Last modified by Mengting Qiu on 2025/07/07 15:27

From version 47.4
edited by Xiaoling
on 2023/05/23 13:53
Change comment: There is no comment for this version
To version 59.1
edited by Xiaoling
on 2025/04/25 10:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -26,11 +26,11 @@
26 26  
27 27  
28 28  (((
29 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
29 +The Dragino LSE01 is a (% style="color:blue" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
30 30  )))
31 31  
32 32  (((
33 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
33 +It detects (% style="color:blue" %)**Soil Moisture**(%%), (% style="color:blue" %)**Soil Temperature**(%%) and (% style="color:blue" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
34 34  )))
35 35  
36 36  (((
... ... @@ -38,7 +38,7 @@
38 38  )))
39 39  
40 40  (((
41 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
41 +LES01 is powered by (% style="color:blue" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
42 42  )))
43 43  
44 44  (((
... ... @@ -72,17 +72,18 @@
72 72  
73 73  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74 74  
75 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
76 -|(% style="width:95px;background-color:#D9E2F3;color:#0070C0" %)**Parameter**|(% style="width:147px;background-color:#D9E2F3;color:#0070C0" %)**Soil Moisture**|(% style="width:138px;background-color:#D9E2F3;color:#0070C0" %)**Soil Conductivity**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**Soil Temperature**
75 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
76 +|(% style="background-color:#4f81bd; color:white; width:94px" %)**Parameter**|(% style="background-color:#4f81bd; color:white; width:145px" %)**Soil Moisture**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Conductivity**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Temperature**
77 77  |(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)(((
78 -0-20000uS/cm(25℃)(0-20.0EC)
78 +0-20000uS/cm
79 +(25℃)(0-20.0EC)
79 79  )))|(% style="width:140px" %)-40.00℃~85.00℃
80 -|(% style="width:95px" %)Unit|(% style="width:146px" %)V/V %,|(% style="width:137px" %)uS/cm,|(% style="width:140px" %)℃
81 +|(% style="width:95px" %)Unit|(% style="width:146px" %)V/V %|(% style="width:137px" %)uS/cm|(% style="width:140px" %)℃
81 81  |(% style="width:95px" %)Resolution|(% style="width:146px" %)0.01%|(% style="width:137px" %)1 uS/cm|(% style="width:140px" %)0.01℃
82 82  |(% style="width:95px" %)Accuracy|(% style="width:146px" %)(((
83 83  ±3% (0-53%)
84 84  ±5% (>53%)
85 -)))|(% style="width:137px" %)2%FS,|(% style="width:140px" %)(((
86 +)))|(% style="width:137px" %)2%FS|(% style="width:140px" %)(((
86 86  -10℃~50℃:<0.3℃
87 87  All other: <0.6℃
88 88  )))
... ... @@ -91,13 +91,10 @@
91 91  Method
92 92  )))|(% style="width:146px" %)FDR , with temperature &EC compensate|(% style="width:137px" %)Conductivity , with temperature compensate|(% style="width:140px" %)RTD, and calibrate
93 93  
94 -[[image:image-20220606162220-5.png]]
95 -
96 -
97 97  == 1.4 Dimension ==
98 98  
99 99  
100 -**Main Device Dimension:**
98 +(% style="color:blue" %)**Main Device Dimension:**
101 101  
102 102  See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
103 103  
... ... @@ -104,7 +104,7 @@
104 104  [[image:image-20221008140228-2.png||height="358" width="571"]]
105 105  
106 106  
107 -**Probe Dimension**
105 +(% style="color:blue" %)**Probe Dimension**
108 108  
109 109  [[image:image-20221008135912-1.png]]
110 110  
... ... @@ -150,33 +150,57 @@
150 150  
151 151  Each LSE01 is shipped with a sticker with the default device EUI as below:
152 152  
153 -[[image:image-20230426084640-1.png]]
151 +[[image:image-20230426084640-1.png||height="201" width="433"]]
154 154  
155 155  
156 156  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
157 157  
158 -**Add APP EUI in the application**
156 +**Create the application.**
159 159  
158 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
160 160  
161 -[[image:1654504596150-405.png]]
160 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
162 162  
163 163  
163 +**Add devices to the created Application.**
164 164  
165 -**Add APP KEY and DEV EUI**
165 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
166 166  
167 -[[image:1654504683289-357.png]]
167 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
168 168  
169 169  
170 +**Enter end device specifics manually.**
170 170  
171 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
172 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
172 172  
174 +**Add DevEUI and AppKey.**
173 173  
176 +**Customize a platform ID for the device.**
177 +
178 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
179 +
180 +
181 +(% style="color:blue" %)**Step 2**(%%):** Add decoder.**
182 +
183 +In TTN, user can add a custom payload so it shows friendly reading.
