:blue" %)**Soil Temperature**(%%) and (% style="color:blue" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
33 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
34 34  )))
35 35  
36 36  (((
... ... @@ -38,7 +38,7 @@
38 38  )))
39 39  
40 40  (((
41 -LES01 is powered by (% style="color:blue" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
41 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
42 42  )))
43 43  
44 44  (((
... ... @@ -72,8 +72,8 @@
72 72  
73 73  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74 74  
75 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
76 -|(% style="background-color:#4f81bd; color:white; width:94px" %)**Parameter**|(% style="background-color:#4f81bd; color:white; width:145px" %)**Soil Moisture**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Conductivity**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Temperature**
75 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
76 +|(% style="background-color:#d9e2f3; color:#0070c0; width:95px" %)**Parameter**|(% style="background-color:#d9e2f3; color:#0070c0; width:147px" %)**Soil Moisture**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Soil Conductivity**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Soil Temperature**
77 77  |(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)(((
78 78  0-20000uS/cm
79 79  (25℃)(0-20.0EC)
... ... @@ -148,57 +148,33 @@
148 148  
149 149  Each LSE01 is shipped with a sticker with the default device EUI as below:
150 150  
151 -[[image:image-20230426084640-1.png||height="201" width="433"]]
151 +[[image:image-20230426084640-1.png||height="241" width="519"]]
152 152  
153 153  
154 154  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
155 155  
156 -**Create the application.**
156 +**Add APP EUI in the application**
157 157  
158 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
159 159  
160 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
159 +[[image:1654504596150-405.png]]
161 161  
162 162  
163 -**Add devices to the created Application.**
164 164  
165 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
163 +**Add APP KEY and DEV EUI**
166 166  
167 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
165 +[[image:1654504683289-357.png]]
168 168  
169 169  
170 -**Enter end device specifics manually.**
171 171  
172 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
169 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
173 173  
174 -**Add DevEUI and AppKey.**
175 175  
176 -**Customize a platform ID for the device.**
177 -
178 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
179 -
180 -
181 -(% style="color:blue" %)**Step 2**(%%):** Add decoder.**
182 -
183 -In TTN, user can add a custom payload so it shows friendly reading.
184 -
185 -Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
186 -
187 -Below is TTN screen shot:
188 -
189 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
190 -
191 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png"]]
192 -
193 -
194 -(% style="color:blue" %)**Step 3**(%%): Power on LSE01
195 -
196 196  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
197 197  
198 198  [[image:image-20220606163915-7.png]]
199 199  
200 200  
201 -The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
177 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
202 202  
203 203  [[image:1654504778294-788.png]]
204 204  
... ... @@ -214,9 +214,9 @@
214 214  Uplink payload includes in total 11 bytes.
215 215  )))
216 216  
217 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
218 -|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
219 -|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
194 +|**Size(bytes)**|**2**|**2**|**2**|**2**|**2**|**1**
195 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
220 220  Temperature
221 221  (Reserve, Ignore now)
222 222  )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
... ... @@ -228,12 +228,12 @@
228 228  
229 229  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
230 230  
231 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
232 -|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
233 -|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
207 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
208 +|**Size(bytes)**|**2**|**2**|**2**|**2**|**2**|**1**
209 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
234 234  Temperature
235 235  (Reserve, Ignore now)
236 -)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|Dielectric constant(raw)|(((
212 +)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Dielectric constant>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
237 237  MOD & Digital Interrupt(Optional)
238 238  )))
239 239  
... ... @@ -261,10 +261,18 @@
261 261  )))
262 262  
263 263  (((
264 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is (% style="color:blue" %)**05DC(H) = 1500(D) /100 = 15%.**
240 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
265 265  )))
266 266  
243 +(((
244 +
245 +)))
267 267  
247 +(((
248 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
249 +)))
250 +
251 +
268 268  === 2.3.5 Soil Temperature ===
269 269  
270 270  
... ... @@ -307,7 +307,7 @@
307 307  === 2.3.7 MOD ===
308 308  
309 309  
310 -Firmware version at least v1.2.1 supports changing mode.
294 +Firmware version at least v2.1 supports changing mode.
311 311  
312 312  For example, bytes[10]=90
313 313  
... ... @@ -334,7 +334,7 @@
334 334  )))
335 335  
336 336  (((
337 -LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt]]
321 +LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSE01>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSE01]]
338 338  
339 339  
340 340  )))
... ... @@ -350,8 +350,8 @@
350 350  
351 351  By default, LSE01 prints the downlink payload to console port.
