Last modified by Mengting Qiu on 2025/07/07 15:27

From version 39.1
edited by Xiaoling
on 2022/06/25 16:34
Change comment: There is no comment for this version
To version 59.1
edited by Xiaoling
on 2025/04/25 10:32
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -24,14 +24,13 @@
24 24  
25 25  == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 26  
27 -(((
28 -
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
28 +(((
29 +The Dragino LSE01 is a (% style="color:blue" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 31  )))
32 32  
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
33 +It detects (% style="color:blue" %)**Soil Moisture**(%%), (% style="color:blue" %)**Soil Temperature**(%%) and (% style="color:blue" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 35  )))
36 36  
37 37  (((
... ... @@ -39,7 +39,7 @@
39 39  )))
40 40  
41 41  (((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
41 +LES01 is powered by (% style="color:blue" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 43  )))
44 44  
45 45  (((
... ... @@ -53,9 +53,9 @@
53 53  [[image:1654503265560-120.png]]
54 54  
55 55  
56 -
57 57  == 1.2 ​Features ==
58 58  
57 +
59 59  * LoRaWAN 1.0.3 Class A
60 60  * Ultra low power consumption
61 61  * Monitor Soil Moisture
... ... @@ -68,45 +68,74 @@
68 68  * IP66 Waterproof Enclosure
69 69  * 4000mAh or 8500mAh Battery for long term use
70 70  
71 -
72 72  == 1.3 Specification ==
73 73  
72 +
74 74  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
76 -[[image:image-20220606162220-5.png]]
75 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
76 +|(% style="background-color:#4f81bd; color:white; width:94px" %)**Parameter**|(% style="background-color:#4f81bd; color:white; width:145px" %)**Soil Moisture**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Conductivity**|(% style="background-color:#4f81bd; color:white; width:135px" %)**Soil Temperature**
77 +|(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)(((
78 +0-20000uS/cm
79 +(25℃)(0-20.0EC)
80 +)))|(% style="width:140px" %)-40.00℃~85.00℃
81 +|(% style="width:95px" %)Unit|(% style="width:146px" %)V/V %|(% style="width:137px" %)uS/cm|(% style="width:140px" %)℃
82 +|(% style="width:95px" %)Resolution|(% style="width:146px" %)0.01%|(% style="width:137px" %)1 uS/cm|(% style="width:140px" %)0.01℃
83 +|(% style="width:95px" %)Accuracy|(% style="width:146px" %)(((
84 +±3% (0-53%)
85 +±5% (>53%)
86 +)))|(% style="width:137px" %)2%FS|(% style="width:140px" %)(((
87 +-10℃~50℃:<0.3℃
88 +All other: <0.6℃
89 +)))
90 +|(% style="width:95px" %)(((
91 +Measure
92 +Method
93 +)))|(% style="width:146px" %)FDR , with temperature &EC compensate|(% style="width:137px" %)Conductivity , with temperature compensate|(% style="width:140px" %)RTD, and calibrate
77 77  
95 +== 1.4 Dimension ==
78 78  
79 79  
80 -== ​1.4 Applications ==
98 +(% style="color:blue" %)**Main Device Dimension:**
81 81  
82 -* Smart Agriculture
100 +See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
83 83  
84 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
85 -​
102 +[[image:image-20221008140228-2.png||height="358" width="571"]]
86 86  
87 -== 1.5 Firmware Change log ==
88 88  
105 +(% style="color:blue" %)**Probe Dimension**
89 89  
90 -**LSE01 v1.0 :**  Release
107 +[[image:image-20221008135912-1.png]]
91 91  
92 92  
110 +== ​1.5 Applications ==
93 93  
112 +
113 +* Smart Agriculture​
114 +
115 +== 1.6 Firmware Change log ==
116 +
117 +
118 +**LSE01 v1.0 :**  Release
119 +
120 +
94 94  = 2. Configure LSE01 to connect to LoRaWAN network =
95 95  
96 96  == 2.1 How it works ==
97 97  
125 +
98 98  (((
99 99  The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
100 100  )))
101 101  
102 102  (((
103 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
131 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
104 104  )))
105 105  
106 106  
107 -
108 108  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
109 109  
137 +
110 110  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
111 111  
112 112  
... ... @@ -120,41 +120,65 @@
120 120  
121 121  Each LSE01 is shipped with a sticker with the default device EUI as below:
122 122  
123 -[[image:image-20220606163732-6.jpeg]]
151 +[[image:image-20230426084640-1.png||height="201" width="433"]]
124 124  
153 +
125 125  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
126 126  
127 -**Add APP EUI in the application**
156 +**Create the application.**
128 128  
158 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
129 129  
130 -[[image:1654504596150-405.png]]
160 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
131 131  
132 132  
163 +**Add devices to the created Application.**
133 133  
134 -**Add APP KEY and DEV EUI**
165 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
135 135  
136 -[[image:1654504683289-357.png]]
167 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
137 137  
138 138  
170 +**Enter end device specifics manually.**
139 139  
140 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
172 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
141 141  
174 +**Add DevEUI and AppKey.**
142 142  
176 +**Customize a platform ID for the device.**
177 +
178 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
179 +
180 +
181 +(% style="color:blue" %)**Step 2**(%%):** Add decoder.**
182 +
183 +In TTN, user can add a custom payload so it shows friendly reading.