184 +
185 +Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
186 +
187 +Below is TTN screen shot:
188 +
189 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
190 +
191 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png"]]
192 +
193 +
194 +(% style="color:blue" %)**Step 3**(%%): Power on LSE01
195 +
174 174  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
175 175  
176 176  [[image:image-20220606163915-7.png]]
177 177  
178 178  
179 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
201 +The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
180 180  
181 181  [[image:1654504778294-788.png]]
182 182  
... ... @@ -183,7 +183,7 @@
183 183  
184 184  == 2.3 Uplink Payload ==
185 185  
186 -=== 2.3.1 MOD~=0(Default Mode) ===
208 +=== 2.3.1 MOD~=0(Default Mode)(% style="display:none" %) (%%) ===
187 187  
188 188  
189 189  LSE01 will uplink payload via LoRaWAN with below payload format: 
... ... @@ -192,11 +192,9 @@
192 192  Uplink payload includes in total 11 bytes.
193 193  )))
194 194  
195 -(% border="1" cellspacing="5" style="background-color:#ffffcc; width:500px" %)
196 -|=(% scope="row" %)(((
197 -**Size(bytes)**
198 -)))|**2**|**2**|**2**|**2**|**2**|**1**
199 -|=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
217 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
218 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
219 +|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
200 200  Temperature
201 201  (Reserve, Ignore now)
202 202  )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
... ... @@ -208,14 +208,12 @@
208 208  
209 209  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
210 210  
211 -(% border="1" cellspacing="5" style="background-color:#ffffcc; width:500px" %)
212 -|=(% scope="row" %)(((
213 -**Size(bytes)**
214 -)))|**2**|**2**|**2**|**2**|**2**|**1**
215 -|=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
231 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
232 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
233 +|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
216 216  Temperature
217 217  (Reserve, Ignore now)
218 -)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Dielectric constant>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
236 +)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|Dielectric constant(raw)|(((
219 219  MOD & Digital Interrupt(Optional)
220 220  )))
221 221  
... ... @@ -243,18 +243,10 @@
243 243  )))
244 244  
245 245  (((
246 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
264 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is (% style="color:blue" %)**05DC(H) = 1500(D) /100 = 15%.**
247 247  )))
248 248  
249 -(((
250 -
251 -)))
252 252  
253 -(((
254 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
255 -)))
256 -
257 -
258 258  === 2.3.5 Soil Temperature ===
259 259  
260 260  
... ... @@ -297,7 +297,7 @@
297 297  === 2.3.7 MOD ===
298 298  
299 299  
300 -Firmware version at least v2.1 supports changing mode.
310 +Firmware version at least v1.2.1 supports changing mode.
301 301  
302 302  For example, bytes[10]=90
303 303  
... ... @@ -304,7 +304,7 @@
304 304  mod=(bytes[10]>>7)&0x01=1.
305 305  
306 306  
307 -**Downlink Command:**
317 +(% style="color:blue" %)**Downlink Command:**
308 308  
309 309  If payload = 0x0A00, workmode=0
310 310  
... ... @@ -324,10 +324,11 @@
324 324  )))
325 325  
326 326  (((
327 -LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
337 +LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt]]
338 +
339 +
328 328  )))
329 329  
330 -
331 331  == 2.4 Uplink Interval ==
332 332  
333 333  
... ... @@ -339,17 +339,18 @@
339 339  
340 340  By default, LSE01 prints the downlink payload to console port.
