Last modified by Mengting Qiu on 2025/07/07 15:27

From version 40.3
edited by Xiaoling
on 2022/06/30 10:41
Change comment: There is no comment for this version
To version 59.1
edited by Xiaoling
on 2025/04/25 10:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -24,14 +24,13 @@
24 24  
25 25  == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 26  
27 -(((
28 -
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
28 +(((
29 +The Dragino LSE01 is a (% style="color:blue" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 31  )))
32 32  
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
33 +It detects (% style="color:blue" %)**Soil Moisture**(%%), (% style="color:blue" %)**Soil Temperature**(%%) and (% style="color:blue" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 35  )))
36 36  
37 37  (((
... ... @@ -39,7 +39,7 @@
39 39  )))
40 40  
41 41  (((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
41 +LES01 is powered by (% style="color:blue" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 43  )))
44 44  
45 45  (((
... ... @@ -53,9 +53,9 @@
53 53  [[image:1654503265560-120.png]]
54 54  
55 55  
56 -
57 57  == 1.2 ​Features ==
58 58  
57 +
59 59  * LoRaWAN 1.0.3 Class A
60 60  * Ultra low power consumption
61 61  * Monitor Soil Moisture
... ... @@ -68,46 +68,74 @@
68 68  * IP66 Waterproof Enclosure
69 69  * 4000mAh or 8500mAh Battery for long term use
70 70  
71 -
72 -
73 73  == 1.3 Specification ==
74 74  
72 +
75 75  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
76 76  
77 -[[image:image-20220606162220-5.png]]
75 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
76 +|(% style="background-color:#4f81bd; color:white; width:94px" %)**Parameter**|(% style="background-color:#4f81bd; color:white; width:145px" %)**Soil Moisture**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Conductivity**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Temperature**
77 +|(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)(((
78 +0-20000uS/cm
79 +(25℃)(0-20.0EC)
80 +)))|(% style="width:140px" %)-40.00℃~85.00℃
81 +|(% style="width:95px" %)Unit|(% style="width:146px" %)V/V %|(% style="width:137px" %)uS/cm|(% style="width:140px" %)℃
82 +|(% style="width:95px" %)Resolution|(% style="width:146px" %)0.01%|(% style="width:137px" %)1 uS/cm|(% style="width:140px" %)0.01℃
83 +|(% style="width:95px" %)Accuracy|(% style="width:146px" %)(((
84 +±3% (0-53%)
85 +±5% (>53%)
86 +)))|(% style="width:137px" %)2%FS|(% style="width:140px" %)(((
87 +-10℃~50℃:<0.3℃
88 +All other: <0.6℃
89 +)))
90 +|(% style="width:95px" %)(((
91 +Measure
92 +Method
93 +)))|(% style="width:146px" %)FDR , with temperature &EC compensate|(% style="width:137px" %)Conductivity , with temperature compensate|(% style="width:140px" %)RTD, and calibrate
78 78  
95 +== 1.4 Dimension ==
79 79  
80 80  
81 -== ​1.4 Applications ==
98 +(% style="color:blue" %)**Main Device Dimension:**
82 82  
83 -* Smart Agriculture
100 +See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
84 84  
85 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
86 -​
102 +[[image:image-20221008140228-2.png||height="358" width="571"]]
87 87  
88 -== 1.5 Firmware Change log ==
89 89  
105 +(% style="color:blue" %)**Probe Dimension**
90 90  
91 -**LSE01 v1.0 :**  Release
107 +[[image:image-20221008135912-1.png]]
92 92  
93 93  
110 +== ​1.5 Applications ==
94 94  
112 +
113 +* Smart Agriculture​
114 +
115 +== 1.6 Firmware Change log ==
116 +
117 +
118 +**LSE01 v1.0 :**  Release
119 +
120 +
95 95  = 2. Configure LSE01 to connect to LoRaWAN network =
96 96  
97 97  == 2.1 How it works ==
98 98  
125 +
99 99  (((
100 100  The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
101 101  )))
102 102  
103 103  (((
104 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
131 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
105 105  )))
106 106  
107 107  
108 -
109 109  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
110 110  
137 +
111 111  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 112  
113 113  
... ... @@ -121,41 +121,65 @@
121 121  
122 122  Each LSE01 is shipped with a sticker with the default device EUI as below:
123 123  
124 -[[image:image-20220606163732-6.jpeg]]
151 +[[image:image-20230426084640-1.png||height="201" width="433"]]
125 125  
153 +
126 126  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
127 127  
128 -**Add APP EUI in the application**
156 +**Create the application.**
129 129  
158 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
130 130  
131 -[[image:1654504596150-405.png]]
160 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
132 132  
133 133  
163 +**Add devices to the created Application.**
134 134  
135 -**Add APP KEY and DEV EUI**
165 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
136 136  
137 -[[image:1654504683289-357.png]]
167 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
138 138  
139 139  
170 +**Enter end device specifics manually.**
140 140  
141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
172 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
142 142  
174 +**Add DevEUI and AppKey.**
143 143  
176 +**Customize a platform ID for the device.**
177 +
178 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
179 +
180 +
181 +(% style="color:blue" %)**Step 2**(%%):** Add decoder.**
182 +
183 +In TTN, user can add a custom payload so it shows friendly reading.
