Last modified by Mengting Qiu on 2025/07/07 15:27

From version 48.1
edited by Mengting Qiu
on 2023/11/09 09:40
Change comment: Uploaded new attachment "image-20231109094023-1.png", version {1}
To version 45.4
edited by Xiaoling
on 2022/10/27 11:50
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -22,15 +22,16 @@
22 22  
23 23  = 1. Introduction =
24 24  
25 +
25 25  == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 26  
27 27  
28 28  (((
29 -The Dragino LSE01 is a (% style="color:blue" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
30 30  )))
31 31  
32 32  (((
33 -It detects (% style="color:blue" %)**Soil Moisture**(%%), (% style="color:blue" %)**Soil Temperature**(%%) and (% style="color:blue" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
34 34  )))
35 35  
36 36  (((
... ... @@ -38,7 +38,7 @@
38 38  )))
39 39  
40 40  (((
41 -LES01 is powered by (% style="color:blue" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
42 42  )))
43 43  
44 44  (((
... ... @@ -52,6 +52,7 @@
52 52  [[image:1654503265560-120.png]]
53 53  
54 54  
56 +
55 55  == 1.2 ​Features ==
56 56  
57 57  
... ... @@ -67,32 +67,12 @@
67 67  * IP66 Waterproof Enclosure
68 68  * 4000mAh or 8500mAh Battery for long term use
69 69  
70 -
71 -
72 72  == 1.3 Specification ==
73 73  
74 74  
75 75  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
76 76  
77 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
78 -|(% style="background-color:#d9e2f3; color:#0070c0; width:95px" %)**Parameter**|(% style="background-color:#d9e2f3; color:#0070c0; width:147px" %)**Soil Moisture**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Soil Conductivity**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Soil Temperature**
79 -|(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)(((
80 -0-20000uS/cm
81 -(25℃)(0-20.0EC)
82 -)))|(% style="width:140px" %)-40.00℃~85.00℃
83 -|(% style="width:95px" %)Unit|(% style="width:146px" %)V/V %|(% style="width:137px" %)uS/cm|(% style="width:140px" %)℃
84 -|(% style="width:95px" %)Resolution|(% style="width:146px" %)0.01%|(% style="width:137px" %)1 uS/cm|(% style="width:140px" %)0.01℃
85 -|(% style="width:95px" %)Accuracy|(% style="width:146px" %)(((
86 -±3% (0-53%)
87 -±5% (>53%)
88 -)))|(% style="width:137px" %)2%FS|(% style="width:140px" %)(((
89 --10℃~50℃:<0.3℃
90 -All other: <0.6℃
91 -)))
92 -|(% style="width:95px" %)(((
93 -Measure
94 -Method
95 -)))|(% style="width:146px" %)FDR , with temperature &EC compensate|(% style="width:137px" %)Conductivity , with temperature compensate|(% style="width:140px" %)RTD, and calibrate
77 +[[image:image-20220606162220-5.png]]
96 96  
97 97  
98 98  
... ... @@ -99,7 +99,7 @@
99 99  == 1.4 Dimension ==
100 100  
101 101  
102 -(% style="color:blue" %)**Main Device Dimension:**
84 +**Main Device Dimension:**
103 103  
104 104  See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
105 105  
... ... @@ -106,18 +106,17 @@
106 106  [[image:image-20221008140228-2.png||height="358" width="571"]]
107 107  
108 108  
109 -(% style="color:blue" %)**Probe Dimension**
91 +**Probe Dimension**
110 110  
111 111  [[image:image-20221008135912-1.png]]
112 112  
113 113  
96 +
114 114  == ​1.5 Applications ==
115 115  
116 116  
117 117  * Smart Agriculture​
118 118  
119 -
120 -
121 121  == 1.6 Firmware Change log ==
122 122  
123 123  
... ... @@ -124,8 +124,10 @@
124 124  **LSE01 v1.0 :**  Release
125 125  
126 126  
108 +
127 127  = 2. Configure LSE01 to connect to LoRaWAN network =
128 128  
111 +
129 129  == 2.1 How it works ==
130 130  
131 131  
... ... @@ -138,6 +138,7 @@
138 138  )))
139 139  
140 140  
124 +
141 141  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
142 142  
143 143  
... ... @@ -154,7 +154,7 @@
154 154  
155 155  Each LSE01 is shipped with a sticker with the default device EUI as below:
156 156  
157 -[[image:image-20230426084640-1.png||height="241" width="519"]]
141 +[[image:image-20220606163732-6.jpeg]]
158 158  
159 159  
160 160  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -185,11 +185,13 @@
185 185  [[image:1654504778294-788.png]]
186 186  
187 187  
172 +
188 188  == 2.3 Uplink Payload ==
189 189  
190 -=== 2.3.1 MOD~=0(Default Mode)(% style="display:none" %) (%%) ===
191 191  
176 +=== 2.3.1 MOD~=0(Default Mode) ===
192 192  
178 +
193 193  LSE01 will uplink payload via LoRaWAN with below payload format: 
194 194  
195 195  (((
... ... @@ -196,33 +196,31 @@
196 196  Uplink payload includes in total 11 bytes.