352 352  
353 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
354 -|=(% style="width: 183px; background-color:#4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)**
337 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479.818px" %)
338 +|=(% style="width: 183px; background-color:#D9E2F3;color:#0070C0" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#D9E2F3;color:#0070C0" %)FPort|=(% style="width: 93px; background-color:#D9E2F3;color:#0070C0" %)**Type Code**|=(% style="width: 146px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Downlink payload size(bytes)**
355 355  |(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
356 356  |(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
357 357  |(% style="width:183px" %)AT+CFM|(% style="width:55px" %)Any|(% style="width:93px" %)05|(% style="width:146px" %)4
... ... @@ -362,6 +362,10 @@
362 362  (% style="color:blue" %)**Examples:**
363 363  )))
364 364  
349 +(((
350 +
351 +)))
352 +
365 365  * (((
366 366  (% style="color:blue" %)**Set TDC**
367 367  )))
... ... @@ -727,8 +727,10 @@
727 727  
728 728  **Measurement the soil surface**
729 729  
718 +
730 730  [[image:1654506634463-199.png]] ​
731 731  
721 +
732 732  (((
733 733  (((
734 734  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
... ... @@ -736,8 +736,10 @@
736 736  )))
737 737  
738 738  
729 +
739 739  [[image:1654506665940-119.png]]
740 740  
732 +
741 741  (((
742 742  Dig a hole with diameter > 20CM.
743 743  )))
... ... @@ -787,13 +787,13 @@
787 787  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
788 788  
789 789  
790 -[[image:image-20231111095033-3.png||height="591" width="855"]]
782 +[[image:1654501986557-872.png||height="391" width="800"]]
791 791  
792 792  
793 793  Or if you have below board, use below connection:
794 794  
795 795  
796 -[[image:image-20231109094023-1.png]]
788 +[[image:1654502005655-729.png||height="503" width="801"]]
797 797  
798 798  
799 799  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
... ... @@ -921,10 +921,18 @@
921 921  )))
922 922  
923 923  (((
916 +
917 +)))
918 +
919 +(((
924 924  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
925 925  )))
926 926  
927 927  (((
924 +
925 +)))
926 +
927 +(((
928 928  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
929 929  )))
930 930  
... ... @@ -935,8 +935,8 @@
935 935  (((
936 936  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
937 937  
938 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
939 -|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
938 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
939 +|(% style="background-color:#d9e2f3; color:#0070c0; width:47px" %)**CHE**|(% colspan="9" style="background-color:#d9e2f3; color:#0070c0; width:542px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
940 940  |(% style="width:47px" %)0|(% colspan="9" style="width:542px" %)ENABLE Channel 0-63
941 941  |(% style="width:47px" %)1|(% style="width:54px" %)902.3|(% style="width:53px" %)902.5|(% style="width:55px" %)902.7|(% style="width:53px" %)902.9|(% style="width:49px" %)903.1|(% style="width:52px" %)903.3|(% style="width:51px" %)903.5|(% style="width:51px" %)903.7|(% style="width:115px" %)Channel 0-7
942 942  |(% style="width:47px" %)2|(% style="width:54px" %)903.9|(% style="width:53px" %)904.1|(% style="width:55px" %)904.3|(% style="width:53px" %)904.5|(% style="width:49px" %)904.7|(% style="width:52px" %)904.9|(% style="width:51px" %)905.1|(% style="width:51px" %)905.3|(% style="width:115px" %)Channel 8-15
... ... @@ -946,7 +946,7 @@
946 946  |(% style="width:47px" %)6|(% style="width:54px" %)910.3|(% style="width:53px" %)910.5|(% style="width:55px" %)910.7|(% style="width:53px" %)910.9|(% style="width:49px" %)911.1|(% style="width:52px" %)911.3|(% style="width:51px" %)911.5|(% style="width:51px" %)911.7|(% style="width:115px" %)Channel 40-47
947 947  |(% style="width:47px" %)7|(% style="width:54px" %)911.9|(% style="width:53px" %)912.1|(% style="width:55px" %)912.3|(% style="width:53px" %)912.5|(% style="width:49px" %)912.7|(% style="width:52px" %)912.9|(% style="width:51px" %)913.1|(% style="width:51px" %)913.3|(% style="width:115px" %)Channel 48-55
948 948  |(% style="width:47px" %)8|(% style="width:54px" %)913.5|(% style="width:53px" %)913.7|(% style="width:55px" %)913.9|(% style="width:53px" %)914.1|(% style="width:49px" %)914.3|(% style="width:52px" %)914.5|(% style="width:51px" %)914.7|(% style="width:51px" %)914.9|(% style="width:115px" %)Channel 56-63
949 -|(% colspan="10" style="background-color:#4f81bd; color:white; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
949 +|(% colspan="10" style="color:#0070c0; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
950 950  |(% style="width:47px" %) |(% style="width:54px" %)903|(% style="width:53px" %)904.6|(% style="width:55px" %)906.2|(% style="width:53px" %)907.8|(% style="width:49px" %)909.4|(% style="width:52px" %)911|(% style="width:51px" %)912.6|(% style="width:51px" %)914.2|(% style="width:115px" %)Channel 64-71
951 951  )))
952 952  
... ... @@ -983,8 +983,8 @@
983 983  (((
984 984  The **AU915** band is similar. Below are the AU915 Uplink Channels.