184 +
185 +Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
186 +
187 +Below is TTN screen shot:
188 +
189 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
190 +
191 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png"]]
192 +
193 +
194 +(% style="color:blue" %)**Step 3**(%%): Power on LSE01
195 +
144 144  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
145 145  
146 146  [[image:image-20220606163915-7.png]]
147 147  
148 148  
149 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
201 +The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 150  
151 151  [[image:1654504778294-788.png]]
152 152  
153 153  
154 -
155 155  == 2.3 Uplink Payload ==
156 156  
208 +=== 2.3.1 MOD~=0(Default Mode)(% style="display:none" %) (%%) ===
157 157  
158 -=== 2.3.1 MOD~=0(Default Mode) ===
159 159  
160 160  LSE01 will uplink payload via LoRaWAN with below payload format: 
161 161  
... ... @@ -163,48 +163,32 @@
163 163  Uplink payload includes in total 11 bytes.
164 164  )))
165 165  
166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
167 -|(((
168 -**Size**
169 -
170 -**(bytes)**
171 -)))|**2**|**2**|**2**|**2**|**2**|**1**
172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
217 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
218 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
219 +|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
173 173  Temperature
174 -
175 175  (Reserve, Ignore now)
176 176  )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
177 -MOD & Digital Interrupt
178 -
179 -(Optional)
223 +MOD & Digital Interrupt(Optional)
180 180  )))
181 181  
182 -
183 -
184 184  === 2.3.2 MOD~=1(Original value) ===
185 185  
228 +
186 186  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
187 187  
188 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
189 -|(((
190 -**Size**
191 -
192 -**(bytes)**
193 -)))|**2**|**2**|**2**|**2**|**2**|**1**
194 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
231 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
232 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
233 +|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
195 195  Temperature
196 -
197 197  (Reserve, Ignore now)
198 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
199 -MOD & Digital Interrupt
200 -
201 -(Optional)
236 +)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|Dielectric constant(raw)|(((
237 +MOD & Digital Interrupt(Optional)
202 202  )))
203 203  
204 -
205 -
206 206  === 2.3.3 Battery Info ===
207 207  
242 +
208 208  (((
209 209  Check the battery voltage for LSE01.
210 210  )))
... ... @@ -218,31 +218,23 @@
218 218  )))
219 219  
220 220  
221 -
222 222  === 2.3.4 Soil Moisture ===
223 223  
258 +
224 224  (((
225 225  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
226 226  )))
227 227  
228 228  (((
229 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
264 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is (% style="color:blue" %)**05DC(H) = 1500(D) /100 = 15%.**
230 230  )))
231 231  
232 -(((
233 -
234 -)))
235 235  
236 -(((
237 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
238 -)))
239 -
240 -
241 -
242 242  === 2.3.5 Soil Temperature ===
243 243  
270 +
244 244  (((
245 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
272 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
246 246  )))
247 247  
248 248  (((
... ... @@ -258,9 +258,9 @@
258 258  )))
259 259  
260 260  
261 -
262 262  === 2.3.6 Soil Conductivity (EC) ===
263 263  
290 +
264 264  (((
265 265  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
266 266  )))
... ... @@ -277,20 +277,17 @@
277 277  
278 278  )))
279 279  
280 -(((
281 -
282 -)))
283 -
284 284  === 2.3.7 MOD ===
285 285  
286 -Firmware version at least v2.1 supports changing mode.