197 197  )))
198 198  
199 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
200 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
201 -|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
202 -Temperature
203 -(Reserve, Ignore now)
185 +(% border="1" cellspacing="5" style="background-color:#ffffcc; width:500px" %)
186 +|=(% scope="row" %)(((
187 +**Size(bytes)**
188 +)))|**2**|**2**|**2**|**2**|**2**|**1**
189 +|=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
190 +Temperature(Reserve, Ignore now)
204 204  )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
205 205  MOD & Digital Interrupt(Optional)
206 206  )))
207 207  
208 -
209 -
210 210  === 2.3.2 MOD~=1(Original value) ===
211 211  
212 212  
213 213  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
214 214  
215 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
216 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
217 -|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
218 -Temperature
219 -(Reserve, Ignore now)
220 -)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|Dielectric constant(raw)|(((
200 +(% border="1" cellspacing="5" style="background-color:#ffffcc; width:500px" %)
201 +|=(% scope="row" %)(((
202 +**Size(bytes)**
203 +)))|**2**|**2**|**2**|**2**|**2**|**1**
204 +|=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
205 +Temperature(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
221 221  MOD & Digital Interrupt(Optional)
222 222  )))
223 223  
224 -
225 -
226 226  === 2.3.3 Battery Info ===
227 227  
228 228  
... ... @@ -239,6 +239,7 @@
239 239  )))
240 240  
241 241  
226 +
242 242  === 2.3.4 Soil Moisture ===
243 243  
244 244  
... ... @@ -247,15 +247,24 @@
247 247  )))
248 248  
249 249  (((
250 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is (% style="color:blue" %)**05DC(H) = 1500(D) /100 = 15%.**
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
251 251  )))
252 252  
238 +(((
239 +
240 +)))
253 253  
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
245 +
246 +
247 +
254 254  === 2.3.5 Soil Temperature ===
255 255  
256 256  
257 257  (((
258 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
259 259  )))
260 260  
261 261  (((
... ... @@ -271,6 +271,7 @@
271 271  )))
272 272  
273 273  
268 +
274 274  === 2.3.6 Soil Conductivity (EC) ===
275 275  
276 276  
... ... @@ -290,6 +290,10 @@
290 290  
291 291  )))
292 292  
288 +(((
289 +
290 +)))
291 +
293 293  === 2.3.7 MOD ===
294 294  
295 295  
... ... @@ -300,7 +300,7 @@
300 300  mod=(bytes[10]>>7)&0x01=1.
301 301  
302 302  
303 -(% style="color:blue" %)**Downlink Command:**
302 +**Downlink Command:**
304 304  
305 305  If payload = 0x0A00, workmode=0
306 306  
... ... @@ -307,6 +307,7 @@
307 307  If** **payload =** **0x0A01, workmode=1
308 308  
309 309  
309 +
310 310  === 2.3.8 ​Decode payload in The Things Network ===
311 311  
312 312  
... ... @@ -320,11 +320,11 @@
320 320  )))
321 321  
322 322  (((
323 -LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSE01>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSE01]]
324 -
325 -
323 +LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
326 326  )))
327 327  
326 +
327 +
328 328  == 2.4 Uplink Interval ==
329 329  
330 330  
... ... @@ -331,23 +331,23 @@
331 331  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
332 332  
333 333  
334 +
334 334  == 2.5 Downlink Payload ==
335 335  
336 336  
337 337  By default, LSE01 prints the downlink payload to console port.
