Changes for page LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Last modified by Mengting Qiu on 2025/07/07 15:27
From version 40.2
edited by Xiaoling
on 2022/06/30 10:37
on 2022/06/30 10:37
Change comment:
There is no comment for this version
To version 60.1
edited by Mengting Qiu
on 2025/07/07 15:27
on 2025/07/07 15:27
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 9 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.ting - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 1 +[[image:image-20220606151504-2.jpeg||data-xwiki-image-style-alignment="center" height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -24,14 +24,13 @@ 24 24 25 25 == 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 26 27 -((( 28 - 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 27 +((( 28 +The Dragino LSE01 is a (% style="color:blue" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 31 ))) 32 32 33 33 ((( 34 -It detects (% style="color: #4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.32 +It detects (% style="color:blue" %)**Soil Moisture**(%%), (% style="color:blue" %)**Soil Temperature**(%%) and (% style="color:blue" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 35 35 ))) 36 36 37 37 ((( ... ... @@ -39,7 +39,7 @@ 39 39 ))) 40 40 41 41 ((( 42 -LES01 is powered by (% style="color: #4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.40 +LES01 is powered by (% style="color:blue" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 43 ))) 44 44 45 45 ((( ... ... @@ -53,9 +53,9 @@ 53 53 [[image:1654503265560-120.png]] 54 54 55 55 56 - 57 57 == 1.2 Features == 58 58 56 + 59 59 * LoRaWAN 1.0.3 Class A 60 60 * Ultra low power consumption 61 61 * Monitor Soil Moisture ... ... @@ -68,46 +68,74 @@ 68 68 * IP66 Waterproof Enclosure 69 69 * 4000mAh or 8500mAh Battery for long term use 70 70 71 - 72 - 73 73 == 1.3 Specification == 74 74 71 + 75 75 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 76 76 77 -[[image:image-20220606162220-5.png]] 74 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 75 +|(% style="background-color:#4f81bd; color:white; width:94px" %)**Parameter**|(% style="background-color:#4f81bd; color:white; width:145px" %)**Soil Moisture**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Conductivity**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Temperature** 76 +|(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)((( 77 +0-20000uS/cm 78 +(25℃)(0-20.0EC) 79 +)))|(% style="width:140px" %)-40.00℃~85.00℃ 80 +|(% style="width:95px" %)Unit|(% style="width:146px" %)V/V %|(% style="width:137px" %)uS/cm|(% style="width:140px" %)℃ 81 +|(% style="width:95px" %)Resolution|(% style="width:146px" %)0.01%|(% style="width:137px" %)1 uS/cm|(% style="width:140px" %)0.01℃ 82 +|(% style="width:95px" %)Accuracy|(% style="width:146px" %)((( 83 +±3% (0-53%) 84 +±5% (>53%) 85 +)))|(% style="width:137px" %)2%FS|(% style="width:140px" %)((( 86 +-10℃~50℃:<0.3℃ 87 +All other: <0.6℃ 88 +))) 89 +|(% style="width:95px" %)((( 90 +Measure 91 +Method 92 +)))|(% style="width:146px" %)FDR , with temperature &EC compensate|(% style="width:137px" %)Conductivity , with temperature compensate|(% style="width:140px" %)RTD, and calibrate 78 78 94 +== 1.4 Dimension == 79 79 80 80 81 -= =1.4Applications==97 +(% style="color:blue" %)**Main Device Dimension:** 82 82 83 - *SmartAgriculture99 +See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]] 84 84 85 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 86 - 101 +[[image:image-20221008140228-2.png||height="358" width="571"]] 87 87 88 -== 1.5 Firmware Change log == 89 89 104 +(% style="color:blue" %)**Probe Dimension** 90 90 91 - **LSE01v1.0 :** Release106 +[[image:image-20221008135912-1.png]] 92 92 93 93 109 +== 1.5 Applications == 94 94 111 + 112 +* Smart Agriculture 113 + 114 +== 1.6 Firmware Change log == 115 + 116 + 117 +**LSE01 v1.0 :** Release 118 + 119 + 95 95 = 2. Configure LSE01 to connect to LoRaWAN network = 96 96 97 97 == 2.1 How it works == 98 98 124 + 99 99 ((( 100 100 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 101 101 ))) 102 102 103 103 ((( 104 -In case you can ’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].130 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 105 105 ))) 106 106 107 107 108 - 109 109 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 110 110 136 + 111 111 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 112 112 113 113 ... ... @@ -121,41 +121,65 @@ 121 121 122 122 Each LSE01 is shipped with a sticker with the default device EUI as below: 123 123 124 -[[image:image-202 20606163732-6.jpeg]]150 +[[image:image-20230426084640-1.png||height="201" width="433"]] 125 125 152 + 126 126 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 127 127 128 -** AddAPP EUI inthe application**155 +**Create the application.** 129 129 157 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]] 130 130 131 -[[image: 1654504596150-405.png]]159 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]] 132 132 133 133 162 +**Add devices to the created Application.** 134 134 135 - **AddPP KEY andDEV EUI**164 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]] 136 136 137 -[[image:1 654504683289-357.png]]166 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]] 138 138 139 139 169 +**Enter end device specifics manually.** 140 140 141 - (% style="color:blue"%)**Step2**(%%): PowerLSE01171 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]] 142 142 173 +**Add DevEUI and AppKey.** 143 143 175 +**Customize a platform ID for the device.** 176 + 177 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]] 178 + 179 + 180 +(% style="color:blue" %)**Step 2**(%%):** Add decoder.** 181 + 182 +In TTN, user can add a custom payload so it shows friendly reading. 183 + 184 +Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]] 185 + 186 +Below is TTN screen shot: 187 + 188 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]] 189 + 190 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png"]] 191 + 192 + 193 +(% style="color:blue" %)**Step 3**(%%): Power on LSE01 194 + 144 144 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 145 145 146 146 [[image:image-20220606163915-7.png]] 147 147 148 148 149 - (% style="color:blue" %)**Step 3**(%%)**:**The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.200 +The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 150 151 151 [[image:1654504778294-788.png]] 152 152 153 153 154 - 155 155 == 2.3 Uplink Payload == 156 156 207 +=== 2.3.1 MOD~=0(Default Mode)(% style="display:none" %) (%%) === 157 157 158 -=== 2.3.1 MOD~=0(Default Mode) === 159 159 160 160 LSE01 will uplink payload via LoRaWAN with below payload format: 161 161 ... ... @@ -163,44 +163,32 @@ 163 163 Uplink payload includes in total 11 bytes. 164 164 ))) 165 165 166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 -|((( 168 -**Size** 169 - 170 -**(bytes)** 171 -)))|**2**|**2**|**2**|**2**|**2**|**1** 172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 216 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %) 217 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1** 218 +|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 173 Temperature 174 - 175 175 (Reserve, Ignore now) 176 176 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 -MOD & Digital Interrupt 178 - 179 -(Optional) 222 +MOD & Digital Interrupt(Optional) 180 180 ))) 181 181 182 182 === 2.3.2 MOD~=1(Original value) === 183 183 227 + 184 184 