287 287  
310 +Firmware version at least v1.2.1 supports changing mode.
311 +
288 288  For example, bytes[10]=90
289 289  
290 290  mod=(bytes[10]>>7)&0x01=1.
291 291  
292 292  
293 -**Downlink Command:**
317 +(% style="color:blue" %)**Downlink Command:**
294 294  
295 295  If payload = 0x0A00, workmode=0
296 296  
... ... @@ -297,9 +297,9 @@
297 297  If** **payload =** **0x0A01, workmode=1
298 298  
299 299  
300 -
301 301  === 2.3.8 ​Decode payload in The Things Network ===
302 302  
326 +
303 303  While using TTN network, you can add the payload format to decode the payload.
304 304  
305 305  
... ... @@ -310,37 +310,40 @@
310 310  )))
311 311  
312 312  (((
313 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
337 +LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt]]
338 +
339 +
314 314  )))
315 315  
316 -
317 317  == 2.4 Uplink Interval ==
318 318  
344 +
319 319  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
320 320  
321 321  
322 -
323 323  == 2.5 Downlink Payload ==
324 324  
325 -By default, LSE50 prints the downlink payload to console port.
326 326  
327 -[[image:image-20220606165544-8.png]]
351 +By default, LSE01 prints the downlink payload to console port.
328 328  
353 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
354 +|=(% style="width: 183px; background-color:#4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)**
355 +|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
356 +|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
357 +|(% style="width:183px" %)AT+CFM|(% style="width:55px" %)Any|(% style="width:93px" %)05|(% style="width:146px" %)4
358 +|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
359 +|(% style="width:183px" %)MOD|(% style="width:55px" %)Any|(% style="width:93px" %)0A|(% style="width:146px" %)2
329 329  
330 330  (((
331 -**Examples:**
362 +(% style="color:blue" %)**Examples:**
332 332  )))
333 333  
334 -(((
335 -
336 -)))
337 -
338 338  * (((
339 -**Set TDC**
366 +(% style="color:blue" %)**Set TDC**
340 340  )))
341 341  
342 342  (((
343 -If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
370 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
344 344  )))
345 345  
346 346  (((
... ... @@ -356,7 +356,7 @@
356 356  )))
357 357  
358 358  * (((
359 -**Reset**
386 +(% style="color:blue" %)**Reset**
360 360  )))
361 361  
362 362  (((
... ... @@ -364,14 +364,14 @@
364 364  )))
365 365  
366 366  
367 -* **CFM**
394 +* (% style="color:blue" %)**CFM**
368 368  
369 369  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
370 370  
371 371  
372 -
373 373  == 2.6 ​Show Data in DataCake IoT Server ==
374 374  
401 +
375 375  (((
376 376  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
377 377  )))
... ... @@ -408,14 +408,15 @@
408 408  [[image:1654505925508-181.png]]
409 409  
410 410  
411 -
412 412  == 2.7 Frequency Plans ==
413 413  
440 +
414 414  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
415 415  
416 416  
417 417  === 2.7.1 EU863-870 (EU868) ===
418 418  
446 +
419 419  (% style="color:#037691" %)** Uplink:**
420 420  
421 421  868.1 - SF7BW125 to SF12BW125
... ... @@ -444,9 +444,9 @@
444 444  869.525 - SF9BW125 (RX2 downlink only)
445 445  
446 446  
447 -
448 448  === 2.7.2 US902-928(US915) ===
449 449  
477 +
450 450  Used in USA, Canada and South America. Default use CHE=2
451 451  
452 452  (% style="color:#037691" %)**Uplink:**
... ... @@ -489,9 +489,9 @@
489 489  923.3 - SF12BW500(RX2 downlink only)
490 490  
491 491  
492 -
493 493  === 2.7.3 CN470-510 (CN470) ===
494 494  
522 +
495 495  Used in China, Default use CHE=1
496 496  
497 497  (% style="color:#037691" %)**Uplink:**
... ... @@ -534,9 +534,9 @@
534 534  505.3 - SF12BW125 (RX2 downlink only)
535 535  
536 536  
537 -
538 538  === 2.7.4 AU915-928(AU915) ===
539 539  
567 +
540 540  Default use CHE=2
541 541  
542 542  (% style="color:#037691" %)**Uplink:**
... ... @@ -579,9 +579,9 @@
579 579  923.3 - SF12BW500(RX2 downlink only)
580 580  
581 581  
582 -
583 583  === 2.7.5 AS920-923 & AS923-925 (AS923) ===
584 584  
612 +
585 585  (% style="color:#037691" %)**Default Uplink channel:**
586 586  
587 587  923.2 - SF7BW125 to SF10BW125
... ... @@ -630,9 +630,9 @@
630 630  923.2 - SF10BW125 (RX2)
631 631  
632 632  
633 -
634 634  === 2.7.6 KR920-923 (KR920) ===
635 635  
663 +
636 636  Default channel:
637 637  
638 638  922.1 - SF7BW125 to SF12BW125
... ... @@ -666,9 +666,9 @@
666 666  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
667 667  
668 668  
669 -
670 670  === 2.7.7 IN865-867 (IN865) ===
671 671  
699 +
672 672  (% style="color:#037691" %)** Uplink:**
673 673  
674 674  865.0625 - SF7BW125 to SF12BW125
... ... @@ -685,10 +685,9 @@
685 685  866.550 - SF10BW125 (RX2)
686 686  
687 687  
688 -
689 -
690 690  == 2.8 LED Indicator ==
691 691  
718 +
692 692  The LSE01 has an internal LED which is to show the status of different state.