338 338  
339 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479.818px" %)
340 -|=(% style="width: 183px; background-color:#D9E2F3;color:#0070C0" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#D9E2F3;color:#0070C0" %)FPort|=(% style="width: 93px; background-color:#D9E2F3;color:#0070C0" %)**Type Code**|=(% style="width: 146px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Downlink payload size(bytes)**
341 -|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
342 -|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
343 -|(% style="width:183px" %)AT+CFM|(% style="width:55px" %)Any|(% style="width:93px" %)05|(% style="width:146px" %)4
344 -|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
345 -|(% style="width:183px" %)MOD|(% style="width:55px" %)Any|(% style="width:93px" %)0A|(% style="width:146px" %)2
340 +[[image:image-20220606165544-8.png]]
346 346  
342 +
347 347  (((
348 348  (% style="color:blue" %)**Examples:**
349 349  )))
350 350  
347 +(((
348 +
349 +)))
350 +
351 351  * (((
352 352  (% style="color:blue" %)**Set TDC**
353 353  )))
... ... @@ -382,6 +382,7 @@
382 382  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
383 383  
384 384  
385 +
385 385  == 2.6 ​Show Data in DataCake IoT Server ==
386 386  
387 387  
... ... @@ -421,6 +421,7 @@
421 421  [[image:1654505925508-181.png]]
422 422  
423 423  
425 +
424 424  == 2.7 Frequency Plans ==
425 425  
426 426  
... ... @@ -427,6 +427,7 @@
427 427  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
428 428  
429 429  
432 +
430 430  === 2.7.1 EU863-870 (EU868) ===
431 431  
432 432  
... ... @@ -458,6 +458,7 @@
458 458  869.525 - SF9BW125 (RX2 downlink only)
459 459  
460 460  
464 +
461 461  === 2.7.2 US902-928(US915) ===
462 462  
463 463  
... ... @@ -503,6 +503,7 @@
503 503  923.3 - SF12BW500(RX2 downlink only)
504 504  
505 505  
510 +
506 506  === 2.7.3 CN470-510 (CN470) ===
507 507  
508 508  
... ... @@ -548,6 +548,7 @@
548 548  505.3 - SF12BW125 (RX2 downlink only)
549 549  
550 550  
556 +
551 551  === 2.7.4 AU915-928(AU915) ===
552 552  
553 553  
... ... @@ -593,6 +593,7 @@
593 593  923.3 - SF12BW500(RX2 downlink only)
594 594  
595 595  
602 +
596 596  === 2.7.5 AS920-923 & AS923-925 (AS923) ===
597 597  
598 598  
... ... @@ -644,6 +644,7 @@
644 644  923.2 - SF10BW125 (RX2)
645 645  
646 646  
654 +
647 647  === 2.7.6 KR920-923 (KR920) ===
648 648  
649 649  
... ... @@ -680,6 +680,7 @@
680 680  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 681  
682 682  
691 +
683 683  === 2.7.7 IN865-867 (IN865) ===
684 684  
685 685  
... ... @@ -699,6 +699,8 @@
699 699  866.550 - SF10BW125 (RX2)
700 700  
701 701  
711 +
712 +
702 702  == 2.8 LED Indicator ==
703 703  
704 704  
... ... @@ -708,15 +708,15 @@
708 708  * Solid ON for 5 seconds once device successful Join the network.
709 709  * Blink once when device transmit a packet.
710 710  
711 -
712 -
713 713  == 2.9 Installation in Soil ==
714 714  
715 715  
716 716  **Measurement the soil surface**
717 717  
727 +
718 718  [[image:1654506634463-199.png]] ​
719 719  
730 +
720 720  (((
721 721  (((
722 722  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
... ... @@ -724,8 +724,10 @@
724 724  )))
725 725  
726 726  
738 +
727 727  [[image:1654506665940-119.png]]
728 728  
741 +
729 729  (((
730 730  Dig a hole with diameter > 20CM.
