Last modified by Mengting Qiu on 2025/07/07 15:27

From version 42.1
edited by Xiaoling
on 2022/07/08 13:45
Change comment: There is no comment for this version
To version 59.1
edited by Xiaoling
on 2025/04/25 10:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -24,14 +24,13 @@
24 24  
25 25  == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 26  
27 -(((
28 -
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
28 +(((
29 +The Dragino LSE01 is a (% style="color:blue" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 31  )))
32 32  
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
33 +It detects (% style="color:blue" %)**Soil Moisture**(%%), (% style="color:blue" %)**Soil Temperature**(%%) and (% style="color:blue" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 35  )))
36 36  
37 37  (((
... ... @@ -39,7 +39,7 @@
39 39  )))
40 40  
41 41  (((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
41 +LES01 is powered by (% style="color:blue" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 43  )))
44 44  
45 45  (((
... ... @@ -53,9 +53,9 @@
53 53  [[image:1654503265560-120.png]]
54 54  
55 55  
56 -
57 57  == 1.2 ​Features ==
58 58  
57 +
59 59  * LoRaWAN 1.0.3 Class A
60 60  * Ultra low power consumption
61 61  * Monitor Soil Moisture
... ... @@ -68,46 +68,74 @@
68 68  * IP66 Waterproof Enclosure
69 69  * 4000mAh or 8500mAh Battery for long term use
70 70  
71 -
72 -
73 73  == 1.3 Specification ==
74 74  
72 +
75 75  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
76 76  
77 -[[image:image-20220606162220-5.png]]
75 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
76 +|(% style="background-color:#4f81bd; color:white; width:94px" %)**Parameter**|(% style="background-color:#4f81bd; color:white; width:145px" %)**Soil Moisture**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Conductivity**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Temperature**
77 +|(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)(((
78 +0-20000uS/cm
79 +(25℃)(0-20.0EC)
80 +)))|(% style="width:140px" %)-40.00℃~85.00℃
81 +|(% style="width:95px" %)Unit|(% style="width:146px" %)V/V %|(% style="width:137px" %)uS/cm|(% style="width:140px" %)℃
82 +|(% style="width:95px" %)Resolution|(% style="width:146px" %)0.01%|(% style="width:137px" %)1 uS/cm|(% style="width:140px" %)0.01℃
83 +|(% style="width:95px" %)Accuracy|(% style="width:146px" %)(((
84 +±3% (0-53%)
85 +±5% (>53%)
86 +)))|(% style="width:137px" %)2%FS|(% style="width:140px" %)(((
87 +-10℃~50℃:<0.3℃
88 +All other: <0.6℃
89 +)))
90 +|(% style="width:95px" %)(((
91 +Measure
92 +Method
93 +)))|(% style="width:146px" %)FDR , with temperature &EC compensate|(% style="width:137px" %)Conductivity , with temperature compensate|(% style="width:140px" %)RTD, and calibrate
78 78  
95 +== 1.4 Dimension ==
79 79  
80 80  
81 -== ​1.4 Applications ==
98 +(% style="color:blue" %)**Main Device Dimension:**
82 82  
83 -* Smart Agriculture
100 +See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
84 84  
85 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
86 -​
102 +[[image:image-20221008140228-2.png||height="358" width="571"]]
87 87  
88 -== 1.5 Firmware Change log ==
89 89  
105 +(% style="color:blue" %)**Probe Dimension**
90 90  
91 -**LSE01 v1.0 :**  Release
107 +[[image:image-20221008135912-1.png]]
92 92  
93 93  
110 +== ​1.5 Applications ==
94 94  
112 +
113 +* Smart Agriculture​
114 +
115 +== 1.6 Firmware Change log ==
116 +
117 +
118 +**LSE01 v1.0 :**  Release
119 +
120 +
95 95  = 2. Configure LSE01 to connect to LoRaWAN network =
96 96  
97 97  == 2.1 How it works ==
98 98  
125 +
99 99  (((
100 100  The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
101 101  )))
102 102  
103 103  (((
104 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
131 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
105 105  )))
106 106  
107 107  
108 -
109 109  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
110 110  
137 +
111 111  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 112  
113 113  
... ... @@ -121,41 +121,65 @@
121 121  
122 122  Each LSE01 is shipped with a sticker with the default device EUI as below:
123 123  
124 -[[image:image-20220606163732-6.jpeg]]
151 +[[image:image-20230426084640-1.png||height="201" width="433"]]
125 125  
153 +
126 126  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
127 127  
128 -**Add APP EUI in the application**
156 +**Create the application.**
129 129  
158 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
130 130  
131 -[[image:1654504596150-405.png]]
160 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
132 132  
133 133  
163 +**Add devices to the created Application.**
134 134  
135 -**Add APP KEY and DEV EUI**
165 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
136 136  
137 -[[image:1654504683289-357.png]]
167 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
138 138  
139 139  
170 +**Enter end device specifics manually.**
140 140  
141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
172 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
142 142  
174 +**Add DevEUI and AppKey.**
143 143  
176 +**Customize a platform ID for the device.**
177 +
178 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
179 +
180 +
181 +(% style="color:blue" %)**Step 2**(%%):** Add decoder.**
182 +
183 +In TTN, user can add a custom payload so it shows friendly reading.