341 341  
342 -[[image:image-20220606165544-8.png]]
353 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
354 +|=(% style="width: 183px; background-color:#4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)**
355 +|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
356 +|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
357 +|(% style="width:183px" %)AT+CFM|(% style="width:55px" %)Any|(% style="width:93px" %)05|(% style="width:146px" %)4
358 +|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
359 +|(% style="width:183px" %)MOD|(% style="width:55px" %)Any|(% style="width:93px" %)0A|(% style="width:146px" %)2
343 343  
344 -
345 345  (((
346 346  (% style="color:blue" %)**Examples:**
347 347  )))
348 348  
349 -(((
350 -
351 -)))
352 -
353 353  * (((
354 354  (% style="color:blue" %)**Set TDC**
355 355  )))
... ... @@ -715,10 +715,8 @@
715 715  
716 716  **Measurement the soil surface**
717 717  
718 -
719 719  [[image:1654506634463-199.png]] ​
720 720  
721 -
722 722  (((
723 723  (((
724 724  Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
... ... @@ -726,10 +726,8 @@
726 726  )))
727 727  
728 728  
729 -
730 730  [[image:1654506665940-119.png]]
731 731  
732 -
733 733  (((
734 734  Dig a hole with diameter > 20CM.
735 735  )))
... ... @@ -779,13 +779,13 @@
779 779  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
780 780  
781 781  
782 -[[image:1654501986557-872.png||height="391" width="800"]]
790 +[[image:image-20231111095033-3.png||height="591" width="855"]]
783 783  
784 784  
785 785  Or if you have below board, use below connection:
786 786  
787 787  
788 -[[image:1654502005655-729.png||height="503" width="801"]]
796 +[[image:image-20231109094023-1.png]]
789 789  
790 790  
791 791  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
... ... @@ -913,18 +913,10 @@
913 913  )))
914 914  
915 915  (((
916 -
917 -)))
918 -
919 -(((
920 920  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
921 921  )))
922 922  
923 923  (((
924 -
925 -)))
926 -
927 -(((
928 928  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
929 929  )))
930 930  
... ... @@ -934,11 +934,23 @@
934 934  
935 935  (((
936 936  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
937 +
938 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
939 +|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
940 +|(% style="width:47px" %)0|(% colspan="9" style="width:542px" %)ENABLE Channel 0-63
941 +|(% style="width:47px" %)1|(% style="width:54px" %)902.3|(% style="width:53px" %)902.5|(% style="width:55px" %)902.7|(% style="width:53px" %)902.9|(% style="width:49px" %)903.1|(% style="width:52px" %)903.3|(% style="width:51px" %)903.5|(% style="width:51px" %)903.7|(% style="width:115px" %)Channel 0-7
942 +|(% style="width:47px" %)2|(% style="width:54px" %)903.9|(% style="width:53px" %)904.1|(% style="width:55px" %)904.3|(% style="width:53px" %)904.5|(% style="width:49px" %)904.7|(% style="width:52px" %)904.9|(% style="width:51px" %)905.1|(% style="width:51px" %)905.3|(% style="width:115px" %)Channel 8-15
943 +|(% style="width:47px" %)3|(% style="width:54px" %)905.5|(% style="width:53px" %)905.7|(% style="width:55px" %)905.9|(% style="width:53px" %)906.1|(% style="width:49px" %)906.3|(% style="width:52px" %)906.5|(% style="width:51px" %)906.7|(% style="width:51px" %)906.9|(% style="width:115px" %)Channel 16-23
944 +|(% style="width:47px" %)4|(% style="width:54px" %)907.1|(% style="width:53px" %)907.3|(% style="width:55px" %)907.5|(% style="width:53px" %)907.7|(% style="width:49px" %)907.9|(% style="width:52px" %)908.1|(% style="width:51px" %)908.3|(% style="width:51px" %)908.5|(% style="width:115px" %)Channel 24-31
945 +|(% style="width:47px" %)5|(% style="width:54px" %)908.7|(% style="width:53px" %)908.9|(% style="width:55px" %)909.1|(% style="width:53px" %)909.3|(% style="width:49px" %)909.5|(% style="width:52px" %)909.7|(% style="width:51px" %)909.9|(% style="width:51px" %)910.1|(% style="width:115px" %)Channel 32-39