184 +
185 +Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
186 +
187 +Below is TTN screen shot:
188 +
189 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
190 +
191 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png"]]
192 +
193 +
194 +(% style="color:blue" %)**Step 3**(%%): Power on LSE01
195 +
143 143  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
144 144  
145 145  [[image:image-20220606163915-7.png]]
146 146  
147 147  
148 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
201 +The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
149 149  
150 150  [[image:1654504778294-788.png]]
151 151  
152 152  
153 -
154 154  == 2.3 Uplink Payload ==
155 155  
208 +=== 2.3.1 MOD~=0(Default Mode)(% style="display:none" %) (%%) ===
156 156  
157 -=== 2.3.1 MOD~=0(Default Mode) ===
158 158  
159 159  LSE01 will uplink payload via LoRaWAN with below payload format: 
160 160  
... ... @@ -162,46 +162,32 @@
162 162  Uplink payload includes in total 11 bytes.
163 163  )))
164 164  
165 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
166 -|(((
167 -**Size**
168 -
169 -**(bytes)**
170 -)))|**2**|**2**|**2**|**2**|**2**|**1**
171 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
217 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
218 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
219 +|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
172 172  Temperature
173 -
174 174  (Reserve, Ignore now)
175 175  )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
176 -MOD & Digital Interrupt
177 -
178 -(Optional)
223 +MOD & Digital Interrupt(Optional)
179 179  )))
180 180  
181 -
182 182  === 2.3.2 MOD~=1(Original value) ===
183 183  
228 +
184 184  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
185 185  
186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 -|(((
188 -**Size**
189 -
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
231 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
232 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**
233 +|Value|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 193  Temperature
194 -
195 195  (Reserve, Ignore now)
196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 -MOD & Digital Interrupt
198 -
199 -(Optional)
236 +)))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|Dielectric constant(raw)|(((
237 +MOD & Digital Interrupt(Optional)
200 200  )))
201 201  
202 -
203 203  === 2.3.3 Battery Info ===
204 204  
242 +
205 205  (((
206 206  Check the battery voltage for LSE01.
207 207  )))
... ... @@ -215,31 +215,23 @@
215 215  )))
216 216  
217 217  
218 -
219 219  === 2.3.4 Soil Moisture ===
220 220  
258 +
221 221  (((
222 222  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
223 223  )))
224 224  
225 225  (((
226 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
264 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is (% style="color:blue" %)**05DC(H) = 1500(D) /100 = 15%.**
227 227  )))
228 228  
229 -(((
230 -
231 -)))
232 232  
233 -(((
234 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
235 -)))
236 -
237 -
238 -
239 239  === 2.3.5 Soil Temperature ===
240 240  
270 +
241 241  (((
242 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
272 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
243 243  )))
244 244  
245 245  (((
... ... @@ -255,9 +255,9 @@
255 255  )))
256 256  
257 257  
258 -
259 259  === 2.3.6 Soil Conductivity (EC) ===
260 260  
290 +
261 261  (((
262 262  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
263 263  )))
... ... @@ -274,20 +274,17 @@
274 274  
275 275  )))
276 276  
277 -(((
278 -
279 -)))
280 -
281 281  === 2.3.7 MOD ===
282 282  
283 -Firmware version at least v2.1 supports changing mode.
284 284  
310 +Firmware version at least v1.2.1 supports changing mode.
311 +
285 285  For example, bytes[10]=90
286 286  
287 287  mod=(bytes[10]>>7)&0x01=1.