731 731  )))
... ... @@ -735,6 +735,7 @@
735 735  )))
736 736  
737 737  
751 +
738 738  == 2.10 ​Firmware Change Log ==
739 739  
740 740  
... ... @@ -743,6 +743,10 @@
743 743  )))
744 744  
745 745  (((
760 +
761 +)))
762 +
763 +(((
746 746  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
747 747  )))
748 748  
... ... @@ -759,16 +759,70 @@
759 759  )))
760 760  
761 761  
762 -== 2.11 Battery & Power Consumption ==
763 763  
781 +== 2.11 ​Battery Analysis ==
764 764  
765 -LSE01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
766 766  
767 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
784 +=== 2.11.1 ​Battery Type ===
768 768  
769 769  
787 +(((
788 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
789 +)))
790 +
791 +(((
792 +The battery is designed to last for more than 5 years for the LSN50.
793 +)))
794 +
795 +(((
796 +(((
797 +The battery-related documents are as below:
798 +)))
799 +)))
800 +
801 +* (((
802 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
803 +)))
804 +* (((
805 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
806 +)))
807 +* (((
808 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
809 +)))
810 +
811 + [[image:image-20220610172436-1.png]]
812 +
813 +
814 +
815 +=== 2.11.2 ​Battery Note ===
816 +
817 +
818 +(((
819 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
820 +)))
821 +
822 +
823 +
824 +=== 2.11.3 Replace the battery ===
825 +
826 +
827 +(((
828 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
829 +)))
830 +
831 +(((
832 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
833 +)))
834 +
835 +(((
836 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
837 +)))
838 +
839 +
840 +
770 770  = 3. ​Using the AT Commands =
771 771  
843 +
772 772  == 3.1 Access AT Commands ==
773 773  
774 774  
... ... @@ -784,6 +784,7 @@
784 784  [[image:1654502005655-729.png||height="503" width="801"]]
785 785  
786 786  
859 +
787 787  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
788 788  
789 789  
... ... @@ -898,8 +898,10 @@
898 898   (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
899 899  
900 900  
974 +
901 901  = ​4. FAQ =
902 902  
977 +
903 903  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
904 904  
905 905  
... ... @@ -909,10 +909,18 @@
909 909  )))
910 910  
911 911  (((
987 +
988 +)))
989 +
990 +(((
912 912  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
913 913  )))
914 914  
915 915  (((
995 +
996 +)))
997 +
998 +(((
916 916  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
917 917  )))
918 918  
... ... @@ -922,23 +922,11 @@
922 922  
923 923  (((
924 924  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
925 -
926 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
927 -|(% style="background-color:#d9e2f3; color:#0070c0; width:47px" %)**CHE**|(% colspan="9" style="background-color:#d9e2f3; color:#0070c0; width:542px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
928 -|(% style="width:47px" %)0|(% colspan="9" style="width:542px" %)ENABLE Channel 0-63
929 -|(% style="width:47px" %)1|(% style="width:54px" %)902.3|(% style="width:53px" %)902.5|(% style="width:55px" %)902.7|(% style="width:53px" %)902.9|(% style="width:49px" %)903.1|(% style="width:52px" %)903.3|(% style="width:51px" %)903.5|(% style="width:51px" %)903.7|(% style="width:115px" %)Channel 0-7
930 -|(% style="width:47px" %)2|(% style="width:54px" %)903.9|(% style="width:53px" %)904.1|(% style="width:55px" %)904.3|(% style="width:53px" %)904.5|(% style="width:49px" %)904.7|(% style="width:52px" %)904.9|(% style="width:51px" %)905.1|(% style="width:51px" %)905.3|(% style="width:115px" %)Channel 8-15
