Changes for page LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Last modified by Bei Jinggeng on 2024/08/02 16:47
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,7 @@ 1 1 (% style="text-align:center" %) 2 2 [[image:image-20220606151504-2.jpeg||height="848" width="848"]] 3 3 4 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]] 4 4 5 5 6 6 ... ... @@ -8,40 +8,44 @@ 8 8 9 9 10 10 11 -= 1. Introduction = 12 12 13 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 14 14 15 -((( 16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 -))) 18 18 19 -((( 20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 -))) 22 22 23 -((( 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 +1. Introduction 24 +11. What is LoRaWAN Soil Moisture & EC Sensor 25 + 26 +The Dragino LSE01 is a **LoRaWAN Soil Moisture & EC Sensor** for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 27 + 28 + 29 +It detects **Soil Moisture**, **Soil Temperature** and **Soil Conductivity**, and uploads the value via wireless to LoRaWAN IoT Server. 30 + 31 + 24 24 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 -))) 26 26 27 -((( 28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 -))) 30 30 31 -((( 32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 -))) 35 +LES01 is powered by **4000mA or 8500mAh Li-SOCI2 battery**, It is designed for long term use up to 10 years. 34 34 35 35 36 - [[image:1654503236291-817.png]]38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 38 38 39 -[[image: 1654503265560-120.png]]41 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]] 40 40 41 41 44 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]] 42 42 43 -== 1.2 Features == 44 44 47 + 48 +* 49 +*1. Features 45 45 * LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 47 * Monitor Soil Moisture ... ... @@ -54,50 +54,63 @@ 54 54 * IP66 Waterproof Enclosure 55 55 * 4000mAh or 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 62 +1. 63 +11. Specification 58 58 59 59 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 -[[image:image-20220606162220-5.png]] 67 +|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature** 68 +|**Range**|**0-100.00%**|((( 69 +**0-20000uS/cm** 62 62 71 +**(25℃)(0-20.0EC)** 72 +)))|**-40.00℃~85.00℃** 73 +|**Unit**|**V/V %,**|**uS/cm,**|**℃** 74 +|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃** 75 +|**Accuracy**|((( 76 +**±3% (0-53%)** 63 63 78 +**±5% (>53%)** 79 +)))|**2%FS,**|((( 80 +**-10℃~50℃:<0.3℃** 64 64 65 -== 1.4 Applications == 82 +**All other: <0.6℃** 83 +))) 84 +|((( 85 +**Measure** 66 66 87 +**Method** 88 +)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate** 89 + 90 +* 91 +*1. Applications 67 67 * Smart Agriculture 68 68 94 +1. 95 +11. Firmware Change log 69 69 70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 71 - 97 +**LSE01 v1.0:** 72 72 73 -(% class="wikigeneratedid" %) 74 -== 1.5 Firmware Change log == 99 +* Release 75 75 101 +1. Configure LSE01 to connect to LoRaWAN network 102 +11. How it works 76 76 77 - **LSE01v1.0:**Release104 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 78 78 79 79 107 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_Using_the_AT]]to set the keys in the LSE01. 80 80 81 -= 2. Configure LSE01 to connect to LoRaWAN network = 82 82 83 -== 2.1 How it works == 84 84 85 -((( 86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 87 -))) 88 88 89 -((( 90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 91 -))) 112 +1. 113 +11. Quick guide to connect to LoRaWAN server (OTAA) 92 92 93 - 94 - 95 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 96 - 97 97 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 98 98 99 99 100 -[[image: 1654503992078-669.png]]118 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]] 101 101 102 102 103 103 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. ... ... @@ -182,7 +182,7 @@ 182 182 183 183 184 184 1. 185 -11. 203 +11. 186 186 111. MOD=1(Original value) 187 187 188 188 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). ... ... @@ -205,7 +205,7 @@ 205 205 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]] 206 206 207 207 1. 208 -11. 226 +11. 209 209 111. Battery Info 210 210 211 211 Check the battery voltage for LSE01. ... ... @@ -216,8 +216,8 @@ 216 216 217 217 218 218 219 -1. 220 -11. 237 +1. 238 +11. 221 221 111. Soil Moisture 222 222 223 223 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. ... ... @@ -227,8 +227,8 @@ 227 227 **05DC(H) = 1500(D) /100 = 15%.** 228 228 229 229 230 -1. 