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 185 185 186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 187 -|((( 188 -**Size** 189 - 190 -**(bytes)** 191 -)))|**2**|**2**|**2**|**2**|**2**|**1** 192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 230 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %) 231 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1** 232 +|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 193 193 Temperature 194 - 195 195 (Reserve, Ignore now) 196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 197 -MOD & Digital Interrupt 198 - 199 -(Optional) 235 +)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|Dielectric constant(raw)|((( 236 +MOD & Digital Interrupt(Optional) 200 200 ))) 201 201 202 202 === 2.3.3 Battery Info === 203 203 241 + 204 204 ((( 205 205 Check the battery voltage for LSE01. 206 206 ))) ... ... @@ -214,31 +214,23 @@ 214 214 ))) 215 215 216 216 217 - 218 218 === 2.3.4 Soil Moisture === 219 219 257 + 220 220 ((( 221 221 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 222 ))) 223 223 224 224 ((( 225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 263 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is (% style="color:blue" %)**05DC(H) = 1500(D) /100 = 15%.** 226 226 ))) 227 227 228 -((( 229 - 230 -))) 231 231 232 -((( 233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 234 -))) 235 - 236 - 237 - 238 238 === 2.3.5 Soil Temperature === 239 239 269 + 240 240 ((( 241 - 271 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 242 242 ))) 243 243 244 244 ((( ... ... @@ -254,9 +254,9 @@ 254 254 ))) 255 255 256 256 257 - 258 258 === 2.3.6 Soil Conductivity (EC) === 259 259 289 + 260 260 ((( 261 261 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 262 262 ))) ... ... @@ -273,20 +273,17 @@ 273 273 274 274 ))) 275 275 276 -((( 277 - 278 -))) 279 - 280 280 === 2.3.7 MOD === 281 281 282 -Firmware version at least v2.1 supports changing mode. 283 283 309 +Firmware version at least v1.2.1 supports changing mode. 310 + 284 284 For example, bytes[10]=90 285 285 286 286 mod=(bytes[10]>>7)&0x01=1. 287 287 288 288 289 -**Downlink Command:** 316 +(% style="color:blue" %)**Downlink Command:** 290 290 291 291 If payload = 0x0A00, workmode=0 292 292 ... ... @@ -293,9 +293,9 @@ 293 293 If** **payload =** **0x0A01, workmode=1 294 294 295 295 296 - 297 297 === 2.3.8 Decode payload in The Things Network === 298 298 325 + 299 299 While using TTN network, you can add the payload format to decode the payload. 300 300 301 301 ... ... @@ -306,37 +306,40 @@ 306 306 ))) 307 307 308 308 ((( 309 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 336 +LSE01 TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt]] 337 + 338 + 310 310 ))) 311 311 312 - 313 313 == 2.4 Uplink Interval == 314 314 343 + 315 315 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 316 316 317 317 318 - 319 319 == 2.5 Downlink Payload == 320 320 321 -By default, LSE50 prints the downlink payload to console port. 322 322 323 - [[image:image-20220606165544-8.png]]350 +By default, LSE01 prints the downlink payload to console port. 324 324 352 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 353 +|=(% style="width: 183px; background-color:#4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)** 354 +|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4 355 +|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2 356 +|(% style="width:183px" %)AT+CFM|(% style="width:55px" %)Any|(% style="width:93px" %)05|(% style="width:146px" %)4 357 +|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4 358 +|(% style="width:183px" %)MOD|(% style="width:55px" %)Any|(% style="width:93px" %)0A|(% style="width:146px" %)2 325 325 326 326 ((( 327 -**Examples:** 