Changes for page LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Last modified by Mengting Qiu on 2025/07/07 15:27
From version 47.23
edited by Xiaoling
on 2023/05/31 11:13
on 2023/05/31 11:13
Change comment:
There is no comment for this version
To version 46.1
edited by Bei Jinggeng
on 2022/12/21 15:01
on 2022/12/21 15:01
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Bei - Content
-
... ... @@ -22,15 +22,16 @@ 22 22 23 23 = 1. Introduction = 24 24 25 + 25 25 == 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 26 27 27 28 28 ((( 29 -The Dragino LSE01 is a (% style="color:b lue" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 30 30 ))) 31 31 32 32 ((( 33 -It detects (% style="color:b lue" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:blue" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 34 34 ))) 35 35 36 36 ((( ... ... @@ -38,7 +38,7 @@ 38 38 ))) 39 39 40 40 ((( 41 -LES01 is powered by (% style="color:b lue" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 42 42 ))) 43 43 44 44 ((( ... ... @@ -52,6 +52,7 @@ 52 52 [[image:1654503265560-120.png]] 53 53 54 54 56 + 55 55 == 1.2 Features == 56 56 57 57 ... ... @@ -67,37 +67,19 @@ 67 67 * IP66 Waterproof Enclosure 68 68 * 4000mAh or 8500mAh Battery for long term use 69 69 70 - 71 71 == 1.3 Specification == 72 72 73 73 74 74 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 75 75 76 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %) 77 -|(% style="background-color:#d9e2f3; color:#0070c0; width:95px" %)**Parameter**|(% style="background-color:#d9e2f3; color:#0070c0; width:147px" %)**Soil Moisture**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Soil Conductivity**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Soil Temperature** 78 -|(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)((( 79 -0-20000uS/cm 80 -(25℃)(0-20.0EC) 81 -)))|(% style="width:140px" %)-40.00℃~85.00℃ 82 -|(% style="width:95px" %)Unit|(% style="width:146px" %)V/V %|(% style="width:137px" %)uS/cm|(% style="width:140px" %)℃ 83 -|(% style="width:95px" %)Resolution|(% style="width:146px" %)0.01%|(% style="width:137px" %)1 uS/cm|(% style="width:140px" %)0.01℃ 84 -|(% style="width:95px" %)Accuracy|(% style="width:146px" %)((( 85 -±3% (0-53%) 86 -±5% (>53%) 87 -)))|(% style="width:137px" %)2%FS|(% style="width:140px" %)((( 88 --10℃~50℃:<0.3℃ 89 -All other: <0.6℃ 90 -))) 91 -|(% style="width:95px" %)((( 92 -Measure 93 -Method 94 -)))|(% style="width:146px" %)FDR , with temperature &EC compensate|(% style="width:137px" %)Conductivity , with temperature compensate|(% style="width:140px" %)RTD, and calibrate 77 +[[image:image-20220606162220-5.png]] 95 95 96 96 80 + 97 97 == 1.4 Dimension == 98 98 99 99 100 - (% style="color:blue" %)**Main Device Dimension:**84 +**Main Device Dimension:** 101 101 102 102 See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]] 103 103 ... ... @@ -104,17 +104,17 @@ 104 104 [[image:image-20221008140228-2.png||height="358" width="571"]] 105 105 106 106 107 - (% style="color:blue" %)**Probe Dimension**91 +**Probe Dimension** 108 108 109 109 [[image:image-20221008135912-1.png]] 110 110 111 111 96 + 112 112 == 1.5 Applications == 113 113 114 114 115 115 * Smart Agriculture 116 116 117 - 118 118 == 1.6 Firmware Change log == 119 119 120 120 ... ... @@ -121,8 +121,10 @@ 121 121 **LSE01 v1.0 :** Release 122 122 123 123 108 + 124 124 = 2. Configure LSE01 to connect to LoRaWAN network = 125 125 111 + 126 126 == 2.1 How it works == 127 127 128 128 ... ... @@ -135,6 +135,7 @@ 