288 288  
289 289  
290 -**Downlink Command:**
317 +(% style="color:blue" %)**Downlink Command:**
291 291  
292 292  If payload = 0x0A00, workmode=0
293 293  
... ... @@ -294,9 +294,9 @@
294 294  If** **payload =** **0x0A01, workmode=1
295 295  
296 296  
297 -
298 298  === 2.3.8 ​Decode payload in The Things Network ===
299 299  
326 +
300 300  While using TTN network, you can add the payload format to decode the payload.
301 301  
302 302  
... ... @@ -307,37 +307,40 @@
307 307  )))
308 308  
309 309  (((
310 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
337 +LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LSE01/LSE01_TTN%20Decoder%20V1.2.1.txt]]
338 +
339 +
311 311  )))
312 312  
313 -
314 314  == 2.4 Uplink Interval ==
315 315  
344 +
316 316  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
317 317  
318 318  
319 -
320 320  == 2.5 Downlink Payload ==
321 321  
322 -By default, LSE50 prints the downlink payload to console port.
323 323  
324 -[[image:image-20220606165544-8.png]]
351 +By default, LSE01 prints the downlink payload to console port.
325 325  
353 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
354 +|=(% style="width: 183px; background-color:#4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)**
355 +|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
356 +|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
357 +|(% style="width:183px" %)AT+CFM|(% style="width:55px" %)Any|(% style="width:93px" %)05|(% style="width:146px" %)4
358 +|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
359 +|(% style="width:183px" %)MOD|(% style="width:55px" %)Any|(% style="width:93px" %)0A|(% style="width:146px" %)2
326 326  
327 327  (((
328 -**Examples:**
362 +(% style="color:blue" %)**Examples:**
329 329  )))
330 330  
331 -(((
332 -
333 -)))
334 -
335 335  * (((
336 -**Set TDC**
366 +(% style="color:blue" %)**Set TDC**
337 337  )))
338 338  
339 339  (((
340 -If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
370 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
341 341  )))
342 342  
343 343  (((
... ... @@ -353,7 +353,7 @@
353 353  )))
354 354  
355 355  * (((
356 -**Reset**
386 +(% style="color:blue" %)**Reset**
357 357  )))
358 358  
359 359  (((
... ... @@ -361,14 +361,14 @@
361 361  )))
362 362  
363 363  
364 -* **CFM**
394 +* (% style="color:blue" %)**CFM**
365 365  
366 366  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
367 367  
368 368  
369 -
370 370  == 2.6 ​Show Data in DataCake IoT Server ==
371 371  
401 +
372 372  (((
373 373  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
374 374  )))
... ... @@ -405,14 +405,15 @@
405 405  [[image:1654505925508-181.png]]
406 406  
407 407  
408 -
409 409  == 2.7 Frequency Plans ==
410 410  
440 +
411 411  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
412 412  
413 413  
414 414  === 2.7.1 EU863-870 (EU868) ===
415 415  
446 +
416 416  (% style="color:#037691" %)** Uplink:**
417 417  
418 418  868.1 - SF7BW125 to SF12BW125
... ... @@ -441,9 +441,9 @@
441 441  869.525 - SF9BW125 (RX2 downlink only)
442 442  
443 443  
444 -
445 445  === 2.7.2 US902-928(US915) ===
446 446  
477 +
447 447  Used in USA, Canada and South America. Default use CHE=2
448 448  
449 449  (% style="color:#037691" %)**Uplink:**
... ... @@ -486,9 +486,9 @@
486 486  923.3 - SF12BW500(RX2 downlink only)
487 487  
488 488  
489 -
490 490  === 2.7.3 CN470-510 (CN470) ===
491 491  
522 +
492 492  Used in China, Default use CHE=1
493 493  
494 494  (% style="color:#037691" %)**Uplink:**
... ... @@ -531,9 +531,9 @@
531 531  505.3 - SF12BW125 (RX2 downlink only)
532 532  
533 533  
534 -
535 535  === 2.7.4 AU915-928(AU915) ===
536 536  
567 +
537 537  Default use CHE=2
538 538  
539 539  (% style="color:#037691" %)**Uplink:**
... ... @@ -576,9 +576,9 @@
576 576  923.3 - SF12BW500(RX2 downlink only)
577 577  
578 578  
579 -
580 580  === 2.7.5 AS920-923 & AS923-925 (AS923) ===
581 581  
612 +
582 582  (% style="color:#037691" %)**Default Uplink channel:**
583 583  
584 584  923.2 - SF7BW125 to SF10BW125
... ... @@ -627,9 +627,9 @@
627 627  923.2 - SF10BW125 (RX2)
628 628  
629 629  
630 -
631 631  === 2.7.6 KR920-923 (KR920) ===
632 632  
663 +
633 633  Default channel:
634 634  
635 635  922.1 - SF7BW125 to SF12BW125
... ... @@ -663,9 +663,9 @@
663 663  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
664 664  
665 665  
666 -
667 667  === 2.7.7 IN865-867 (IN865) ===
668 668  
699 +
669 669  (% style="color:#037691" %)** Uplink:**
670 670  
671 671  865.0625 - SF7BW125 to SF12BW125
... ... @@ -682,10 +682,9 @@
682 682  866.550 - SF10BW125 (RX2)
683 683  
684 684  
685 -
686 -
687 687  == 2.8 LED Indicator ==
688 688  
718 +
689 689  The LSE01 has an internal LED which is to show the status of different state.