693 693  
694 694  * Blink once when device power on.
... ... @@ -695,13 +695,11 @@
695 695  * Solid ON for 5 seconds once device successful Join the network.
696 696  * Blink once when device transmit a packet.
697 697  
698 -
699 -
700 700  == 2.9 Installation in Soil ==
701 701  
727 +
702 702  **Measurement the soil surface**
703 703  
704 -
705 705  [[image:1654506634463-199.png]] ​
706 706  
707 707  (((
... ... @@ -711,7 +711,6 @@
711 711  )))
712 712  
713 713  
714 -
715 715  [[image:1654506665940-119.png]]
716 716  
717 717  (((
... ... @@ -725,19 +725,12 @@
725 725  
726 726  == 2.10 ​Firmware Change Log ==
727 727  
728 -(((
729 -**Firmware download link:**
730 -)))
731 731  
732 732  (((
733 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
754 +**Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0>>https://www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0]]
734 734  )))
735 735  
736 736  (((
737 -
738 -)))
739 -
740 -(((
741 741  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
742 742  )))
743 743  
... ... @@ -754,62 +754,14 @@
754 754  )))
755 755  
756 756  
757 -== 2.11 Battery Analysis ==
774 +== 2.11 Battery & Power Consumption ==
758 758  
759 -=== 2.11.1 ​Battery Type ===
760 760  
761 -(((
762 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
763 -)))
777 +LSE01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
764 764  
765 -(((
766 -The battery is designed to last for more than 5 years for the LSN50.
767 -)))
779 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
768 768  
769 -(((
770 -(((
771 -The battery-related documents are as below:
772 -)))
773 -)))
774 774  
775 -* (((
776 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
777 -)))
778 -* (((
779 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
780 -)))
781 -* (((
782 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
783 -)))
784 -
785 - [[image:image-20220610172436-1.png]]
786 -
787 -
788 -
789 -=== 2.11.2 ​Battery Note ===
790 -
791 -(((
792 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
793 -)))
794 -
795 -
796 -
797 -=== 2.11.3 Replace the battery ===
798 -
799 -(((
800 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
801 -)))
802 -
803 -(((
804 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
805 -)))
806 -
807 -(((
808 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
809 -)))
810 -
811 -
812 -
813 813  = 3. ​Using the AT Commands =
814 814  
815 815  == 3.1 Access AT Commands ==
... ... @@ -817,16 +817,16 @@
817 817  
818 818  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
819 819  
820 -[[image:1654501986557-872.png||height="391" width="800"]]
821 821  
790 +[[image:image-20231111095033-3.png||height="591" width="855"]]
822 822  
792 +
823 823  Or if you have below board, use below connection:
824 824  
825 825  
826 -[[image:1654502005655-729.png||height="503" width="801"]]
796 +[[image:image-20231109094023-1.png]]
827 827  
828 828  
829 -
830 830  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
831 831  
832 832  
... ... @@ -833,16 +833,16 @@
833 833   [[image:1654502050864-459.png||height="564" width="806"]]
834 834  
835 835  
836 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
805 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]].