184 +
185 +Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
186 +
187 +Below is TTN screen shot:
188 +
189 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
190 +
191 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png"]]
192 +
193 +
194 +(% style="color:blue" %)**Step 3**(%%): Power on LSE01
195 +
144 144  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
145 145  
146 146  [[image:image-20220606163915-7.png]]
147 147  
148 148  
149 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
201 +The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 150  
151 151  [[image:1654504778294-788.png]]
152 152  
153 153  
154 -
155 155  == 2.3 Uplink Payload ==
156 156  
208 +=== 2.3.1 MOD~=0(Default Mode)(% style="display:none" %) (%%) ===
157 157  
158 -=== 2.3.1 MOD~=0(Default Mode) ===
159 159  
160 160  LSE01 will uplink payload via LoRaWAN with below payload format: 
161 161  
... ... @@ -163,48 +163,32 @@
163 163  Uplink payload includes in total 11 bytes.
164 164  )))
165 165  
166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
167 -|(((
168 -**Size**
169 -
170 -**(bytes)**
171 -)))|**2**|**2**|**2**|**2**|**2**|**1**
172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
217 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
218 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
219 +|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
173 173  Temperature
174 -
175 175  (Reserve, Ignore now)
176 176  )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
177 -MOD & Digital Interrupt
178 -
179 -(Optional)
223 +MOD & Digital Interrupt(Optional)
180 180  )))
181 181  
182 -
183 -
184 184  === 2.3.2 MOD~=1(Original value) ===
185 185  
228 +
186 186  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
187 187  
188 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
189 -|(((
190 -**Size**
191 -
192 -**(bytes)**
193 -)))|**2**|**2**|**2**|**2**|**2**|**1**
194 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
231 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
232 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
233 +|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
195 195  Temperature
196 -
197 197  (Reserve, Ignore now)
198 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
199 -MOD & Digital Interrupt
200 -
201 -(Optional)
236 +)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|Dielectric constant(raw)|(((
237 +MOD & Digital Interrupt(Optional)
202 202  )))
203 203  
204 -
205 -
206 206  === 2.3.3 Battery Info ===
207 207  
242 +
208 208  (((
209 209  Check the battery voltage for LSE01.
210 210  )))
... ... @@ -218,31 +218,23 @@
218 218  )))
219 219  
220 220  
221 -
222 222  === 2.3.4 Soil Moisture ===
223 223  
258 +
224 224  (((
225 225  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
226 226  )))
227 227  
228 228  (((
229 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
264 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is (% style="color:blue" %)**05DC(H) = 1500(D) /100 = 15%.**
230 230  )))
231 231  
232 -(((
233 -
234 -)))
235 235  
236 -(((
237 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
238 -)))
239 -
240 -
241 -
242 242  === 2.3.5 Soil Temperature ===
243 243  
270 +
244 244  (((
245 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
272 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
246 246  )))
247 247  
248 248  (((
... ... @@ -258,9 +258,9 @@
258 258  )))
259 259  
260 260  
261 -
262 262  === 2.3.6 Soil Conductivity (EC) ===
263 263  
290 +
264 264  (((
265 265  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
266 266  )))
... ... @@ -277,20 +277,17 @@
277 277  
278 278  )))
279 279  
280 -(((
281 -
282 -)))
283 -
284 284  === 2.3.7 MOD ===
285 285  
286 -Firmware version at least v2.1 supports changing mode.