690 690  
691 691  * Blink once when device power on.
... ... @@ -692,15 +692,11 @@
692 692  * Solid ON for 5 seconds once device successful Join the network.
693 693  * Blink once when device transmit a packet.
694 694  
695 -
696 -
697 -
698 -
699 699  == 2.9 Installation in Soil ==
700 700  
727 +
701 701  **Measurement the soil surface**
702 702  
703 -
704 704  [[image:1654506634463-199.png]] ​
705 705  
706 706  (((
... ... @@ -710,7 +710,6 @@
710 710  )))
711 711  
712 712  
713 -
714 714  [[image:1654506665940-119.png]]
715 715  
716 716  (((
... ... @@ -724,19 +724,12 @@
724 724  
725 725  == 2.10 ​Firmware Change Log ==
726 726  
727 -(((
728 -**Firmware download link:**
729 -)))
730 730  
731 731  (((
732 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
754 +**Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0>>https://www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0]]
733 733  )))
734 734  
735 735  (((
736 -
737 -)))
738 -
739 -(((
740 740  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
741 741  )))
742 742  
... ... @@ -753,62 +753,14 @@
753 753  )))
754 754  
755 755  
756 -== 2.11 Battery Analysis ==
774 +== 2.11 Battery & Power Consumption ==
757 757  
758 -=== 2.11.1 ​Battery Type ===
759 759  
760 -(((
761 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
762 -)))
777 +LSE01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
763 763  
764 -(((
765 -The battery is designed to last for more than 5 years for the LSN50.
766 -)))
779 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
767 767  
768 -(((
769 -(((
770 -The battery-related documents are as below:
771 -)))
772 -)))
773 773  
774 -* (((
775 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
776 -)))
777 -* (((
778 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
779 -)))
780 -* (((
781 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
782 -)))
783 -
784 - [[image:image-20220610172436-1.png]]
785 -
786 -
787 -
788 -=== 2.11.2 ​Battery Note ===
789 -
790 -(((
791 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
792 -)))
793 -
794 -
795 -
796 -=== 2.11.3 Replace the battery ===
797 -
798 -(((
799 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
800 -)))
801 -
802 -(((
803 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
804 -)))
805 -
806 -(((
807 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
808 -)))
809 -
810 -
811 -
812 812  = 3. ​Using the AT Commands =
813 813  
814 814  == 3.1 Access AT Commands ==
... ... @@ -816,16 +816,16 @@
816 816  
817 817  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
818 818  
819 -[[image:1654501986557-872.png||height="391" width="800"]]
820 820  
790 +[[image:image-20231111095033-3.png||height="591" width="855"]]
821 821  
792 +
822 822  Or if you have below board, use below connection:
823 823  
824 824  
825 -[[image:1654502005655-729.png||height="503" width="801"]]
796 +[[image:image-20231109094023-1.png]]
826 826  
827 827  
828 -
829 829  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
830 830  
831 831  
... ... @@ -832,16 +832,16 @@
832 832   [[image:1654502050864-459.png||height="564" width="806"]]
833 833  
834 834  
835 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
805 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]].