946 +|(% style="width:47px" %)6|(% style="width:54px" %)910.3|(% style="width:53px" %)910.5|(% style="width:55px" %)910.7|(% style="width:53px" %)910.9|(% style="width:49px" %)911.1|(% style="width:52px" %)911.3|(% style="width:51px" %)911.5|(% style="width:51px" %)911.7|(% style="width:115px" %)Channel 40-47
947 +|(% style="width:47px" %)7|(% style="width:54px" %)911.9|(% style="width:53px" %)912.1|(% style="width:55px" %)912.3|(% style="width:53px" %)912.5|(% style="width:49px" %)912.7|(% style="width:52px" %)912.9|(% style="width:51px" %)913.1|(% style="width:51px" %)913.3|(% style="width:115px" %)Channel 48-55
948 +|(% style="width:47px" %)8|(% style="width:54px" %)913.5|(% style="width:53px" %)913.7|(% style="width:55px" %)913.9|(% style="width:53px" %)914.1|(% style="width:49px" %)914.3|(% style="width:52px" %)914.5|(% style="width:51px" %)914.7|(% style="width:51px" %)914.9|(% style="width:115px" %)Channel 56-63
949 +|(% colspan="10" style="background-color:#4f81bd; color:white; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
950 +|(% style="width:47px" %) |(% style="width:54px" %)903|(% style="width:53px" %)904.6|(% style="width:55px" %)906.2|(% style="width:53px" %)907.8|(% style="width:49px" %)909.4|(% style="width:52px" %)911|(% style="width:51px" %)912.6|(% style="width:51px" %)914.2|(% style="width:115px" %)Channel 64-71
937 937  )))
938 938  
939 -[[image:image-20220606154726-3.png]]
940 940  
941 -
942 942  When you use the TTN network, the US915 frequency bands use are:
943 943  
944 944  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -970,9 +970,22 @@
970 970  
971 971  (((
972 972  The **AU915** band is similar. Below are the AU915 Uplink Channels.
985 +
986 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
987 +|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
988 +|(% style="width:45px" %)0|(% colspan="9" style="width:540px" %)ENABLE Channel 0-63
989 +|(% style="width:45px" %)1|(% style="width:51px" %)915.2|(% style="width:51px" %)915.4|(% style="width:51px" %)915.6|(% style="width:52px" %)915.8|(% style="width:51px" %)916|(% style="width:51px" %)916.2|(% style="width:53px" %)916.4|(% style="width:51px" %)916.6|(% style="width:115px" %)Channel 0-7
990 +|(% style="width:45px" %)2|(% style="width:51px" %)916.8|(% style="width:51px" %)917|(% style="width:51px" %)917.2|(% style="width:52px" %)917.4|(% style="width:51px" %)917.6|(% style="width:51px" %)917.8|(% style="width:53px" %)918|(% style="width:51px" %)918.2|(% style="width:115px" %)Channel 8-15
991 +|(% style="width:45px" %)3|(% style="width:51px" %)918.4|(% style="width:51px" %)918.6|(% style="width:51px" %)918.8|(% style="width:52px" %)919|(% style="width:51px" %)919.2|(% style="width:51px" %)919.4|(% style="width:53px" %)919.6|(% style="width:51px" %)919.8|(% style="width:115px" %)Channel 16-23
992 +|(% style="width:45px" %)4|(% style="width:51px" %)920|(% style="width:51px" %)920.2|(% style="width:51px" %)920.4|(% style="width:52px" %)920.6|(% style="width:51px" %)920.8|(% style="width:51px" %)921|(% style="width:53px" %)921.2|(% style="width:51px" %)921.4|(% style="width:115px" %)Channel 24-31
993 +|(% style="width:45px" %)5|(% style="width:51px" %)921.6|(% style="width:51px" %)921.8|(% style="width:51px" %)922|(% style="width:52px" %)922.2|(% style="width:51px" %)922.4|(% style="width:51px" %)922.6|(% style="width:53px" %)922.8|(% style="width:51px" %)923|(% style="width:115px" %)Channel 32-39
994 +|(% style="width:45px" %)6|(% style="width:51px" %)923.2|(% style="width:51px" %)923.4|(% style="width:51px" %)923.6|(% style="width:52px" %)923.8|(% style="width:51px" %)924|(% style="width:51px" %)924.2|(% style="width:53px" %)924.4|(% style="width:51px" %)924.6|(% style="width:115px" %)Channel 40-47