287 287  
310 +Firmware version at least v1.2.1 supports changing mode.
311 +
288 288  For example, bytes[10]=90
289 289  
290 290  mod=(bytes[10]>>7)&0x01=1.
291 291  
292 292  
293 -**Downlink Command:**
317 +(% style="color:blue" %)**Downlink Command:**
294 294  
295 295  If payload = 0x0A00, workmode=0
296 296  
... ... @@ -297,9 +297,9 @@
297 297  If** **payload =** **0x0A01, workmode=1
298 298  
299 299  
300 -
301 301  === 2.3.8 ​Decode payload in The Things Network ===
302 302  
326 +
303 303  While using TTN network, you can add the payload format to decode the payload.
304 304  
305 305  
... ... @@ -310,32 +310,34 @@
310 310  )))
311 311  
312 312  (((
313 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
337 +LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt]]
338 +
339 +
314 314  )))
315 315  
316 -
317 -
318 318  == 2.4 Uplink Interval ==
319 319  
344 +
320 320  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
321 321  
322 322  
323 -
324 324  == 2.5 Downlink Payload ==
325 325  
350 +
326 326  By default, LSE01 prints the downlink payload to console port.
327 327  
328 -[[image:image-20220606165544-8.png]]
353 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
354 +|=(% style="width: 183px; background-color:#4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)**
355 +|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
356 +|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
357 +|(% style="width:183px" %)AT+CFM|(% style="width:55px" %)Any|(% style="width:93px" %)05|(% style="width:146px" %)4
358 +|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
359 +|(% style="width:183px" %)MOD|(% style="width:55px" %)Any|(% style="width:93px" %)0A|(% style="width:146px" %)2
329 329  
330 -
331 331  (((
332 332  (% style="color:blue" %)**Examples:**
333 333  )))
334 334  
335 -(((
336 -
337 -)))
338 -
339 339  * (((
340 340  (% style="color:blue" %)**Set TDC**
341 341  )))
... ... @@ -370,9 +370,9 @@
370 370  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
371 371  
372 372  
373 -
374 374  == 2.6 ​Show Data in DataCake IoT Server ==
375 375  
401 +
376 376  (((
377 377  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
378 378  )))
... ... @@ -409,14 +409,15 @@
409 409  [[image:1654505925508-181.png]]
410 410  
411 411  
412 -
413 413  == 2.7 Frequency Plans ==
414 414  
440 +
415 415  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
416 416  
417 417  
418 418  === 2.7.1 EU863-870 (EU868) ===
419 419  
446 +
420 420  (% style="color:#037691" %)** Uplink:**
421 421  
422 422  868.1 - SF7BW125 to SF12BW125
... ... @@ -445,9 +445,9 @@
445 445  869.525 - SF9BW125 (RX2 downlink only)
446 446  
447 447  
448 -
449 449  === 2.7.2 US902-928(US915) ===
450 450  
477 +
451 451  Used in USA, Canada and South America. Default use CHE=2
452 452  
453 453  (% style="color:#037691" %)**Uplink:**
... ... @@ -490,9 +490,9 @@
490 490  923.3 - SF12BW500(RX2 downlink only)
491 491  
492 492  
493 -
494 494  === 2.7.3 CN470-510 (CN470) ===
495 495  
522 +
496 496  Used in China, Default use CHE=1
497 497  
498 498  (% style="color:#037691" %)**Uplink:**
... ... @@ -535,9 +535,9 @@
535 535  505.3 - SF12BW125 (RX2 downlink only)
536 536  
537 537  
538 -
539 539  === 2.7.4 AU915-928(AU915) ===
540 540  
567 +
541 541  Default use CHE=2
542 542  
543 543  (% style="color:#037691" %)**Uplink:**
... ... @@ -580,9 +580,9 @@
580 580  923.3 - SF12BW500(RX2 downlink only)
581 581  
582 582  
583 -
584 584  === 2.7.5 AS920-923 & AS923-925 (AS923) ===
585 585  
612 +
586 586  (% style="color:#037691" %)**Default Uplink channel:**
587 587  
588 588  923.2 - SF7BW125 to SF10BW125
... ... @@ -631,9 +631,9 @@
631 631  923.2 - SF10BW125 (RX2)
632 632  
633 633  
634 -
635 635  === 2.7.6 KR920-923 (KR920) ===
636 636  
663 +
637 637  Default channel:
638 638  
639 639  922.1 - SF7BW125 to SF12BW125
... ... @@ -667,9 +667,9 @@
667 667  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
668 668  
669 669  
670 -
671 671  === 2.7.7 IN865-867 (IN865) ===
672 672  
699 +
673 673  (% style="color:#037691" %)** Uplink:**
674 674  
675 675  865.0625 - SF7BW125 to SF12BW125
... ... @@ -686,10 +686,9 @@
686 686  866.550 - SF10BW125 (RX2)
687 687  
688 688  
689 -
690 -
691 691  == 2.8 LED Indicator ==
692 692  
718 +
693 693  The LSE01 has an internal LED which is to show the status of different state.