135 135 ))) 136 136 137 137 124 + 138 138 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 139 139 140 140 ... ... @@ -151,7 +151,7 @@ 151 151 152 152 Each LSE01 is shipped with a sticker with the default device EUI as below: 153 153 154 -[[image:image-202 30426084640-1.png||height="241" width="519"]]141 +[[image:image-20220606163732-6.jpeg]] 155 155 156 156 157 157 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: ... ... @@ -182,11 +182,13 @@ 182 182 [[image:1654504778294-788.png]] 183 183 184 184 172 + 185 185 == 2.3 Uplink Payload == 186 186 187 -=== 2.3.1 MOD~=0(Default Mode)(% style="display:none" %) (%%) === 188 188 176 +=== 2.3.1 MOD~=0(Default Mode) === 189 189 178 + 190 190 LSE01 will uplink payload via LoRaWAN with below payload format: 191 191 192 192 ((( ... ... @@ -193,9 +193,11 @@ 193 193 Uplink payload includes in total 11 bytes. 194 194 ))) 195 195 196 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %) 197 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 198 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +(% border="1" cellspacing="5" style="background-color:#ffffcc; width:500px" %) 186 +|=(% scope="row" %)((( 187 +**Size(bytes)** 188 +)))|**2**|**2**|**2**|**2**|**2**|**1** 189 +|=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 199 199 Temperature 200 200 (Reserve, Ignore now) 201 201 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( ... ... @@ -208,9 +208,11 @@ 208 208 209 209 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 210 210 211 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %) 212 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**1** 213 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 202 +(% border="1" cellspacing="5" style="background-color:#ffffcc; width:500px" %) 203 +|=(% scope="row" %)((( 204 +**Size(bytes)** 205 +)))|**2**|**2**|**2**|**2**|**2**|**1** 206 +|=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 214 214 Temperature 215 215 (Reserve, Ignore now) 216 216 )))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Dielectric constant>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( ... ... @@ -234,6 +234,7 @@ 234 234 ))) 235 235 236 236 230 + 237 237 === 2.3.4 Soil Moisture === 238 238 239 239 ... ... @@ -250,15 +250,16 @@ 250 250 ))) 251 251 252 252 ((( 253 -(% style="color:b lue" %)**05DC(H) = 1500(D) /100 = 15%.**247 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 254 254 ))) 255 255 256 256 251 + 257 257 === 2.3.5 Soil Temperature === 258 258 259 259 260 260 ((( 261 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 256 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 262 262 ))) 263 263 264 264 ((( ... ... @@ -274,6 +274,7 @@ 274 274 ))) 275 275 276 276 272 + 277 277 === 2.3.6 Soil Conductivity (EC) === 278 278 279 279 ... ... @@ -293,6 +293,10 @@ 293 293 294 294 ))) 295 295 292 +((( 293 + 294 +))) 295 + 296 296 === 2.3.7 MOD === 297 297 298 298 ... ... @@ -303,7 +303,7 @@ 303 303 mod=(bytes[10]>>7)&0x01=1. 304 304 305 305 306 - (% style="color:blue" %)**Downlink Command:**306 +**Downlink Command:** 307 307 308 308 If payload = 0x0A00, workmode=0 309 309 ... ... @@ -310,6 +310,7 @@ 310 310 If** **payload =** **0x0A01, workmode=1 311 311 312 312 313 + 313 313 === 2.3.8 Decode payload in The Things Network === 314 314 315 315 ... ... @@ -323,11 +323,11 @@ 323 323 ))) 324 324 325 325 ((( 326 -LSE01 TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSE01>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSE01]] 327 - 328 - 327 +LSE01 TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]] 329 329 ))) 330 330 330 + 331 + 331 331 == 2.4 Uplink Interval == 332 332 333 333 ... ... @@ -334,19 +334,15 @@ 334 334 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 335 335 336 336 338 + 337 337 == 2.5 Downlink Payload == 338 338 339 339 340 340 By default, LSE01 prints the downlink payload to console port. 341 341 342 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479.818px" %) 343 -|=(% style="width: 183px; background-color:#D9E2F3;color:#0070C0" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#D9E2F3;color:#0070C0" %)FPort|=(% style="width: 93px; background-color:#D9E2F3;color:#0070C0" %)**Type Code**|=(% style="width: 146px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Downlink payload size(bytes)** 344 -|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4 345 -|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2 346 -|(% style="width:183px" %)AT+CFM|(% style="width:55px" %)Any|(% style="width:93px" %)05|(% style="width:146px" %)4 347 -|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4 348 -|(% style="width:183px" %)MOD|(% style="width:55px" %)Any|(% style="width:93px" %)0A|(% style="width:146px" %)2 344 +[[image:image-20220606165544-8.png]] 349 349 346 + 350 350 ((( 351 351 (% style="color:blue" %)**Examples:** 352 352 ))) ... ... @@ -389,6 +389,7 @@ 389 389 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 390 390 391 391 389 + 392 392 == 2.6 Show Data in DataCake IoT Server == 393 393 394 394 ... ... @@ -428,6 +428,7 @@ 428 428 [[image:1654505925508-181.png]] 429 429 430 430 429 + 431 431 == 2.7 Frequency Plans == 432 432 433 433 ... ... @@ -434,6 +434,7 @@ 434 434 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 435 435 436 436 436 + 437 437 === 2.7.1 EU863-870 (EU868) === 438 438 439 439 ... ... @@ -465,6 +465,7 @@ 465 465 869.525 - SF9BW125 (RX2 downlink only) 466 466 467 467 468 + 468 468 === 2.7.2 US902-928(US915) === 469 469 470 470 ... ... @@ -510,6 +510,7 @@ 510 510 923.3 - SF12BW500(RX2 downlink only) 511 511 512 512 514 + 513 513 === 2.7.3 CN470-510 (CN470) === 514 514 515 515 ... ... @@ -555,6 +555,7 @@ 555 555 505.3 - SF12BW125 (RX2 downlink only) 556 556 557 557 560 + 558 558 === 2.7.4 AU915-928(AU915) === 559 559 560 560 ... ... @@ -600,6 +600,7 @@ 600 600 923.3 - SF12BW500(RX2 downlink only) 601 601 602 602 606 + 603 603 === 2.7.5 AS920-923 & AS923-925 (AS923) === 604 604 605 605 ... ... @@ -651,6 +651,7 @@ 651 651 923.2 - SF10BW125 (RX2) 652 652 653 653 658 + 654 654 === 2.7.6 KR920-923 (KR920) === 655 655 656 656 ... ... @@ -687,6 +687,7 @@ 687 687 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 688 688 689 689 695 + 690 690 === 2.7.7 IN865-867 (IN865) === 691 691 692 692 ... ... @@ -706,6 +706,8 @@ 706 706 866.550 - SF10BW125 (RX2) 707 707 708 708 715 + 716 + 709 709 == 2.8 LED Indicator == 710 710 711 711 ... ... @@ -721,8 +721,10 @@ 721 721 722 722 **Measurement the soil surface** 723 723 732 + 724 724 [[image:1654506634463-199.png]] 725 725 735 + 726 726 ((( 727 727 ((( 728 728 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. ... ... @@ -730,8 +730,10 @@ 730 730 ))) 731 731 732 732 743 + 733 733 [[image:1654506665940-119.png]] 734 734 746 + 735 735 ((( 736 736 Dig a hole with diameter > 20CM. 737 737 ))) ... ... @@ -741,6 +741,7 @@ 741 741 ))) 742 742 743 743 756 + 744 744 == 2.10 Firmware Change Log == 745 745 746 746 ... ... @@ -749,6 +749,10 @@ 749 749 ))) 750 750 751 751 ((( 765 + 766 +))) 767 + 768 +((( 752 752 