836 836  
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
808 +(% style="background-color:#dcdcdc" %)**AT+<CMD>? **(%%) : Help on <CMD>
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
810 +(% style="background-color:#dcdcdc" %)**AT+<CMD> **(%%) : Run <CMD>
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
812 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=<value>**(%%)  : Set the value
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
814 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?**(%%)  : Get the value
845 845  
846 846  
847 847  (% style="color:#037691" %)**General Commands**(%%)      
... ... @@ -944,6 +944,7 @@
944 944  
945 945  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
946 946  
917 +
947 947  (((
948 948  You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
949 949  When downloading the images, choose the required image file for download. ​
... ... @@ -950,18 +950,10 @@
950 950  )))
951 951  
952 952  (((
953 -
954 -)))
955 -
956 -(((
957 957  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
958 958  )))
959 959  
960 960  (((
961 -
962 -)))
963 -
964 -(((
965 965  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
966 966  )))
967 967  
... ... @@ -971,11 +971,23 @@
971 971  
972 972  (((
973 973  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
937 +
938 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
939 +|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
940 +|(% style="width:47px" %)0|(% colspan="9" style="width:542px" %)ENABLE Channel 0-63
941 +|(% style="width:47px" %)1|(% style="width:54px" %)902.3|(% style="width:53px" %)902.5|(% style="width:55px" %)902.7|(% style="width:53px" %)902.9|(% style="width:49px" %)903.1|(% style="width:52px" %)903.3|(% style="width:51px" %)903.5|(% style="width:51px" %)903.7|(% style="width:115px" %)Channel 0-7
942 +|(% style="width:47px" %)2|(% style="width:54px" %)903.9|(% style="width:53px" %)904.1|(% style="width:55px" %)904.3|(% style="width:53px" %)904.5|(% style="width:49px" %)904.7|(% style="width:52px" %)904.9|(% style="width:51px" %)905.1|(% style="width:51px" %)905.3|(% style="width:115px" %)Channel 8-15
943 +|(% style="width:47px" %)3|(% style="width:54px" %)905.5|(% style="width:53px" %)905.7|(% style="width:55px" %)905.9|(% style="width:53px" %)906.1|(% style="width:49px" %)906.3|(% style="width:52px" %)906.5|(% style="width:51px" %)906.7|(% style="width:51px" %)906.9|(% style="width:115px" %)Channel 16-23
944 +|(% style="width:47px" %)4|(% style="width:54px" %)907.1|(% style="width:53px" %)907.3|(% style="width:55px" %)907.5|(% style="width:53px" %)907.7|(% style="width:49px" %)907.9|(% style="width:52px" %)908.1|(% style="width:51px" %)908.3|(% style="width:51px" %)908.5|(% style="width:115px" %)Channel 24-31
945 +|(% style="width:47px" %)5|(% style="width:54px" %)908.7|(% style="width:53px" %)908.9|(% style="width:55px" %)909.1|(% style="width:53px" %)909.3|(% style="width:49px" %)909.5|(% style="width:52px" %)909.7|(% style="width:51px" %)909.9|(% style="width:51px" %)910.1|(% style="width:115px" %)Channel 32-39
946 +|(% style="width:47px" %)6|(% style="width:54px" %)910.3|(% style="width:53px" %)910.5|(% style="width:55px" %)910.7|(% style="width:53px" %)910.9|(% style="width:49px" %)911.1|(% style="width:52px" %)911.3|(% style="width:51px" %)911.5|(% style="width:51px" %)911.7|(% style="width:115px" %)Channel 40-47
947 +|(% style="width:47px" %)7|(% style="width:54px" %)911.9|(% style="width:53px" %)912.1|(% style="width:55px" %)912.3|(% style="width:53px" %)912.5|(% style="width:49px" %)912.7|(% style="width:52px" %)912.9|(% style="width:51px" %)913.1|(% style="width:51px" %)913.3|(% style="width:115px" %)Channel 48-55
948 +|(% style="width:47px" %)8|(% style="width:54px" %)913.5|(% style="width:53px" %)913.7|(% style="width:55px" %)913.9|(% style="width:53px" %)914.1|(% style="width:49px" %)914.3|(% style="width:52px" %)914.5|(% style="width:51px" %)914.7|(% style="width:51px" %)914.9|(% style="width:115px" %)Channel 56-63
949 +|(% colspan="10" style="background-color:#4f81bd; color:white; width:589px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
950 +|(% style="width:47px" %) |(% style="width:54px" %)903|(% style="width:53px" %)904.6|(% style="width:55px" %)906.2|(% style="width:53px" %)907.8|(% style="width:49px" %)909.4|(% style="width:52px" %)911|(% style="width:51px" %)912.6|(% style="width:51px" %)914.2|(% style="width:115px" %)Channel 64-71
974 974  )))
975 975  
976 -[[image:image-20220606154726-3.png]]
977 977  
978 -
979 979  When you use the TTN network, the US915 frequency bands use are:
980 980  
981 981  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -1007,28 +1007,51 @@
1007 1007  
1008 1008  (((
1009 1009  The **AU915** band is similar. Below are the AU915 Uplink Channels.