694 694  
695 695  * Blink once when device power on.
... ... @@ -696,14 +696,11 @@
696 696  * Solid ON for 5 seconds once device successful Join the network.
697 697  * Blink once when device transmit a packet.
698 698  
699 -
700 -
701 -
702 702  == 2.9 Installation in Soil ==
703 703  
727 +
704 704  **Measurement the soil surface**
705 705  
706 -
707 707  [[image:1654506634463-199.png]] ​
708 708  
709 709  (((
... ... @@ -713,7 +713,6 @@
713 713  )))
714 714  
715 715  
716 -
717 717  [[image:1654506665940-119.png]]
718 718  
719 719  (((
... ... @@ -727,19 +727,12 @@
727 727  
728 728  == 2.10 ​Firmware Change Log ==
729 729  
730 -(((
731 -**Firmware download link:**
732 -)))
733 733  
734 734  (((
735 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
754 +**Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0>>https://www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0]]
736 736  )))
737 737  
738 738  (((
739 -
740 -)))
741 -
742 -(((
743 743  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
744 744  )))
745 745  
... ... @@ -756,62 +756,14 @@
756 756  )))
757 757  
758 758  
759 -== 2.11 Battery Analysis ==
774 +== 2.11 Battery & Power Consumption ==
760 760  
761 -=== 2.11.1 ​Battery Type ===
762 762  
763 -(((
764 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
765 -)))
777 +LSE01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
766 766  
767 -(((
768 -The battery is designed to last for more than 5 years for the LSN50.
769 -)))
779 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
770 770  
771 -(((
772 -(((
773 -The battery-related documents are as below:
774 -)))
775 -)))
776 776  
777 -* (((
778 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
779 -)))
780 -* (((
781 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
782 -)))
783 -* (((
784 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
785 -)))
786 -
787 - [[image:image-20220610172436-1.png]]
788 -
789 -
790 -
791 -=== 2.11.2 ​Battery Note ===
792 -
793 -(((
794 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
795 -)))
796 -
797 -
798 -
799 -=== 2.11.3 Replace the battery ===
800 -
801 -(((
802 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
803 -)))
804 -
805 -(((
806 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
807 -)))
808 -
809 -(((
810 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
811 -)))
812 -
813 -
814 -
815 815  = 3. ​Using the AT Commands =
816 816  
817 817  == 3.1 Access AT Commands ==
... ... @@ -819,16 +819,16 @@
819 819  
820 820  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
821 821  
822 -[[image:1654501986557-872.png||height="391" width="800"]]
823 823  
790 +[[image:image-20231111095033-3.png||height="591" width="855"]]
824 824  
792 +
825 825  Or if you have below board, use below connection:
826 826  
827 827  
828 -[[image:1654502005655-729.png||height="503" width="801"]]
796 +[[image:image-20231109094023-1.png]]
829 829  
830 830  
831 -
832 832  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
833 833  
834 834  
... ... @@ -835,16 +835,16 @@
835 835   [[image:1654502050864-459.png||height="564" width="806"]]
836 836  
837 837  
838 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
805 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]].