995 +|(% style="width:45px" %)7|(% style="width:51px" %)924.8|(% style="width:51px" %)925|(% style="width:51px" %)925.2|(% style="width:52px" %)925.4|(% style="width:51px" %)925.6|(% style="width:51px" %)925.8|(% style="width:53px" %)926|(% style="width:51px" %)926.2|(% style="width:115px" %)Channel 48-55
996 +|(% style="width:45px" %)8|(% style="width:51px" %)926.4|(% style="width:51px" %)926.6|(% style="width:51px" %)926.8|(% style="width:52px" %)927|(% style="width:51px" %)927.2|(% style="width:51px" %)927.4|(% style="width:53px" %)927.6|(% style="width:51px" %)927.8|(% style="width:115px" %)Channel 56-63
997 +|(% colspan="10" style="background-color:#4f81bd; color:white; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
998 +|(% style="width:45px" %) |(% style="width:51px" %)915.9|(% style="width:51px" %)917.5|(% style="width:51px" %)919.1|(% style="width:52px" %)920.7|(% style="width:51px" %)922.3|(% style="width:51px" %)923.9|(% style="width:53px" %)925.5|(% style="width:51px" %)927.1|(% style="width:115px" %)Channel 64-71
973 973  )))
974 974  
975 -[[image:image-20220606154825-4.png]]
976 976  
977 977  
978 978  == 4.2 ​Can I calibrate LSE01 to different soil types? ==
... ... @@ -979,7 +979,7 @@
979 979  
980 980  
981 981  (((
982 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1007 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20230522.pdf]].
983 983  )))
984 984  
985 985  
... ... @@ -1023,6 +1023,56 @@
1023 1023  [[image:1654500929571-736.png||height="458" width="832"]]
1024 1024  
1025 1025  
1051 +== 5.3 Possible reasons why the device is unresponsive: ==
1052 +
1053 +~1. Check whether the battery voltage is lower than 2.8V
1054 +2. Check whether the jumper of the device is correctly connected
1055 +
1056 +[[image:image-20240330173910-1.png]]
1057 +3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1058 +
1059 +[[image:image-20240330173932-2.png]]
1060 +
1061 += =
1062 +
1063 +
1064 +== 5.4 The node cannot read the sensor data ==
1065 +
1066 +This may be caused by a software firmware(≤1.1.6 version) bug, which we fixed in the latest firmware (>1.1.6 version)
1067 +
1068 +The user can fix this problem via upgrade firmware.
1069 +
1070 +By default, The latest firmware value of POWERIC is 1, while the 3322 version requires POWERIC to be set to 0 in order to function properly
1071 +
1072 +* **//1. Check if the hardware version is 3322//**
1073 +
1074 +If the sensor hardware version is 3322 or earlier, the user can change the POWERIC value to 0 after a firmware upgrade using one of the following methods
1075 +
1076 +
1077 +**a. Using AT command**
1078 +
1079 +(% class="box infomessage" %)
1080 +(((
1081 +AT+POWERIC=0.
1082 +)))
1083 +
1084 +
1085 +**b. Using Downlink**
1086 +
1087 +(% class="box infomessage" %)
1088 +(((
1089 +FF 00(AT+POWERIC=0).
1090 +)))
1091 +
1092 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20240531090837-1.png?rev=1.1||alt="image-20240531090837-1.png"]]
1093 +
1094 +Please check your hardware production date
1095 +
1096 +The first two digits are the week of the year, and the last two digits are the year.
1097 +
1098 +The number 3322 is the first batch we changed the power IC.
1099 +
1100 +
1026 1026  = 6. ​Order Info =
1027 1027  
1028 1028  
... ... @@ -1090,4 +1090,5 @@
1090 1090  
1091 1091  
1092 1092  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1168 +
1093 1093  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20231109094023-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +809.6 KB
Content
image-20231111093716-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20231111095027-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.7 MB
Content
image-20231111095033-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.7 MB
Content
image-20240330173910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +445.4 KB
Content
image-20240330173932-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +445.4 KB
Content