361 +(% style="color:blue" %)**Examples:** 328 328 ))) 329 329 330 -((( 331 - 332 -))) 333 - 334 334 * ((( 335 -**Set TDC** 365 +(% style="color:blue" %)**Set TDC** 336 336 ))) 337 337 338 338 ((( 339 -If the payload=0100003C, it means set the END Node ’s TDC to 0x00003C=60(S), while type code is 01.369 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 340 340 ))) 341 341 342 342 ((( ... ... @@ -352,7 +352,7 @@ 352 352 ))) 353 353 354 354 * ((( 355 -**Reset** 385 +(% style="color:blue" %)**Reset** 356 356 ))) 357 357 358 358 ((( ... ... @@ -360,14 +360,15 @@ 360 360 ))) 361 361 362 362 363 -* **CFM** 364 364 394 +* (% style="color:blue" %)**CFM** 395 + 365 365 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 366 366 367 367 368 - 369 369 == 2.6 Show Data in DataCake IoT Server == 370 370 401 + 371 371 ((( 372 372 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 373 373 ))) ... ... @@ -404,14 +404,15 @@ 404 404 [[image:1654505925508-181.png]] 405 405 406 406 407 - 408 408 == 2.7 Frequency Plans == 409 409 440 + 410 410 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 411 411 412 412 413 413 === 2.7.1 EU863-870 (EU868) === 414 414 446 + 415 415 (% style="color:#037691" %)** Uplink:** 416 416 417 417 868.1 - SF7BW125 to SF12BW125 ... ... @@ -440,9 +440,9 @@ 440 440 869.525 - SF9BW125 (RX2 downlink only) 441 441 442 442 443 - 444 444 === 2.7.2 US902-928(US915) === 445 445 477 + 446 446 Used in USA, Canada and South America. Default use CHE=2 447 447 448 448 (% style="color:#037691" %)**Uplink:** ... ... @@ -485,9 +485,9 @@ 485 485 923.3 - SF12BW500(RX2 downlink only) 486 486 487 487 488 - 489 489 === 2.7.3 CN470-510 (CN470) === 490 490 522 + 491 491 Used in China, Default use CHE=1 492 492 493 493 (% style="color:#037691" %)**Uplink:** ... ... @@ -530,9 +530,9 @@ 530 530 505.3 - SF12BW125 (RX2 downlink only) 531 531 532 532 533 - 534 534 === 2.7.4 AU915-928(AU915) === 535 535 567 + 536 536 Default use CHE=2 537 537 538 538 (% style="color:#037691" %)**Uplink:** ... ... @@ -575,9 +575,9 @@ 575 575 923.3 - SF12BW500(RX2 downlink only) 576 576 577 577 578 - 579 579 === 2.7.5 AS920-923 & AS923-925 (AS923) === 580 580 612 + 581 581 (% style="color:#037691" %)**Default Uplink channel:** 582 582 583 583 923.2 - SF7BW125 to SF10BW125 ... ... @@ -626,9 +626,9 @@ 626 626 923.2 - SF10BW125 (RX2) 627 627 628 628 629 - 630 630 === 2.7.6 KR920-923 (KR920) === 631 631 663 + 632 632 Default channel: 633 633 634 634 922.1 - SF7BW125 to SF12BW125 ... ... @@ -662,9 +662,9 @@ 662 662 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 663 663 664 664 665 - 666 666 === 2.7.7 IN865-867 (IN865) === 667 667 699 + 668 668 (% style="color:#037691" %)** Uplink:** 669 669 670 670 865.0625 - SF7BW125 to SF12BW125 ... ... @@ -681,10 +681,9 @@ 681 681 866.550 - SF10BW125 (RX2) 682 682 683 683 684 - 685 - 686 686 == 2.8 LED Indicator == 687 687 718 + 688 688 The LSE01 has an internal LED which is to show the status of different state. 689 689 690 690 * Blink once when device power on. ... ... @@ -691,13 +691,11 @@ 691 691 * Solid ON for 5 seconds once device successful Join the network. 692 692 * Blink once when device transmit a packet. 