839 839  
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
808 +(% style="background-color:#dcdcdc" %)**AT+<CMD>? **(%%) : Help on <CMD>
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
810 +(% style="background-color:#dcdcdc" %)**AT+<CMD> **(%%) : Run <CMD>
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
812 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=<value>**(%%)  : Set the value
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
814 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?**(%%)  : Get the value
848 848  
849 849  
850 850  (% style="color:#037691" %)**General Commands**(%%)      
... ... @@ -947,6 +947,7 @@
947 947  
948 948  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
949 949  
917 +
950 950  (((
951 951  You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
952 952  When downloading the images, choose the required image file for download. ​
... ... @@ -953,18 +953,10 @@
953 953  )))
954 954  
955 955  (((
956 -
957 -)))
958 -
959 -(((
960 960  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
961 961  )))
962 962  
963 963  (((
964 -
965 -)))
966 -
967 -(((
968 968  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
969 969  )))
970 970  
... ... @@ -974,11 +974,23 @@
974 974  
975 975  (((
976 976  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
937 +
938 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
939 +|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
940 +|(% style="width:47px" %)0|(% colspan="9" style="width:542px" %)ENABLE Channel 0-63
941 +|(% style="width:47px" %)1|(% style="width:54px" %)902.3|(% style="width:53px" %)902.5|(% style="width:55px" %)902.7|(% style="width:53px" %)902.9|(% style="width:49px" %)903.1|(% style="width:52px" %)903.3|(% style="width:51px" %)903.5|(% style="width:51px" %)903.7|(% style="width:115px" %)Channel 0-7
942 +|(% style="width:47px" %)2|(% style="width:54px" %)903.9|(% style="width:53px" %)904.1|(% style="width:55px" %)904.3|(% style="width:53px" %)904.5|(% style="width:49px" %)904.7|(% style="width:52px" %)904.9|(% style="width:51px" %)905.1|(% style="width:51px" %)905.3|(% style="width:115px" %)Channel 8-15
943 +|(% style="width:47px" %)3|(% style="width:54px" %)905.5|(% style="width:53px" %)905.7|(% style="width:55px" %)905.9|(% style="width:53px" %)906.1|(% style="width:49px" %)906.3|(% style="width:52px" %)906.5|(% style="width:51px" %)906.7|(% style="width:51px" %)906.9|(% style="width:115px" %)Channel 16-23
944 +|(% style="width:47px" %)4|(% style="width:54px" %)907.1|(% style="width:53px" %)907.3|(% style="width:55px" %)907.5|(% style="width:53px" %)907.7|(% style="width:49px" %)907.9|(% style="width:52px" %)908.1|(% style="width:51px" %)908.3|(% style="width:51px" %)908.5|(% style="width:115px" %)Channel 24-31
945 +|(% style="width:47px" %)5|(% style="width:54px" %)908.7|(% style="width:53px" %)908.9|(% style="width:55px" %)909.1|(% style="width:53px" %)909.3|(% style="width:49px" %)909.5|(% style="width:52px" %)909.7|(% style="width:51px" %)909.9|(% style="width:51px" %)910.1|(% style="width:115px" %)Channel 32-39
946 +|(% style="width:47px" %)6|(% style="width:54px" %)910.3|(% style="width:53px" %)910.5|(% style="width:55px" %)910.7|(% style="width:53px" %)910.9|(% style="width:49px" %)911.1|(% style="width:52px" %)911.3|(% style="width:51px" %)911.5|(% style="width:51px" %)911.7|(% style="width:115px" %)Channel 40-47
947 +|(% style="width:47px" %)7|(% style="width:54px" %)911.9|(% style="width:53px" %)912.1|(% style="width:55px" %)912.3|(% style="width:53px" %)912.5|(% style="width:49px" %)912.7|(% style="width:52px" %)912.9|(% style="width:51px" %)913.1|(% style="width:51px" %)913.3|(% style="width:115px" %)Channel 48-55
948 +|(% style="width:47px" %)8|(% style="width:54px" %)913.5|(% style="width:53px" %)913.7|(% style="width:55px" %)913.9|(% style="width:53px" %)914.1|(% style="width:49px" %)914.3|(% style="width:52px" %)914.5|(% style="width:51px" %)914.7|(% style="width:51px" %)914.9|(% style="width:115px" %)Channel 56-63
949 +|(% colspan="10" style="background-color:#4f81bd; color:white; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
950 +|(% style="width:47px" %) |(% style="width:54px" %)903|(% style="width:53px" %)904.6|(% style="width:55px" %)906.2|(% style="width:53px" %)907.8|(% style="width:49px" %)909.4|(% style="width:52px" %)911|(% style="width:51px" %)912.6|(% style="width:51px" %)914.2|(% style="width:115px" %)Channel 64-71
977 977  )))
978 978  
979 -[[image:image-20220606154726-3.png]]
980 980  
981 -
982 982  When you use the TTN network, the US915 frequency bands use are:
983 983  
984 984  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -1010,25 +1010,43 @@
1010 1010  
1011 1011  (((
1012 1012  The **AU915** band is similar. Below are the AU915 Uplink Channels.