985 985  
986 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
987 -|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
986 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
987 +|(% style="background-color:#d9e2f3; color:#0070c0; width:45px" %)**CHE**|(% colspan="9" style="background-color:#d9e2f3; color:#0070c0; width:540px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
988 988  |(% style="width:45px" %)0|(% colspan="9" style="width:540px" %)ENABLE Channel 0-63
989 989  |(% style="width:45px" %)1|(% style="width:51px" %)915.2|(% style="width:51px" %)915.4|(% style="width:51px" %)915.6|(% style="width:52px" %)915.8|(% style="width:51px" %)916|(% style="width:51px" %)916.2|(% style="width:53px" %)916.4|(% style="width:51px" %)916.6|(% style="width:115px" %)Channel 0-7
990 990  |(% style="width:45px" %)2|(% style="width:51px" %)916.8|(% style="width:51px" %)917|(% style="width:51px" %)917.2|(% style="width:52px" %)917.4|(% style="width:51px" %)917.6|(% style="width:51px" %)917.8|(% style="width:53px" %)918|(% style="width:51px" %)918.2|(% style="width:115px" %)Channel 8-15
... ... @@ -994,7 +994,7 @@
994 994  |(% style="width:45px" %)6|(% style="width:51px" %)923.2|(% style="width:51px" %)923.4|(% style="width:51px" %)923.6|(% style="width:52px" %)923.8|(% style="width:51px" %)924|(% style="width:51px" %)924.2|(% style="width:53px" %)924.4|(% style="width:51px" %)924.6|(% style="width:115px" %)Channel 40-47
995 995  |(% style="width:45px" %)7|(% style="width:51px" %)924.8|(% style="width:51px" %)925|(% style="width:51px" %)925.2|(% style="width:52px" %)925.4|(% style="width:51px" %)925.6|(% style="width:51px" %)925.8|(% style="width:53px" %)926|(% style="width:51px" %)926.2|(% style="width:115px" %)Channel 48-55
996 996  |(% style="width:45px" %)8|(% style="width:51px" %)926.4|(% style="width:51px" %)926.6|(% style="width:51px" %)926.8|(% style="width:52px" %)927|(% style="width:51px" %)927.2|(% style="width:51px" %)927.4|(% style="width:53px" %)927.6|(% style="width:51px" %)927.8|(% style="width:115px" %)Channel 56-63
997 -|(% colspan="10" style="background-color:#4f81bd; color:white; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
997 +|(% colspan="10" style="color:#0070c0; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
998 998  |(% style="width:45px" %) |(% style="width:51px" %)915.9|(% style="width:51px" %)917.5|(% style="width:51px" %)919.1|(% style="width:52px" %)920.7|(% style="width:51px" %)922.3|(% style="width:51px" %)923.9|(% style="width:53px" %)925.5|(% style="width:51px" %)927.1|(% style="width:115px" %)Channel 64-71
999 999  )))
1000 1000  
... ... @@ -1004,7 +1004,7 @@
1004 1004  
1005 1005  
1006 1006  (((
1007 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20230522.pdf]].
1007 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1008 1008  )))
1009 1009  
1010 1010  
... ... @@ -1048,56 +1048,6 @@
1048 1048  [[image:1654500929571-736.png||height="458" width="832"]]
1049 1049  
1050 1050  
1051 -== 5.3 Possible reasons why the device is unresponsive: ==
1052 -
1053 -~1. Check whether the battery voltage is lower than 2.8V
1054 -2. Check whether the jumper of the device is correctly connected
1055 -
1056 -[[image:image-20240330173910-1.png]]
1057 -3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1058 -
1059 -[[image:image-20240330173932-2.png]]
1060 -
1061 -= =
1062 -
1063 -
1064 -== 5.4 The node cannot read the sensor data ==
1065 -
1066 -This may be caused by a software firmware(≤1.1.6 version) bug, which we fixed in the latest firmware (>1.1.6 version)
1067 -
1068 -The user can fix this problem via upgrade firmware.
1069 -
1070 -By default, The latest firmware value of POWERIC is 1, while the 3322 version requires POWERIC to be set to 0 in order to function properly
1071 -
1072 -* **//1. Check if the hardware version is 3322//**
1073 -
1074 -If the sensor hardware version is 3322 or earlier, the user can change the POWERIC value to 0 after a firmware upgrade using one of the following methods
1075 -
1076 -
1077 -**a. Using AT command**
1078 -
1079 -(% class="box infomessage" %)
1080 -(((
1081 -AT+POWERIC=0.
1082 -)))
1083 -
1084 -
1085 -**b. Using Downlink**
1086 -
1087 -(% class="box infomessage" %)
1088 -(((
1089 -FF 00(AT+POWERIC=0).
1090 -)))
1091 -
1092 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20240531090837-1.png?rev=1.1||alt="image-20240531090837-1.png"]]
1093 -
1094 -Please check your hardware production date
1095 -
1096 -The first two digits are the week of the year, and the last two digits are the year.
1097 -
1098 -The number 3322 is the first batch we changed the power IC.
1099 -
1100 -
1101 1101  = 6. ​Order Info =
1102 1102  
1103 1103  
image-20231109094023-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -809.6 KB
Content
image-20231111093716-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20231111095027-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.7 MB
Content
image-20231111095033-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.7 MB
Content
image-20240330173910-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -445.4 KB
Content
image-20240330173932-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -445.4 KB
Content