931 -|(% style="width:47px" %)3|(% style="width:54px" %)905.5|(% style="width:53px" %)905.7|(% style="width:55px" %)905.9|(% style="width:53px" %)906.1|(% style="width:49px" %)906.3|(% style="width:52px" %)906.5|(% style="width:51px" %)906.7|(% style="width:51px" %)906.9|(% style="width:115px" %)Channel 16-23
932 -|(% style="width:47px" %)4|(% style="width:54px" %)907.1|(% style="width:53px" %)907.3|(% style="width:55px" %)907.5|(% style="width:53px" %)907.7|(% style="width:49px" %)907.9|(% style="width:52px" %)908.1|(% style="width:51px" %)908.3|(% style="width:51px" %)908.5|(% style="width:115px" %)Channel 24-31
933 -|(% style="width:47px" %)5|(% style="width:54px" %)908.7|(% style="width:53px" %)908.9|(% style="width:55px" %)909.1|(% style="width:53px" %)909.3|(% style="width:49px" %)909.5|(% style="width:52px" %)909.7|(% style="width:51px" %)909.9|(% style="width:51px" %)910.1|(% style="width:115px" %)Channel 32-39
934 -|(% style="width:47px" %)6|(% style="width:54px" %)910.3|(% style="width:53px" %)910.5|(% style="width:55px" %)910.7|(% style="width:53px" %)910.9|(% style="width:49px" %)911.1|(% style="width:52px" %)911.3|(% style="width:51px" %)911.5|(% style="width:51px" %)911.7|(% style="width:115px" %)Channel 40-47
935 -|(% style="width:47px" %)7|(% style="width:54px" %)911.9|(% style="width:53px" %)912.1|(% style="width:55px" %)912.3|(% style="width:53px" %)912.5|(% style="width:49px" %)912.7|(% style="width:52px" %)912.9|(% style="width:51px" %)913.1|(% style="width:51px" %)913.3|(% style="width:115px" %)Channel 48-55
936 -|(% style="width:47px" %)8|(% style="width:54px" %)913.5|(% style="width:53px" %)913.7|(% style="width:55px" %)913.9|(% style="width:53px" %)914.1|(% style="width:49px" %)914.3|(% style="width:52px" %)914.5|(% style="width:51px" %)914.7|(% style="width:51px" %)914.9|(% style="width:115px" %)Channel 56-63
937 -|(% colspan="10" style="color:#0070c0; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
938 -|(% style="width:47px" %) |(% style="width:54px" %)903|(% style="width:53px" %)904.6|(% style="width:55px" %)906.2|(% style="width:53px" %)907.8|(% style="width:49px" %)909.4|(% style="width:52px" %)911|(% style="width:51px" %)912.6|(% style="width:51px" %)914.2|(% style="width:115px" %)Channel 64-71
939 939  )))
940 940  
1010 +[[image:image-20220606154726-3.png]]
941 941  
1012 +
942 942  When you use the TTN network, the US915 frequency bands use are:
943 943  
944 944  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -970,34 +970,22 @@
970 970  
971 971  (((
972 972  The **AU915** band is similar. Below are the AU915 Uplink Channels.
973 -
974 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
975 -|(% style="background-color:#d9e2f3; color:#0070c0; width:45px" %)**CHE**|(% colspan="9" style="background-color:#d9e2f3; color:#0070c0; width:540px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
976 -|(% style="width:45px" %)0|(% colspan="9" style="width:540px" %)ENABLE Channel 0-63
977 -|(% style="width:45px" %)1|(% style="width:51px" %)915.2|(% style="width:51px" %)915.4|(% style="width:51px" %)915.6|(% style="width:52px" %)915.8|(% style="width:51px" %)916|(% style="width:51px" %)916.2|(% style="width:53px" %)916.4|(% style="width:51px" %)916.6|(% style="width:115px" %)Channel 0-7
978 -|(% style="width:45px" %)2|(% style="width:51px" %)916.8|(% style="width:51px" %)917|(% style="width:51px" %)917.2|(% style="width:52px" %)917.4|(% style="width:51px" %)917.6|(% style="width:51px" %)917.8|(% style="width:53px" %)918|(% style="width:51px" %)918.2|(% style="width:115px" %)Channel 8-15
979 -|(% style="width:45px" %)3|(% style="width:51px" %)918.4|(% style="width:51px" %)918.6|(% style="width:51px" %)918.8|(% style="width:52px" %)919|(% style="width:51px" %)919.2|(% style="width:51px" %)919.4|(% style="width:53px" %)919.6|(% style="width:51px" %)919.8|(% style="width:115px" %)Channel 16-23
