<
From version < 16.1 >
edited by Xiaoling
on 2022/06/06 16:36
To version < 11.6 >
edited by Xiaoling
on 2022/06/06 16:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,6 +1,7 @@
1 1  (% style="text-align:center" %)
2 2  [[image:image-20220606151504-2.jpeg||height="848" width="848"]]
3 3  
4 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
4 4  
5 5  
6 6  
... ... @@ -8,40 +8,44 @@
8 8  
9 9  
10 10  
11 -= 1. Introduction =
12 12  
13 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 14  
15 -(((
16 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 -)))
18 18  
19 -(((
20 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 -)))
22 22  
23 -(((
16 +
17 +
18 +
19 +
20 +
21 +
22 +
23 +1. Introduction
24 +11. ​What is LoRaWAN Soil Moisture & EC Sensor
25 +
26 +The Dragino LSE01 is a **LoRaWAN Soil Moisture & EC Sensor** for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
27 +
28 +
29 +It detects **Soil Moisture**, **Soil Temperature** and **Soil Conductivity**, and uploads the value via wireless to LoRaWAN IoT Server.
30 +
31 +
24 24  The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 -)))
26 26  
27 -(((
28 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 -)))
30 30  
31 -(((
32 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 -)))
35 +LES01 is powered by **4000mA or 8500mAh Li-SOCI2 battery**, It is designed for long term use up to 10 years.
34 34  
35 35  
36 -[[image:1654503236291-817.png]]
38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  
38 38  
39 -[[image:1654503265560-120.png]]
41 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
40 40  
41 41  
44 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
42 42  
43 -== 1.2 ​Features ==
44 44  
47 +
48 +*
49 +*1. ​Features
45 45  * LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 47  * Monitor Soil Moisture
... ... @@ -54,50 +54,63 @@
54 54  * IP66 Waterproof Enclosure
55 55  * 4000mAh or 8500mAh Battery for long term use
56 56  
57 -== 1.3 Specification ==
62 +1.
63 +11. Specification
58 58  
59 59  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -[[image:image-20220606162220-5.png]]
67 +|**Parameter**|**Soil Moisture**|**Soil Conductivity**|**Soil Temperature**
68 +|**Range**|**0-100.00%**|(((
69 +**0-20000uS/cm**
62 62  
71 +**(25℃)(0-20.0EC)**
72 +)))|**-40.00℃~85.00℃**
73 +|**Unit**|**V/V %,**|**uS/cm,**|**℃**
74 +|**Resolution**|**0.01%**|**1 uS/cm**|**0.01℃**
75 +|**Accuracy**|(((
76 +**±3% (0-53%)**
63 63  
78 +**±5% (>53%)**
79 +)))|**2%FS,**|(((
80 +**-10℃~50℃:<0.3℃**
64 64  
65 -== ​1.4 Applications ==
82 +**All other: <0.6℃**
83 +)))
84 +|(((
85 +**Measure**
66 66  
87 +**Method**
88 +)))|**FDR , with temperature &EC compensate**|**Conductivity , with temperature compensate**|**RTD, and calibrate**
89 +
90 +*
91 +*1. ​Applications
67 67  * Smart Agriculture
68 68  
94 +1.
95 +11. ​Firmware Change log
69 69  
70 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
71 -​
97 +**LSE01 v1.0:**
72 72  
73 -(% class="wikigeneratedid" %)
74 -== 1.5 Firmware Change log ==
99 +* Release
75 75  
101 +1. Configure LSE01 to connect to LoRaWAN network
102 +11. How it works
76 76  
77 -**LSE01 v1.0 :**  Release
104 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
78 78  
79 79  
107 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>path:#_​Using_the_AT]]to set the keys in the LSE01.
80 80  
81 -= 2. Configure LSE01 to connect to LoRaWAN network =
82 82  
83 -== 2.1 How it works ==
84 84  
85 -(((
86 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
87 -)))
88 88  
89 -(((
90 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
91 -)))
112 +1.
113 +11. ​Quick guide to connect to LoRaWAN server (OTAA)
92 92  
93 -
94 -
95 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
96 -
97 97  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
98 98  
99 99  
100 -[[image:1654503992078-669.png]]
118 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
101 101  
102 102  
103 103  The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
... ... @@ -182,7 +182,7 @@
182 182  
183 183  
184 184  1.
185 -11.
203 +11.
186 186  111. MOD=1(Original value)
187 187  
188 188  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
... ... @@ -205,7 +205,7 @@
205 205  [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
206 206  
207 207  1.
208 -11.
226 +11.
209 209  111. Battery Info
210 210  
211 211  Check the battery voltage for LSE01.
... ... @@ -216,8 +216,8 @@
216 216  
217 217  
218 218  
219 -1.
220 -11.
237 +1.
238 +11.