985 +
986 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
987 +|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
988 +|(% style="width:45px" %)0|(% colspan="9" style="width:540px" %)ENABLE Channel 0-63
989 +|(% style="width:45px" %)1|(% style="width:51px" %)915.2|(% style="width:51px" %)915.4|(% style="width:51px" %)915.6|(% style="width:52px" %)915.8|(% style="width:51px" %)916|(% style="width:51px" %)916.2|(% style="width:53px" %)916.4|(% style="width:51px" %)916.6|(% style="width:115px" %)Channel 0-7
990 +|(% style="width:45px" %)2|(% style="width:51px" %)916.8|(% style="width:51px" %)917|(% style="width:51px" %)917.2|(% style="width:52px" %)917.4|(% style="width:51px" %)917.6|(% style="width:51px" %)917.8|(% style="width:53px" %)918|(% style="width:51px" %)918.2|(% style="width:115px" %)Channel 8-15
991 +|(% style="width:45px" %)3|(% style="width:51px" %)918.4|(% style="width:51px" %)918.6|(% style="width:51px" %)918.8|(% style="width:52px" %)919|(% style="width:51px" %)919.2|(% style="width:51px" %)919.4|(% style="width:53px" %)919.6|(% style="width:51px" %)919.8|(% style="width:115px" %)Channel 16-23
992 +|(% style="width:45px" %)4|(% style="width:51px" %)920|(% style="width:51px" %)920.2|(% style="width:51px" %)920.4|(% style="width:52px" %)920.6|(% style="width:51px" %)920.8|(% style="width:51px" %)921|(% style="width:53px" %)921.2|(% style="width:51px" %)921.4|(% style="width:115px" %)Channel 24-31
993 +|(% style="width:45px" %)5|(% style="width:51px" %)921.6|(% style="width:51px" %)921.8|(% style="width:51px" %)922|(% style="width:52px" %)922.2|(% style="width:51px" %)922.4|(% style="width:51px" %)922.6|(% style="width:53px" %)922.8|(% style="width:51px" %)923|(% style="width:115px" %)Channel 32-39
994 +|(% style="width:45px" %)6|(% style="width:51px" %)923.2|(% style="width:51px" %)923.4|(% style="width:51px" %)923.6|(% style="width:52px" %)923.8|(% style="width:51px" %)924|(% style="width:51px" %)924.2|(% style="width:53px" %)924.4|(% style="width:51px" %)924.6|(% style="width:115px" %)Channel 40-47
995 +|(% style="width:45px" %)7|(% style="width:51px" %)924.8|(% style="width:51px" %)925|(% style="width:51px" %)925.2|(% style="width:52px" %)925.4|(% style="width:51px" %)925.6|(% style="width:51px" %)925.8|(% style="width:53px" %)926|(% style="width:51px" %)926.2|(% style="width:115px" %)Channel 48-55
996 +|(% style="width:45px" %)8|(% style="width:51px" %)926.4|(% style="width:51px" %)926.6|(% style="width:51px" %)926.8|(% style="width:52px" %)927|(% style="width:51px" %)927.2|(% style="width:51px" %)927.4|(% style="width:53px" %)927.6|(% style="width:51px" %)927.8|(% style="width:115px" %)Channel 56-63
997 +|(% colspan="10" style="background-color:#4f81bd; color:white; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
998 +|(% style="width:45px" %) |(% style="width:51px" %)915.9|(% style="width:51px" %)917.5|(% style="width:51px" %)919.1|(% style="width:52px" %)920.7|(% style="width:51px" %)922.3|(% style="width:51px" %)923.9|(% style="width:53px" %)925.5|(% style="width:51px" %)927.1|(% style="width:115px" %)Channel 64-71
1013 1013  )))
1014 1014  
1015 -[[image:image-20220606154825-4.png]]
1016 1016  
1017 1017  
1018 1018  == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1019 1019  
1020 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1021 1021  
1006 +(((
1007 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20230522.pdf]].