985 +
986 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
987 +|(% style="background-color:#4f81bd; color:white; width:45px" %)**CHE**|(% colspan="9" style="background-color:#4f81bd; color:white; width:465px" %)**AU915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0)**
988 +|(% style="width:45px" %)0|(% colspan="9" style="width:540px" %)ENABLE Channel 0-63
989 +|(% style="width:45px" %)1|(% style="width:51px" %)915.2|(% style="width:51px" %)915.4|(% style="width:51px" %)915.6|(% style="width:52px" %)915.8|(% style="width:51px" %)916|(% style="width:51px" %)916.2|(% style="width:53px" %)916.4|(% style="width:51px" %)916.6|(% style="width:115px" %)Channel 0-7
990 +|(% style="width:45px" %)2|(% style="width:51px" %)916.8|(% style="width:51px" %)917|(% style="width:51px" %)917.2|(% style="width:52px" %)917.4|(% style="width:51px" %)917.6|(% style="width:51px" %)917.8|(% style="width:53px" %)918|(% style="width:51px" %)918.2|(% style="width:115px" %)Channel 8-15
991 +|(% style="width:45px" %)3|(% style="width:51px" %)918.4|(% style="width:51px" %)918.6|(% style="width:51px" %)918.8|(% style="width:52px" %)919|(% style="width:51px" %)919.2|(% style="width:51px" %)919.4|(% style="width:53px" %)919.6|(% style="width:51px" %)919.8|(% style="width:115px" %)Channel 16-23
992 +|(% style="width:45px" %)4|(% style="width:51px" %)920|(% style="width:51px" %)920.2|(% style="width:51px" %)920.4|(% style="width:52px" %)920.6|(% style="width:51px" %)920.8|(% style="width:51px" %)921|(% style="width:53px" %)921.2|(% style="width:51px" %)921.4|(% style="width:115px" %)Channel 24-31
993 +|(% style="width:45px" %)5|(% style="width:51px" %)921.6|(% style="width:51px" %)921.8|(% style="width:51px" %)922|(% style="width:52px" %)922.2|(% style="width:51px" %)922.4|(% style="width:51px" %)922.6|(% style="width:53px" %)922.8|(% style="width:51px" %)923|(% style="width:115px" %)Channel 32-39
994 +|(% style="width:45px" %)6|(% style="width:51px" %)923.2|(% style="width:51px" %)923.4|(% style="width:51px" %)923.6|(% style="width:52px" %)923.8|(% style="width:51px" %)924|(% style="width:51px" %)924.2|(% style="width:53px" %)924.4|(% style="width:51px" %)924.6|(% style="width:115px" %)Channel 40-47
995 +|(% style="width:45px" %)7|(% style="width:51px" %)924.8|(% style="width:51px" %)925|(% style="width:51px" %)925.2|(% style="width:52px" %)925.4|(% style="width:51px" %)925.6|(% style="width:51px" %)925.8|(% style="width:53px" %)926|(% style="width:51px" %)926.2|(% style="width:115px" %)Channel 48-55
996 +|(% style="width:45px" %)8|(% style="width:51px" %)926.4|(% style="width:51px" %)926.6|(% style="width:51px" %)926.8|(% style="width:52px" %)927|(% style="width:51px" %)927.2|(% style="width:51px" %)927.4|(% style="width:53px" %)927.6|(% style="width:51px" %)927.8|(% style="width:115px" %)Channel 56-63
997 +|(% colspan="10" style="background-color:#4f81bd; color:white; width:586px" %)**Channels(500KHz,4/5,Unit:MHz,CHS=0)**
998 +|(% style="width:45px" %) |(% style="width:51px" %)915.9|(% style="width:51px" %)917.5|(% style="width:51px" %)919.1|(% style="width:52px" %)920.7|(% style="width:51px" %)922.3|(% style="width:51px" %)923.9|(% style="width:53px" %)925.5|(% style="width:51px" %)927.1|(% style="width:115px" %)Channel 64-71
1010 1010  )))
1011 1011  
1012 -[[image:image-20220606154825-4.png]]
1013 1013  
1014 1014  
1003 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1015 1015  
1005 +
1006 +(((
1007 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20230522.pdf]].