693 693 694 - 695 - 696 696 == 2.9 Installation in Soil == 697 697 727 + 698 698 **Measurement the soil surface** 699 699 700 - 701 701 [[image:1654506634463-199.png]] 702 702 703 703 ((( ... ... @@ -707,7 +707,6 @@ 707 707 ))) 708 708 709 709 710 - 711 711 [[image:1654506665940-119.png]] 712 712 713 713 ((( ... ... @@ -721,19 +721,12 @@ 721 721 722 722 == 2.10 Firmware Change Log == 723 723 724 -((( 725 -**Firmware download link:** 726 -))) 727 727 728 728 ((( 729 -[[http:~~/~~/www.dr agino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]754 +**Firmware download link: **[[https:~~/~~/www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0>>https://www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0]] 730 730 ))) 731 731 732 732 ((( 733 - 734 -))) 735 - 736 -((( 737 737 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 738 738 ))) 739 739 ... ... @@ -750,62 +750,14 @@ 750 750 ))) 751 751 752 752 753 -== 2.11 BatteryAnalysis==774 +== 2.11 Battery & Power Consumption == 754 754 755 -=== 2.11.1 Battery Type === 756 756 757 -((( 758 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 759 -))) 777 +LSE01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 760 760 761 -((( 762 -The battery is designed to last for more than 5 years for the LSN50. 763 -))) 779 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 764 764 765 -((( 766 -((( 767 -The battery-related documents are as below: 768 -))) 769 -))) 770 770 771 -* ((( 772 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 773 -))) 774 -* ((( 775 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 776 -))) 777 -* ((( 778 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 779 -))) 780 - 781 - [[image:image-20220610172436-1.png]] 782 - 783 - 784 - 785 -=== 2.11.2 Battery Note === 786 - 787 -((( 788 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 789 -))) 790 - 791 - 792 - 793 -=== 2.11.3 Replace the battery === 794 - 795 -((( 796 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 797 -))) 798 - 799 -((( 800 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 801 -))) 802 - 803 -((( 804 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 805 -))) 806 - 807 - 808 - 809 809 = 3. Using the AT Commands = 810 810 811 811 == 3.1 Access AT Commands == ... ... @@ -813,16 +813,16 @@ 813 813 814 814 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 815 815 816 -[[image:1654501986557-872.png||height="391" width="800"]] 817 817 790 +[[image:image-20231111095033-3.png||height="591" width="855"]] 818 818 792 + 819 819 Or if you have below board, use below connection: 820 820 821 821 822 -[[image: 1654502005655-729.png||height="503" width="801"]]796 +[[image:image-20231109094023-1.png]] 823 823 824 824 825 - 826 826 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 827 827 828 828 ... ... @@ -829,16 +829,16 @@ 829 829 [[image:1654502050864-459.png||height="564" width="806"]] 830 830 831 831 832 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] : [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]805 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]. 833 833 834 834 835 -(% style="background-color:#dcdcdc" %)**AT+<CMD> =?AT+<CMD>?**(%%) : Help on <CMD>808 +(% style="background-color:#dcdcdc" %)**AT+<CMD>? **(%%) : Help on <CMD> 836 836 837 -(% style="background-color:#dcdcdc" %)**AT+<CMD> =?AT+<CMD>**(%%) : Run <CMD>810 +(% style="background-color:#dcdcdc" %)**AT+<CMD> **(%%) : Run <CMD> 838 838 839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>= ?AT+<CMD>=<value>**(%%)812 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=<value>**(%%) : Set the value 840 840 841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=? AT+<CMD>=?**(%%)814 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?