1008 +)))
1022 1022  
1010 +
1023 1023  = 5. Trouble Shooting =
1024 1024  
1025 1025  == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1026 1026  
1015 +
1027 1027  It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1028 1028  
1029 1029  
1030 1030  == 5.2 AT Command input doesn't work ==
1031 1031  
1021 +
1032 1032  (((
1033 1033  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1034 1034  )))
... ... @@ -1036,6 +1036,7 @@
1036 1036  
1037 1037  == 5.3 Device rejoin in at the second uplink packet ==
1038 1038  
1029 +
1039 1039  (% style="color:#4f81bd" %)**Issue describe as below:**
1040 1040  
1041 1041  [[image:1654500909990-784.png]]
... ... @@ -1050,11 +1050,63 @@
1050 1050  
1051 1051  (% style="color:#4f81bd" %)**Solution: **
1052 1052  
1044 +(((
1053 1053  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1046 +)))
1054 1054  
1055 1055  [[image:1654500929571-736.png||height="458" width="832"]]
1056 1056  
1057 1057  
1051 +== 5.3 Possible reasons why the device is unresponsive: ==
1052 +
1053 +~1. Check whether the battery voltage is lower than 2.8V
1054 +2. Check whether the jumper of the device is correctly connected
1055 +
1056 +[[image:image-20240330173910-1.png]]
1057 +3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1058 +
1059 +[[image:image-20240330173932-2.png]]
1060 +
1061 += =
1062 +
1063 +
1064 +== 5.4 The node cannot read the sensor data ==
1065 +
1066 +This may be caused by a software firmware(≤1.1.6 version) bug, which we fixed in the latest firmware (>1.1.6 version)
1067 +
1068 +The user can fix this problem via upgrade firmware.
1069 +
1070 +By default, The latest firmware value of POWERIC is 1, while the 3322 version requires POWERIC to be set to 0 in order to function properly
1071 +
1072 +* **//1. Check if the hardware version is 3322//**
1073 +
1074 +If the sensor hardware version is 3322 or earlier, the user can change the POWERIC value to 0 after a firmware upgrade using one of the following methods
1075 +
1076 +
1077 +**a. Using AT command**
1078 +
1079 +(% class="box infomessage" %)
1080 +(((
1081 +AT+POWERIC=0.
1082 +)))
1083 +
1084 +
1085 +**b. Using Downlink**
1086 +
1087 +(% class="box infomessage" %)
1088 +(((
1089 +FF 00(AT+POWERIC=0).
1090 +)))
1091 +
1092 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20240531090837-1.png?rev=1.1||alt="image-20240531090837-1.png"]]
1093 +
1094 +Please check your hardware production date
1095 +
1096 +The first two digits are the week of the year, and the last two digits are the year.
1097 +
1098 +The number 3322 is the first batch we changed the power IC.
1099 +
1100 +
1058 1058  = 6. ​Order Info =
1059 1059  
1060 1060  
... ... @@ -1120,5 +1120,7 @@
1120 1120  
1121 1121  = 8. Support =
1122 1122  
1166 +
1123 1123  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1168 +
1124 1124  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20221008135912-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +65.9 KB
Content
image-20221008140228-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20230426084640-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.0 KB
Content
image-20231109094023-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +809.6 KB
Content
image-20231111093716-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20231111095027-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.7 MB
Content
image-20231111095033-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.7 MB
Content
image-20240330173910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +445.4 KB
Content
image-20240330173932-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +445.4 KB
Content