837 837  
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
808 +(% style="background-color:#dcdcdc" %)**AT+<CMD>? **(%%) : Help on <CMD>
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
810 +(% style="background-color:#dcdcdc" %)**AT+<CMD> **(%%) : Run <CMD>
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
812 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=<value>**(%%)  : Set the value
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
814 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?**(%%)  : Get the value
846 846  
847 847  
848 848  (% style="color:#037691" %)**General Commands**(%%)      
... ... @@ -945,6 +945,7 @@
945 945  
946 946  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
947 947  
917 +
948 948  (((
949 949  You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
950 950  When downloading the images, choose the required image file for download. ​
... ... @@ -951,18 +951,10 @@
951 951  )))
952 952  
953 953  (((
954 -
955 -)))
956 -
957 -(((
958 958  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
959 959  )))
960 960  
961 961  (((
962 -
963 -)))
964 -
965 -(((
966 966  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
967 967  )))
968 968  
... ... @@ -972,11 +972,23 @@
972 972  
973 973  (((
974 974  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
937 +
938 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
939 +|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
940 +|(% style="width:47px" %)0|(% colspan="9" style="width:542px" %)ENABLE Channel 0-63
941 +|(% style="width:47px" %)1|(% style="width:54px" %)902.3|(% style="width:53px" %)902.5|(% style="width:55px" %)902.7|(% style="width:53px" %)902.9|(% style="width:49px" %)903.1|(% style="width:52px" %)903.3|(% style="width:51px" %)903.5|(% style="width:51px" %)903.7|(% style="width:115px" %)Channel 0-7
942 +|(% style="width:47px" %)2|(% style="width:54px" %)903.9|(% style="width:53px" %)904.1|(% style="width:55px" %)904.3|(% style="width:53px" %)904.5|(% style="width:49px" %)904.7|(% style="width:52px" %)904.9|(% style="width:51px" %)905.1|(% style="width:51px" %)905.3|(% style="width:115px" %)Channel 8-15
943 +|(% style="width:47px" %)3|(% style="width:54px" %)905.5|(% style="width:53px" %)905.7|(% style="width:55px" %)905.9|(% style="width:53px" %)906.1|(% style="width:49px" %)906.3|(% style="width:52px" %)906.5|(% style="width:51px" %)906.7|(% style="width:51px" %)906.9|(% style="width:115px" %)Channel 16-23
944 +|(% style="width:47px" %)4|(% style="width:54px" %)907.1|(% style="width:53px" %)907.3|(% style="width:55px" %)907.5|(% style="width:53px" %)907.7|(% style="width:49px" %)907.9|(% style="width:52px" %)908.1|(% style="width:51px" %)908.3|(% style="width:51px" %)908.5|(% style="width:115px" %)Channel 24-31
945 +|(% style="width:47px" %)5|(% style="width:54px" %)908.7|(% style="width:53px" %)908.9|(% style="width:55px" %)909.1|(% style="width:53px" %)909.3|(% style="width:49px" %)909.5|(% style="width:52px" %)909.7|(% style="width:51px" %)909.9|(% style="width:51px" %)910.1|(% style="width:115px" %)Channel 32-39
946 +|(% style="width:47px" %)6|(% style="width:54px" %)910.3|(% style="width:53px" %)910.5|(% style="width:55px" %)910.7|(% style="width:53px" %)910.9|(% style="width:49px" %)911.1|(% style="width:52px" %)911.3|(% style="width:51px" %)911.5|(% style="width:51px" %)911.7|(% style="width:115px" %)Channel 40-47
947 +|(% style="width:47px" %)7|(% style="width:54px" %)911.9|(% style="width:53px" %)912.1|(% style="width:55px" %)912.3|(% style="width:53px" %)912.5|(% style="width:49px" %)912.7|(% style="width:52px" %)912.9|(% style="width:51px" %)913.1|(% style="width:51px" %)913.3|(% style="width:115px" %)Channel 48-55
948 +|(% style="width:47px" %)8|(% style="width:54px" %)913.5|(% style="width:53px" %)913.7|(% style="width:55px" %)913.9|(% style="width:53px" %)914.1|(% style="width:49px" %)914.3|(% style="width:52px" %)914.5|(% style="width:51px" %)914.7|(% style="width:51px" %)914.9|(% style="width:115px" %)Channel 56-63
949 +|(% colspan="10" style="background-color:#4f81bd; color:white; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
950 +|(% style="width:47px" %) |(% style="width:54px" %)903|(% style="width:53px" %)904.6|(% style="width:55px" %)906.2|(% style="width:53px" %)907.8|(% style="width:49px" %)909.4|(% style="width:52px" %)911|(% style="width:51px" %)912.6|(% style="width:51px" %)914.2|(% style="width:115px" %)Channel 64-71
975 975  )))
976 976  
977 -[[image:image-20220606154726-3.png]]
978 978  
979 -
980 980  When you use the TTN network, the US915 frequency bands use are:
981 981  
982 982  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -1008,32 +1008,51 @@
1008 1008  
1009 1009  (((
1010 1010  The **AU915** band is similar. Below are the AU915 Uplink Channels.