**(%%) : Get the value 842 842 843 843 844 844 (% style="color:#037691" %)**General Commands**(%%) ... ... @@ -941,6 +941,7 @@ 941 941 942 942 == 4.1 How to change the LoRa Frequency Bands/Region? == 943 943 917 + 944 944 ((( 945 945 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 946 946 When downloading the images, choose the required image file for download. ... ... @@ -947,18 +947,10 @@ 947 947 ))) 948 948 949 949 ((( 950 - 951 -))) 952 - 953 -((( 954 954 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 955 955 ))) 956 956 957 957 ((( 958 - 959 -))) 960 - 961 -((( 962 962 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 963 963 ))) 964 964 ... ... @@ -968,11 +968,23 @@ 968 968 969 969 ((( 970 970 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 937 + 938 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 939 +|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)** 940 +|(% style="width:47px" %)0|(% colspan="9" style="width:542px" %)ENABLE Channel 0-63 941 +|(% style="width:47px" %)1|(% style="width:54px" %)902.3|(% style="width:53px" %)902.5|(% style="width:55px" %)902.7|(% style="width:53px" %)902.9|(% style="width:49px" %)903.1|(% style="width:52px" %)903.3|(% style="width:51px" %)903.5|(% style="width:51px" %)903.7|(% style="width:115px" %)Channel 0-7 942 +|(% style="width:47px" %)2|(% style="width:54px" %)903.9|(% style="width:53px" %)904.1|(% style="width:55px" %)904.3|(% style="width:53px" %)904.5|(% style="width:49px" %)904.7|(% style="width:52px" %)904.9|(% style="width:51px" %)905.1|(% style="width:51px" %)905.3|(% style="width:115px" %)Channel 8-15 943 +|(% style="width:47px" %)3|(% style="width:54px" %)905.5|(% style="width:53px" %)905.7|(% style="width:55px" %)905.9|(% style="width:53px" %)906.1|(% style="width:49px" %)906.3|(% style="width:52px" %)906.5|(% style="width:51px" %)906.7|(% style="width:51px" %)906.9|(% style="width:115px" %)Channel 16-23 944 +|(% style="width:47px" %)4|(% style="width:54px" %)907.1|(% style="width:53px" %)907.3|(% style="width:55px" %)907.5|(% style="width:53px" %)907.7|(% style="width:49px" %)907.9|(% style="width:52px" %)908.1|(% style="width:51px" %)908.3|(% style="width:51px" %)908.5|(% style="width:115px" %)Channel 24-31 945 +|(% style="width:47px" %)5|(% style="width:54px" %)908.7|(% style="width:53px" %)908.9|(% style="width:55px" %)909.1|(% style="width:53px" %)909.3|(% style="width:49px" %)909.5|(% style="width:52px" %)909.7|(% style="width:51px" %)909.9|(% style="width:51px" %)910.1|(% style="width:115px" %)Channel 32-39 946 +|(% style="width:47px" %)6|(% style="width:54px" %)910.3|(% style="width:53px" %)910.5|(% style="width:55px" %)910.7|(% style="width:53px" %)910.9|(% style="width:49px" %)911.1|(% style="width:52px" %)911.3|(% style="width:51px" %)911.5|(% style="width:51px" %)911.7|(% style="width:115px" %)Channel 40-47 947 +|(% style="width:47px" %)7|(% style="width:54px" %)911.9|(% style="width:53px" %)912.1|(% style="width:55px" %)912.3|(% style="width:53px" %)912.5|(% style="width:49px" %)912.7|(% style="width:52px" %)912.9|(% style="width:51px" %)913.1|(% style="width:51px" %)913.3|(% style="width:115px" %)Channel 48-55 948 +|(% style="width:47px" %)8|(% style="width:54px" %)913.5|(% style="width:53px" %)913.7|(% style="width:55px" %)913.9|(% style="width:53px" %)914.1|(% style="width:49px" %)914.3|(% style="width:52px" %)914.5|(% style="width:51px" %)914.7|(% style="width:51px" %)914.9|(% style="width:115px" %)Channel 56-63 949 +|(% colspan="10" style="background-color:#4f81bd; color:white; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)** 950 +|(% style="width:47px" %) |(% style="width:54px" %)903|(% style="width:53px" %)904.6|(% style="width:55px" %)906.2|(% style="width:53px" %)907.8|(% style="width:49px" %)909.4|(% style="width:52px" %)911|(% style="width:51px" %)912.6|(% style="width:51px" %)914.2|(% style="width:115px" %)Channel 64-71 971 971 ))) 972 972 973 -[[image:image-20220606154726-3.png]] 974 974 975 - 976 976 When you use the TTN network, the US915 frequency bands use are: 977 977 978 978 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -1004,32 +1004,52 @@ 1004 1004 1005 1005 ((( 1006 1006 The **AU915** band is similar. Below are the AU915 Uplink Channels. 