231 -11. 248 +1. 249 +11. 232 232 111. Soil Temperature 233 233 234 234 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is ... ... @@ -240,8 +240,8 @@ 240 240 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 241 241 242 242 243 -1. 244 -11. 261 +1. 262 +11. 245 245 111. Soil Conductivity (EC) 246 246 247 247 Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). ... ... @@ -251,8 +251,8 @@ 251 251 252 252 Generally, the EC value of irrigation water is less than 800uS / cm. 253 253 254 -1. 255 -11. 272 +1. 273 +11. 256 256 111. MOD 257 257 258 258 Firmware version at least v2.1 supports changing mode. ... ... @@ -269,8 +269,8 @@ 269 269 If** **payload =** **0x0A01, workmode=1 270 270 271 271 272 -1. 273 -11. 290 +1. 291 +11. 274 274 111. Decode payload in The Things Network 275 275 276 276 While using TTN network, you can add the payload format to decode the payload. ... ... @@ -283,7 +283,7 @@ 283 283 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 284 284 285 285 286 -1. 304 +1. 287 287 11. Uplink Interval 288 288 289 289 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: ... ... @@ -290,7 +290,7 @@ 290 290 291 291 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 292 292 293 -1. 311 +1. 294 294 11. Downlink Payload 295 295 296 296 By default, LSE50 prints the downlink payload to console port. ... ... @@ -323,7 +323,7 @@ 323 323 324 324 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 325 325 326 -1. 344 +1. 327 327 11. Show Data in DataCake IoT Server 328 328 329 329 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: ... ... @@ -364,8 +364,8 @@ 364 364 365 365 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 366 366 367 -1. 368 -11. 385 +1. 386 +11. 369 369 111. EU863-870 (EU868) 370 370 371 371 Uplink: ... ... @@ -396,8 +396,8 @@ 396 396 869.525 - SF9BW125 (RX2 downlink only) 397 397 398 398 399 -1. 400 -11. 417 +1. 418 +11. 401 401 111. US902-928(US915) 402 402 403 403 Used in USA, Canada and South America. Default use CHE=2 ... ... @@ -442,8 +442,8 @@ 442 442 923.3 - SF12BW500(RX2 downlink only) 443 443 444 444 445 -1. 446 -11. 463 +1. 464 +11. 447 447 111. CN470-510 (CN470) 448 448 449 449 Used in China, Default use CHE=1 ... ... @@ -488,8 +488,8 @@ 488 488 505.3 - SF12BW125 (RX2 downlink only) 489 489 490 490 491 -1. 492 -11. 509 +1. 510 +11. 493 493 111. AU915-928(AU915) 494 494 495 495 Default use CHE=2 ... ... @@ -533,8 +533,8 @@ 533 533 534 534 923.3 - SF12BW500(RX2 downlink only) 535 535 536 -1. 537 -11. 554 +1. 555 +11. 538 538 111. AS920-923 & AS923-925 (AS923) 539 539 540 540 **Default Uplink channel:** ... ... @@ -586,8 +586,8 @@ 586 586 923.2 - SF10BW125 (RX2) 587 587 588 588 589 -1. 590 -11. 607 +1. 608 +11. 591 591 111. KR920-923 (KR920) 592 592 593 593 Default channel: ... ... @@ -623,8 +623,8 @@ 623 623 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 624 624 625 625 626 -1. 627 -11. 644 +1. 645 +11. 628 628 111. IN865-867 (IN865) 629 629 630 630 Uplink: ... ... @@ -643,7 +643,7 @@ 643 643 866.550 - SF10BW125 (RX2) 644 644 645 645 646 -1. 664 +1. 647 647 11. LED Indicator 648 648 649 649 The LSE01 has an internal LED which is to show the status of different state. ... ... @@ -653,7 +653,7 @@ 653 653 * Solid ON for 5 seconds once device successful Join the network. 654 654 * Blink once when device transmit a packet. 655 655 656 -1. 674 +1. 657 657 11. Installation in Soil 658 658 659 659 **Measurement the soil surface** ... ... @@ -680,7 +680,7 @@ 680 680 681 681 682 682 683 -1. 701 +1. 684 684 11. Firmware Change Log 685 685 686 686 **Firmware download link:** ... ... @@ -699,7 +699,7 @@ 699 699 700 700 701 701 702 -1. 720 +1. 703 703 11. Battery Analysis 704 704 111. Battery Type 705 705 ... ... @@ -723,15 +723,15 @@ 723 723 724 724 725 725 726 -1. 727 -11. 744 +1. 745 +11. 728 728 111. Battery Note 729 729 730 730 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 731 731 732 732 733 -1. 734 -11. 751 +1. 752 +11. 735 735 111. Replace the battery 736 736 737 737 If Battery is lower than 2.7v, user should replace the battery of LSE01.
- 1654503236291-817.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -685.6 KB - Content
- 1654503265560-120.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1654503992078-669.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1654504596150-405.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -66.7 KB - Content
- image-20220606162220-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -23.0 KB - Content