985 +
986 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
987 +|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
988 +|(% style="width:45px" %)0|(% colspan="9" style="width:540px" %)ENABLE Channel 0-63
989 +|(% style="width:45px" %)1|(% style="width:51px" %)915.2|(% style="width:51px" %)915.4|(% style="width:51px" %)915.6|(% style="width:52px" %)915.8|(% style="width:51px" %)916|(% style="width:51px" %)916.2|(% style="width:53px" %)916.4|(% style="width:51px" %)916.6|(% style="width:115px" %)Channel 0-7
990 +|(% style="width:45px" %)2|(% style="width:51px" %)916.8|(% style="width:51px" %)917|(% style="width:51px" %)917.2|(% style="width:52px" %)917.4|(% style="width:51px" %)917.6|(% style="width:51px" %)917.8|(% style="width:53px" %)918|(% style="width:51px" %)918.2|(% style="width:115px" %)Channel 8-15
991 +|(% style="width:45px" %)3|(% style="width:51px" %)918.4|(% style="width:51px" %)918.6|(% style="width:51px" %)918.8|(% style="width:52px" %)919|(% style="width:51px" %)919.2|(% style="width:51px" %)919.4|(% style="width:53px" %)919.6|(% style="width:51px" %)919.8|(% style="width:115px" %)Channel 16-23
992 +|(% style="width:45px" %)4|(% style="width:51px" %)920|(% style="width:51px" %)920.2|(% style="width:51px" %)920.4|(% style="width:52px" %)920.6|(% style="width:51px" %)920.8|(% style="width:51px" %)921|(% style="width:53px" %)921.2|(% style="width:51px" %)921.4|(% style="width:115px" %)Channel 24-31
993 +|(% style="width:45px" %)5|(% style="width:51px" %)921.6|(% style="width:51px" %)921.8|(% style="width:51px" %)922|(% style="width:52px" %)922.2|(% style="width:51px" %)922.4|(% style="width:51px" %)922.6|(% style="width:53px" %)922.8|(% style="width:51px" %)923|(% style="width:115px" %)Channel 32-39
994 +|(% style="width:45px" %)6|(% style="width:51px" %)923.2|(% style="width:51px" %)923.4|(% style="width:51px" %)923.6|(% style="width:52px" %)923.8|(% style="width:51px" %)924|(% style="width:51px" %)924.2|(% style="width:53px" %)924.4|(% style="width:51px" %)924.6|(% style="width:115px" %)Channel 40-47
995 +|(% style="width:45px" %)7|(% style="width:51px" %)924.8|(% style="width:51px" %)925|(% style="width:51px" %)925.2|(% style="width:52px" %)925.4|(% style="width:51px" %)925.6|(% style="width:51px" %)925.8|(% style="width:53px" %)926|(% style="width:51px" %)926.2|(% style="width:115px" %)Channel 48-55
996 +|(% style="width:45px" %)8|(% style="width:51px" %)926.4|(% style="width:51px" %)926.6|(% style="width:51px" %)926.8|(% style="width:52px" %)927|(% style="width:51px" %)927.2|(% style="width:51px" %)927.4|(% style="width:53px" %)927.6|(% style="width:51px" %)927.8|(% style="width:115px" %)Channel 56-63
997 +|(% colspan="10" style="background-color:#4f81bd; color:white; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
998 +|(% style="width:45px" %) |(% style="width:51px" %)915.9|(% style="width:51px" %)917.5|(% style="width:51px" %)919.1|(% style="width:52px" %)920.7|(% style="width:51px" %)922.3|(% style="width:51px" %)923.9|(% style="width:53px" %)925.5|(% style="width:51px" %)927.1|(% style="width:115px" %)Channel 64-71
1011 1011  )))
1012 1012  
1013 -[[image:image-20220606154825-4.png]]
1014 1014  
1015 1015  
1016 1016  == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1017 1017  
1018 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1019 1019  
1006 +(((
1007 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20230522.pdf]].