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 753 753 ))) 754 754 ... ... @@ -765,16 +765,70 @@ 765 765 ))) 766 766 767 767 768 -== 2.11 Battery & Power Consumption == 769 769 786 +== 2.11 Battery Analysis == 770 770 771 -LSE01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 772 772 773 - [[**BatteryInfo & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]].789 +=== 2.11.1 Battery Type === 774 774 775 775 792 +((( 793 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 794 +))) 795 + 796 +((( 797 +The battery is designed to last for more than 5 years for the LSN50. 798 +))) 799 + 800 +((( 801 +((( 802 +The battery-related documents are as below: 803 +))) 804 +))) 805 + 806 +* ((( 807 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 808 +))) 809 +* ((( 810 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 811 +))) 812 +* ((( 813 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 814 +))) 815 + 816 + [[image:image-20220610172436-1.png]] 817 + 818 + 819 + 820 +=== 2.11.2 Battery Note === 821 + 822 + 823 +((( 824 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 825 +))) 826 + 827 + 828 + 829 +=== 2.11.3 Replace the battery === 830 + 831 + 832 +((( 833 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 834 +))) 835 + 836 +((( 837 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board. 838 +))) 839 + 840 +((( 841 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 842 +))) 843 + 844 + 845 + 776 776 = 3. Using the AT Commands = 777 777 848 + 778 778 == 3.1 Access AT Commands == 779 779 780 780 ... ... @@ -790,6 +790,7 @@ 790 790 [[image:1654502005655-729.png||height="503" width="801"]] 791 791 792 792 864 + 793 793 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 794 794 795 795 ... ... @@ -904,8 +904,10 @@ 904 904 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 905 905 906 906 979 + 907 907 = 4. FAQ = 908 908 982 + 909 909 == 4.1 How to change the LoRa Frequency Bands/Region? == 910 910 911 911 ... ... @@ -915,10 +915,18 @@ 915 915 ))) 916 916 917 917 ((( 992 + 993 +))) 994 + 995 +((( 918 918 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 919 919 ))) 920 920 921 921 ((( 1000 + 1001 +))) 1002 + 1003 +((( 922 922 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 923 923 ))) 924 924 ... ... @@ -928,23 +928,11 @@ 928 928 929 929 ((( 930 930 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 931 - 932 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %) 933 -|(% style="background-color:#d9e2f3; color:#0070c0; width:47px" %)**CHE**|(% colspan="9" style="background-color:#d9e2f3; color:#0070c0; width:542px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)** 934 -|(% style="width:47px" %)0|(% colspan="9" style="width:542px" %)ENABLE Channel 0-63 935 -|(% style="width:47px" %)1|(% style="width:54px" %)902.3|(% style="width:53px" %)902.5|(% style="width:55px" %)902.7|(% style="width:53px" %)902.9|(% style="width:49px" %)903.1|(% style="width:52px" %)903.3|(% style="width:51px" %)903.5|(% style="width:51px" %)903.7|(% style="width:115px" %)Channel 0-7 936 -|(% style="width:47px" %)2|(% style="width:54px" %)903.9|(% style="width:53px" %)904.1|(% style="width:55px" %)904.3|(% style="width:53px" %)904.5|(% style="width:49px" %)904.7|(% style="width:52px" %)904.9|(% style="width:51px" %)905.1|(% style="width:51px" %)905.3|(% style="width:115px" %)Channel 8-15 937 -|(% style="width:47px" %)3|(% style="width:54px" %)905.5|(% style="width:53px" %)905.7|(% style="width:55px" %)905.9|(% style="width:53px" %)906.1|(% style="width:49px" %)906.3|(% style="width:52px" %)906.5|(% style="width:51px" %)906.7|(% style="width:51px" %)906.9|(% style="width:115px" %)Channel 16-23 938 -|(% style="width:47px" %)4|(% style="width:54px" %)907.1|(% style="width:53px" %)907.3|(% style="width:55px" %)907.5|(% style="width:53px" %)907.7|(% style="width:49px" %)907.9|(% style="width:52px" %)908.1|(% style="width:51px" %)908.3|(% style="width:51px" %)908.5|(% style="width:115px" %)Channel 24-31 939 -|(% style="width:47px" %)5|(% style="width:54px" %)908.7|(% style="width:53px" %)908.9|(% style="width:55px" %)909.1|(% style="width:53px" %)909.3|(% style="width:49px" %)909.5|(% style="width:52px" %)909.7|(% style="width:51px" %)909.9|(% style="width:51px" %)910.1|(% style="width:115px" %)Channel 32-39 940 -|(% style="width:47px" %)6|(% style="width:54px" %)910.3|(% style="width:53px" %)910.5|(% style="width:55px" %)910.7|(% style="width:53px" %)910.9|(% style="width:49px" %)911.1|(% style="width:52px" %)911.3|(% style="width:51px" %)911.5|(% style="width:51px" %)911.7|(% style="width:115px" %)Channel 40-47 941 -|(% style="width:47px" %)7|(% style="width:54px" %)911.9|(% style="width:53px" %)912.1|(% style="width:55px" %)912.3|(% style="width:53px" %)912.5|(% style="width:49px" %)912.7|(% style="width:52px" %)912.9|(% style="width:51px" %)913.1|(% style="width:51px" %)913.3|(% style="width:115px" %)Channel 48-55 942 -|(% style="width:47px" %)8|(% style="width:54px" %)913.5|(% style="width:53px" %)913.7|(% style="width:55px" %)913.9|(% style="width:53px" %)914.1|(% style="width:49px" %)914.3|(% style="width:52px" %)914.5|(% style="width:51px" %)914.7|(% style="width:51px" %)914.9|(% style="width:115px" %)Channel 56-63 943 -|(% colspan="10" style="color:#0070c0; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)** 944 -|(% style="width:47px" %) |(% style="width:54px" %)903|(% style="width:53px" %)904.6|(% style="width:55px" %)906.2|(% style="width:53px" %)907.8|(% style="width:49px" %)909.4|(% style="width:52px" %)911|(% style="width:51px" %)912.6|(% style="width:51px" %)914.2|(% style="width:115px" %)Channel 64-71 945 945 ))) 946 946 1015 +[[image:image-20220606154726-3.png]] 947 947 1017 + 948 948 When you use the TTN network, the US915 frequency bands use are: 949 949 950 950 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -976,34 +976,24 @@ 976 976 977 977 ((( 978 978 The **AU915** band is similar. Below are the AU915 Uplink Channels. 979 - 980 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %) 981 -|(% style="background-color:#d9e2f3; color:#0070c0; width:45px" %)**CHE**|(% colspan="9" style="background-color:#d9e2f3; color:#0070c0; width:540px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)** 982 -|(% style="width:45px" %)0|(% colspan="9" style="width:540px" %)ENABLE Channel 0-63 983 -|(% style="width:45px" %)1|(% style="width:51px" %)915.2|(% style="width:51px" %)915.4|(% style="width:51px" %)915.6|(% style="width:52px" %)915.8|(% style="width:51px" %)916|(% style="width:51px" %)916.2|(% style="width:53px" %)916.4|(% style="width:51px" %)916.6|(% style="width:115px" %)Channel 0-7 984 -|(% style="width:45px" %)2|(% style="width:51px" %)916.8|(% style="width:51px" %)917|(% style="width:51px" %)917.2|(% style="width:52px" %)917.4|(% style="width:51px" %)917.6|(% style="width:51px" %)917.8|(% style="width:53px" %)918|(% style="width:51px" %)918.2|(% style="width:115px" %)Channel 8-15 985 -|(% style="width:45px" %)3|(% style="width:51px" %)918.4|(% style="width:51px" %)918.6|(% style="width:51px" %)918.8|(% style="width:52px" %)919|(% style="width:51px" %)919.2|(% style="width:51px" %)919.4|(% style="width:53px" %)919.6|(% style="width:51px" %)919.8|(% style="width:115px" %)Channel 16-23 986 -|(% style="width:45px" %)4|(% style="width:51px" %)920|(% style="width:51px" %)920.2|(% style="width:51px" %)920.4|(% style="width:52px" %)920.6|(% style="width:51px" %)920.8|(% style="width:51px" %)921|(% style="width:53px" %)921.2|(% style="width:51px" %)921.4|(% style="width:115px" %)Channel 24-31 987 -|(% style="width:45px" %)5|(% style="width:51px" %)921.6|(% style="width:51px" %)921.8|(% style="width:51px" %)922|(% style="width:52px" %)922.2|(% style="width:51px" %)922.4|(% style="width:51px" %)922.6|(% style="width:53px" %)922.8|(% style="width:51px" %)923|(% style="width:115px" %)Channel 32-39 988 -|(% style="width:45px" %)6|(% style="width:51px" %)923.2|(% style="width:51px" %)923.4|(% style="width:51px" %)923.6|(% style="width:52px" %)923.8|(% style="width:51px" %)924|(% style="width:51px" %)924.2|(% style="width:53px" %)924.4|(% style="width:51px" %)924.6|(% style="width:115px" %)Channel 40-47 989 -|(% style="width:45px" %)7|(% style="width:51px" %)924.8|(% style="width:51px" %)925|(% style="width:51px" %)925.2|(% style="width:52px" %)925.4|(% style="width:51px" %)925.6|(% style="width:51px" %)925.8|(% style="width:53px" %)926|(% style="width:51px" %)926.2|(% style="width:115px" %)Channel 48-55 990 -|(% style="width:45px" %)8|(% style="width:51px" %)926.4|(% style="width:51px" %)926.6|(% style="width:51px" %)926.8|(% style="width:52px" %)927|(% style="width:51px" %)927.2|(% style="width:51px" %)927.4|(% style="width:53px" %)927.6|(% style="width:51px" %)927.8|(% style="width:115px" %)Channel 56-63 991 -|(% colspan="10" style="color:#0070c0; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)** 992 -|(% style="width:45px" %) |(% style="width:51px" %)915.9|(% style="width:51px" %)917.5|(% style="width:51px" %)919.1|(% style="width:52px" %)920.7|(% style="width:51px" %)922.3|(% style="width:51px" %)923.9|(% style="width:53px" %)925.5|(% style="width:51px" %)927.1|(% style="width:115px" %)Channel 64-71 993 993 ))) 994 994 1051 +[[image:image-20220606154825-4.png]] 995 995 996 996 1054 + 997 997 == 4.2 Can I calibrate LSE01 to different soil types? == 998 998 999 999 1000 1000 ((( 1001 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/ downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20230522.pdf]].1059 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1002 1002 ))) 1003 1003 1004 1004 1063 + 1005 1005 = 5. Trouble Shooting = 1006 1006 1066 + 1007 1007 == 5.1 Why I can't join TTN in US915 / AU915 bands? == 1008 1008 1009 1009 ... ... @@ -1010,6 +1010,7 @@ 1010 1010 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1011 1011 1012 1012 1073 + 1013 1013 == 5.2 AT Command input doesn't work == 1014 1014 1015 1015 ... ... @@ -1018,6 +1018,7 @@ 1018 1018 ))) 1019 1019 1020 1020 1082 + 1021 1021 == 5.3 Device rejoin in at the second uplink packet == 1022 1022 1023 1023 ... ... @@ -1042,6 +1042,7 @@ 1042 1042 [[image:1654500929571-736.png||height="458" width="832"]] 1043 1043 1044 1044 1107 + 1045 1045 = 6. Order Info = 1046 1046 1047 1047 ... ... @@ -1109,5 +1109,6 @@ 1109 1109 1110 1110 1111 1111 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1112 - 1113 1113 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1176 + 1177 +
- image-20230426084640-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -190.0 KB - Content