1008 +)))
1009 +
1010 +
1016 1016  = 5. Trouble Shooting =
1017 1017  
1018 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1013 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1019 1019  
1020 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1021 1021  
1016 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1022 1022  
1023 -== 5.2 AT Command input doesn’t work ==
1024 1024  
1019 +== 5.2 AT Command input doesn't work ==
1020 +
1021 +
1025 1025  (((
1026 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1023 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1027 1027  )))
1028 1028  
1029 1029  
1030 1030  == 5.3 Device rejoin in at the second uplink packet ==
1031 1031  
1029 +
1032 1032  (% style="color:#4f81bd" %)**Issue describe as below:**
1033 1033  
1034 1034  [[image:1654500909990-784.png]]
... ... @@ -1043,11 +1043,63 @@
1043 1043  
1044 1044  (% style="color:#4f81bd" %)**Solution: **
1045 1045  
1044 +(((
1046 1046  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1046 +)))
1047 1047  
1048 1048  [[image:1654500929571-736.png||height="458" width="832"]]
1049 1049  
1050 1050  
1051 +== 5.3 Possible reasons why the device is unresponsive: ==
1052 +
1053 +~1. Check whether the battery voltage is lower than 2.8V
1054 +2. Check whether the jumper of the device is correctly connected
1055 +
1056 +[[image:image-20240330173910-1.png]]
1057 +3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1058 +
1059 +[[image:image-20240330173932-2.png]]
1060 +
1061 += =
1062 +
1063 +
1064 +== 5.4 The node cannot read the sensor data ==
1065 +
1066 +This may be caused by a software firmware(≤1.1.6 version) bug, which we fixed in the latest firmware (>1.1.6 version)
1067 +
1068 +The user can fix this problem via upgrade firmware.
1069 +
1070 +By default, The latest firmware value of POWERIC is 1, while the 3322 version requires POWERIC to be set to 0 in order to function properly
1071 +
1072 +* **//1. Check if the hardware version is 3322//**
1073 +
1074 +If the sensor hardware version is 3322 or earlier, the user can change the POWERIC value to 0 after a firmware upgrade using one of the following methods
1075 +
1076 +
1077 +**a. Using AT command**
1078 +
1079 +(% class="box infomessage" %)
1080 +(((
1081 +AT+POWERIC=0.
1082 +)))
1083 +
1084 +
1085 +**b. Using Downlink**
1086 +
1087 +(% class="box infomessage" %)
1088 +(((
1089 +FF 00(AT+POWERIC=0).
1090 +)))
1091 +
1092 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDDS75%20-%20LoRaWAN%20Distance%20Detection%20Sensor%20User%20Manual/WebHome/image-20240531090837-1.png?rev=1.1||alt="image-20240531090837-1.png"]]
1093 +
1094 +Please check your hardware production date
1095 +
1096 +The first two digits are the week of the year, and the last two digits are the year.
1097 +
1098 +The number 3322 is the first batch we changed the power IC.
1099 +
1100 +
1051 1051  = 6. ​Order Info =
1052 1052  
1053 1053  
... ... @@ -1073,6 +1073,8 @@
1073 1073  (% class="wikigeneratedid" %)
1074 1074  (((
1075 1075  
1126 +
1127 +
1076 1076  )))
1077 1077  
1078 1078  = 7. Packing Info =
... ... @@ -1105,10 +1105,13 @@
1105 1105  * (((
1106 1106  Weight / pcs : g
1107 1107  
1160 +
1108 1108  
1109 1109  )))
1110 1110  
1111 1111  = 8. Support =
1112 1112  
1166 +
1113 1113  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1168 +
1114 1114  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20221008135912-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +65.9 KB
Content
image-20221008140228-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +37.3 KB
Content
image-20230426084640-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +190.0 KB
Content
image-20231109094023-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +809.6 KB
Content
image-20231111093716-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20231111095027-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.7 MB
Content
image-20231111095033-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.7 MB
Content
image-20240330173910-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +445.4 KB
Content
image-20240330173932-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +445.4 KB
Content