1008 +)))
1020 1020  
1010 +
1021 1021  = 5. Trouble Shooting =
1022 1022  
1023 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1013 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1024 1024  
1025 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1026 1026  
1016 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1027 1027  
1028 -== 5.2 AT Command input doesn’t work ==
1029 1029  
1019 +== 5.2 AT Command input doesn't work ==
1020 +
1021 +
1030 1030  (((
1031 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1023 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1032 1032  )))
1033 1033  
1034 1034  
1035 1035  == 5.3 Device rejoin in at the second uplink packet ==
1036 1036  
1029 +
1037 1037  (% style="color:#4f81bd" %)**Issue describe as below:**
1038 1038  
1039 1039  [[image:1654500909990-784.png]]
... ... @@ -1048,11 +1048,63 @@
1048 1048  
1049 1049  (% style="color:#4f81bd" %)**Solution: **
1050 1050  
1044 +(((
1051 1051  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1046 +)))
1052 1052  
1053 1053  [[image:1654500929571-736.png||height="458" width="832"]]
1054 1054  
1055 1055  
1051 +== 5.3 Possible reasons why the device is unresponsive: ==
1052 +
1053 +~1. Check whether the battery voltage is lower than 2.8V
1054 +2. Check whether the jumper of the device is correctly connected
1055 +
1056 +[[image:image-20240330173910-1.png]]
1057 +3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1058 +
1059 +[[image:image-20240330173932-2.png]]
1060 +
1061 += =
1062 +
1063 +
1064 +== 5.4 The node cannot read the sensor data ==
1065 +
1066 +This may be caused by a software firmware(≤1.1.6 version) bug, which we fixed in the latest firmware (>1.1.6 version)
1067 +
1068 +The user can fix this problem via upgrade firmware.
1069 +
1070 +By default, The latest firmware value of POWERIC is 1, while the 3322 version requires POWERIC to be set to 0 in order to function properly
1071 +
1072 +* **//1. Check if the hardware version is 3322//**
1073 +
1074 +If the sensor hardware version is 3322 or earlier, the user can change the POWERIC value to 0 after a firmware upgrade using one of the following methods
1075 +
1076 +
1077 +**a. Using AT command**
1078 +
1079 +(% class="box infomessage" %)
1080 +(((
1081 +AT+POWERIC=0.
1082 +)))
1083 +
1084 +
1085 +**b. Using Downlink**
1086 +
1087 +(% class="box infomessage" %)
1088 +(((
1089 +FF 00(AT+POWERIC=0).
1090 +)))
1091 +
1092 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20240531090837-1.png?rev=1.1||alt="image-20240531090837-1.png"]]
1093 +
1094 +Please check your hardware production date
1095 +
1096 +The first two digits are the week of the year, and the last two digits are the year.
1097 +
1098 +The number 3322 is the first batch we changed the power IC.
1099 +
1100 +
1056 1056  = 6. ​Order Info =
1057 1057  
1058 1058  
... ... @@ -1078,6 +1078,8 @@
1078 1078  (% class="wikigeneratedid" %)
1079 1079  (((
1080 1080  
1126 +
1127 +
1081 1081  )))
1082 1082  
1083 1083  = 7. Packing Info =
... ... @@ -1110,10 +1110,13 @@
1110 1110  * (((
1111 1111  Weight / pcs : g
1112 1112  
1160 +
1113 1113  
1114 1114  )))
1115 1115  
1116 1116  = 8. Support =
1117 1117  
1166 +
1118 1118  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1168 +
1119 1119  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20221008135912-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +65.9 KB
Content
image-20221008140228-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20230426084640-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.0 KB
Content
image-20231109094023-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +809.6 KB
Content
image-20231111093716-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20231111095027-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.7 MB
Content
image-20231111095033-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.7 MB
Content
image-20240330173910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +445.4 KB
Content
image-20240330173932-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +445.4 KB
Content