985 + 986 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 987 +|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)** 988 +|(% style="width:45px" %)0|(% colspan="9" style="width:540px" %)ENABLE Channel 0-63 989 +|(% style="width:45px" %)1|(% style="width:51px" %)915.2|(% style="width:51px" %)915.4|(% style="width:51px" %)915.6|(% style="width:52px" %)915.8|(% style="width:51px" %)916|(% style="width:51px" %)916.2|(% style="width:53px" %)916.4|(% style="width:51px" %)916.6|(% style="width:115px" %)Channel 0-7 990 +|(% style="width:45px" %)2|(% style="width:51px" %)916.8|(% style="width:51px" %)917|(% style="width:51px" %)917.2|(% style="width:52px" %)917.4|(% style="width:51px" %)917.6|(% style="width:51px" %)917.8|(% style="width:53px" %)918|(% style="width:51px" %)918.2|(% style="width:115px" %)Channel 8-15 991 +|(% style="width:45px" %)3|(% style="width:51px" %)918.4|(% style="width:51px" %)918.6|(% style="width:51px" %)918.8|(% style="width:52px" %)919|(% style="width:51px" %)919.2|(% style="width:51px" %)919.4|(% style="width:53px" %)919.6|(% style="width:51px" %)919.8|(% style="width:115px" %)Channel 16-23 992 +|(% style="width:45px" %)4|(% style="width:51px" %)920|(% style="width:51px" %)920.2|(% style="width:51px" %)920.4|(% style="width:52px" %)920.6|(% style="width:51px" %)920.8|(% style="width:51px" %)921|(% style="width:53px" %)921.2|(% style="width:51px" %)921.4|(% style="width:115px" %)Channel 24-31 993 +|(% style="width:45px" %)5|(% style="width:51px" %)921.6|(% style="width:51px" %)921.8|(% style="width:51px" %)922|(% style="width:52px" %)922.2|(% style="width:51px" %)922.4|(% style="width:51px" %)922.6|(% style="width:53px" %)922.8|(% style="width:51px" %)923|(% style="width:115px" %)Channel 32-39 994 +|(% style="width:45px" %)6|(% style="width:51px" %)923.2|(% style="width:51px" %)923.4|(% style="width:51px" %)923.6|(% style="width:52px" %)923.8|(% style="width:51px" %)924|(% style="width:51px" %)924.2|(% style="width:53px" %)924.4|(% style="width:51px" %)924.6|(% style="width:115px" %)Channel 40-47 995 +|(% style="width:45px" %)7|(% style="width:51px" %)924.8|(% style="width:51px" %)925|(% style="width:51px" %)925.2|(% style="width:52px" %)925.4|(% style="width:51px" %)925.6|(% style="width:51px" %)925.8|(% style="width:53px" %)926|(% style="width:51px" %)926.2|(% style="width:115px" %)Channel 48-55 996 +|(% style="width:45px" %)8|(% style="width:51px" %)926.4|(% style="width:51px" %)926.6|(% style="width:51px" %)926.8|(% style="width:52px" %)927|(% style="width:51px" %)927.2|(% style="width:51px" %)927.4|(% style="width:53px" %)927.6|(% style="width:51px" %)927.8|(% style="width:115px" %)Channel 56-63 997 +|(% colspan="10" style="background-color:#4f81bd; color:white; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)** 998 +|(% style="width:45px" %) |(% style="width:51px" %)915.9|(% style="width:51px" %)917.5|(% style="width:51px" %)919.1|(% style="width:52px" %)920.7|(% style="width:51px" %)922.3|(% style="width:51px" %)923.9|(% style="width:53px" %)925.5|(% style="width:51px" %)927.1|(% style="width:115px" %)Channel 64-71 1007 1007 ))) 1008 1008 1009 -[[image:image-20220606154825-4.png]] 1010 1010 1011 1011 1003 + 1012 1012 == 4.2 Can I calibrate LSE01 to different soil types? == 1013 1013 1014 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1015 1015 1007 +((( 1008 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20230522.pdf]]. 