980 -|(% style="width:45px" %)4|(% style="width:51px" %)920|(% style="width:51px" %)920.2|(% style="width:51px" %)920.4|(% style="width:52px" %)920.6|(% style="width:51px" %)920.8|(% style="width:51px" %)921|(% style="width:53px" %)921.2|(% style="width:51px" %)921.4|(% style="width:115px" %)Channel 24-31
981 -|(% style="width:45px" %)5|(% style="width:51px" %)921.6|(% style="width:51px" %)921.8|(% style="width:51px" %)922|(% style="width:52px" %)922.2|(% style="width:51px" %)922.4|(% style="width:51px" %)922.6|(% style="width:53px" %)922.8|(% style="width:51px" %)923|(% style="width:115px" %)Channel 32-39
982 -|(% style="width:45px" %)6|(% style="width:51px" %)923.2|(% style="width:51px" %)923.4|(% style="width:51px" %)923.6|(% style="width:52px" %)923.8|(% style="width:51px" %)924|(% style="width:51px" %)924.2|(% style="width:53px" %)924.4|(% style="width:51px" %)924.6|(% style="width:115px" %)Channel 40-47
983 -|(% style="width:45px" %)7|(% style="width:51px" %)924.8|(% style="width:51px" %)925|(% style="width:51px" %)925.2|(% style="width:52px" %)925.4|(% style="width:51px" %)925.6|(% style="width:51px" %)925.8|(% style="width:53px" %)926|(% style="width:51px" %)926.2|(% style="width:115px" %)Channel 48-55
984 -|(% style="width:45px" %)8|(% style="width:51px" %)926.4|(% style="width:51px" %)926.6|(% style="width:51px" %)926.8|(% style="width:52px" %)927|(% style="width:51px" %)927.2|(% style="width:51px" %)927.4|(% style="width:53px" %)927.6|(% style="width:51px" %)927.8|(% style="width:115px" %)Channel 56-63
985 -|(% colspan="10" style="color:#0070c0; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
986 -|(% style="width:45px" %) |(% style="width:51px" %)915.9|(% style="width:51px" %)917.5|(% style="width:51px" %)919.1|(% style="width:52px" %)920.7|(% style="width:51px" %)922.3|(% style="width:51px" %)923.9|(% style="width:53px" %)925.5|(% style="width:51px" %)927.1|(% style="width:115px" %)Channel 64-71
987 987  )))
988 988  
1046 +[[image:image-20220606154825-4.png]]
989 989  
990 990  
1049 +
991 991  == 4.2 ​Can I calibrate LSE01 to different soil types? ==
992 992  
993 993  
994 -(((
995 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20230522.pdf]].
996 -)))
1053 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
997 997  
998 998  
1056 +
999 999  = 5. Trouble Shooting =
1000 1000  
1059 +
1001 1001  == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1002 1002  
1003 1003  
... ... @@ -1004,6 +1004,7 @@
1004 1004  It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1005 1005  
1006 1006  
1066 +
1007 1007  == 5.2 AT Command input doesn't work ==
1008 1008  
1009 1009  
... ... @@ -1012,6 +1012,7 @@
1012 1012  )))
1013 1013  
1014 1014  
1075 +
1015 1015  == 5.3 Device rejoin in at the second uplink packet ==
1016 1016  
1017 1017  
... ... @@ -1029,13 +1029,12 @@
1029 1029  
1030 1030  (% style="color:#4f81bd" %)**Solution: **
1031 1031  
1032 -(((
1033 1033  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1034 -)))
1035 1035  
1036 1036  [[image:1654500929571-736.png||height="458" width="832"]]
1037 1037  
1038 1038  
1098 +
1039 1039  = 6. ​Order Info =
1040 1040  
1041 1041  
... ... @@ -1103,5 +1103,6 @@
1103 1103  
1104 1104  
1105 1105  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1106 -
1107 1107  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1167 +
1168 +
image-20230426084640-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -190.0 KB
Content
image-20231109094023-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -809.6 KB
Content