1009 +))) 1016 1016 1011 + 1017 1017 = 5. Trouble Shooting = 1018 1018 1019 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==1014 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1020 1020 1021 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1022 1022 1017 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1023 1023 1024 -== 5.2 AT Command input doesn’t work == 1025 1025 1020 +== 5.2 AT Command input doesn't work == 1021 + 1022 + 1026 1026 ((( 1027 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1024 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1028 1028 ))) 1029 1029 1030 1030 1031 1031 == 5.3 Device rejoin in at the second uplink packet == 1032 1032 1030 + 1033 1033 (% style="color:#4f81bd" %)**Issue describe as below:** 1034 1034 1035 1035 [[image:1654500909990-784.png]] ... ... @@ -1044,11 +1044,63 @@ 1044 1044 1045 1045 (% style="color:#4f81bd" %)**Solution: ** 1046 1046 1045 +((( 1047 1047 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1047 +))) 1048 1048 1049 1049 [[image:1654500929571-736.png||height="458" width="832"]] 1050 1050 1051 1051 1052 +== 5.4 Possible reasons why the device is unresponsive: == 1053 + 1054 +~1. Check whether the battery voltage is lower than 2.8V 1055 +2. Check whether the jumper of the device is correctly connected 1056 + 1057 +[[image:image-20240330173910-1.png]] 1058 +3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN) 1059 + 1060 +[[image:image-20240330173932-2.png]] 1061 + 1062 += = 1063 + 1064 + 1065 +== 5.4 The node cannot read the sensor data == 1066 + 1067 +This may be caused by a software firmware(≤1.1.6 version) bug, which we fixed in the latest firmware (>1.1.6 version) 1068 + 1069 +The user can fix this problem via upgrade firmware. 1070 + 1071 +By default, The latest firmware value of POWERIC is 1, while the 3322 version requires POWERIC to be set to 0 in order to function properly 1072 + 1073 +* **//1. Check if the hardware version is 3322//** 1074 + 1075 +If the sensor hardware version is 3322 or earlier, the user can change the POWERIC value to 0 after a firmware upgrade using one of the following methods 1076 + 1077 + 1078 +**a. Using AT command** 1079 + 1080 +(% class="box infomessage" %) 1081 +((( 1082 +AT+POWERIC=0. 1083 +))) 1084 + 1085 + 1086 +**b. Using Downlink** 1087 + 1088 +(% class="box infomessage" %) 1089 +((( 1090 +FF 00(AT+POWERIC=0). 1091 +))) 1092 + 1093 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20240531090837-1.png?rev=1.1||alt="image-20240531090837-1.png"]] 1094 + 1095 +Please check your hardware production date 1096 + 1097 +The first two digits are the week of the year, and the last two digits are the year. 1098 + 1099 +The number 3322 is the first batch we changed the power IC. 1100 + 1101 + 1052 1052 = 6. Order Info = 1053 1053 1054 1054 ... ... @@ -1074,6 +1074,8 @@ 1074 1074 (% class="wikigeneratedid" %) 1075 1075 ((( 1076 1076 1127 + 1128 + 1077 1077 ))) 1078 1078 1079 1079 = 7. Packing Info = ... ... @@ -1106,10 +1106,13 @@ 1106 1106 * ((( 1107 1107 Weight / pcs : g 1108 1108 1161 + 1109 1109 1110 1110 ))) 1111 1111 1112 1112 = 8. Support = 1113 1113 1167 + 1114 1114 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1169 + 1115 1115 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20221008135912-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +65.9 KB - Content
- image-20221008140228-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.3 KB - Content
- image-20230426084640-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +190.0 KB - Content
- image-20231109094023-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +809.6 KB - Content
- image-20231111093716-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20231111095027-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.7 MB - Content
- image-20231111095033-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.7 MB - Content
- image-20240330173910-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +445.4 KB - Content
- image-20240330173932-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +445.4 KB - Content