221 221  111. Soil Moisture
222 222  
223 223  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
... ... @@ -227,8 +227,8 @@
227 227  **05DC(H) = 1500(D) /100 = 15%.**
228 228  
229 229  
230 -1.
231 -11.
248 +1.
249 +11.
232 232  111. Soil Temperature
233 233  
234 234   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
... ... @@ -240,8 +240,8 @@
240 240  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
241 241  
242 242  
243 -1.
244 -11.
261 +1.
262 +11.
245 245  111. Soil Conductivity (EC)
246 246  
247 247  Obtain soluble salt concentration in soil or soluble ion concentration in liquid fertilizer or planting medium,. The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -251,8 +251,8 @@
251 251  
252 252  Generally, the EC value of irrigation water is less than 800uS / cm.
253 253  
254 -1.
255 -11.
272 +1.
273 +11.
256 256  111. MOD
257 257  
258 258  Firmware version at least v2.1 supports changing mode.
... ... @@ -269,8 +269,8 @@
269 269  If** **payload =** **0x0A01, workmode=1
270 270  
271 271  
272 -1.
273 -11.
290 +1.
291 +11.
274 274  111. ​Decode payload in The Things Network
275 275  
276 276  While using TTN network, you can add the payload format to decode the payload.
... ... @@ -283,7 +283,7 @@
283 283  LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
284 284  
285 285  
286 -1.
304 +1.
287 287  11. Uplink Interval
288 288  
289 289  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
... ... @@ -290,7 +290,7 @@
290 290  
291 291  [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
292 292  
293 -1.
311 +1.
294 294  11. ​Downlink Payload
295 295  
296 296  By default, LSE50 prints the downlink payload to console port.
... ... @@ -323,7 +323,7 @@
323 323  
324 324  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
325 325  
326 -1.
344 +1.
327 327  11. ​Show Data in DataCake IoT Server
328 328  
329 329  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
... ... @@ -364,8 +364,8 @@
364 364  
365 365  The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
366 366  
367 -1.
368 -11.
385 +1.
386 +11.
369 369  111. EU863-870 (EU868)
370 370  
371 371  Uplink:
... ... @@ -396,8 +396,8 @@
396 396  869.525 - SF9BW125 (RX2 downlink only)
397 397  
398 398  
399 -1.
400 -11.
417 +1.
418 +11.
401 401  111. US902-928(US915)
402 402  
403 403  Used in USA, Canada and South America. Default use CHE=2
... ... @@ -442,8 +442,8 @@
442 442  923.3 - SF12BW500(RX2 downlink only)
443 443  
444 444  
445 -1.
446 -11.
463 +1.
464 +11.
447 447  111. CN470-510 (CN470)
448 448  
449 449  Used in China, Default use CHE=1
... ... @@ -488,8 +488,8 @@
488 488  505.3 - SF12BW125 (RX2 downlink only)
489 489  
490 490  
491 -1.
492 -11.
509 +1.
510 +11.
493 493  111. AU915-928(AU915)
494 494  
495 495  Default use CHE=2
... ... @@ -533,8 +533,8 @@
533 533  
534 534  923.3 - SF12BW500(RX2 downlink only)
535 535  
536 -1.
537 -11.
554 +1.
555 +11.
538 538  111. AS920-923 & AS923-925 (AS923)
539 539  
540 540  **Default Uplink channel:**
... ... @@ -586,8 +586,8 @@
586 586  923.2 - SF10BW125 (RX2)
587 587  
588 588  
589 -1.
590 -11.
607 +1.
608 +11.
591 591  111. KR920-923 (KR920)
592 592  
593 593  Default channel:
... ... @@ -623,8 +623,8 @@
623 623  921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
624 624  
625 625  
626 -1.
627 -11.
644 +1.
645 +11.
628 628  111. IN865-867 (IN865)
629 629  
630 630  Uplink:
... ... @@ -643,7 +643,7 @@
643 643  866.550 - SF10BW125 (RX2)
644 644  
645 645  
646 -1.
664 +1.
647 647  11. LED Indicator
648 648  
649 649  The LSE01 has an internal LED which is to show the status of different state.
... ... @@ -653,7 +653,7 @@
653 653  * Solid ON for 5 seconds once device successful Join the network.
654 654  * Blink once when device transmit a packet.
655 655  
656 -1.
674 +1.
657 657  11. Installation in Soil
658 658  
659 659  **Measurement the soil surface**
... ... @@ -680,7 +680,7 @@
680 680  
681 681  
682 682  
683 -1.
701 +1.
684 684  11. ​Firmware Change Log
685 685  
686 686  **Firmware download link:**
... ... @@ -699,7 +699,7 @@
699 699  
700 700  
701 701  
702 -1.
720 +1.
703 703  11. ​Battery Analysis
704 704  111. ​Battery Type
705 705  
... ... @@ -723,15 +723,15 @@
723 723  
724 724  
725 725  
726 -1.
727 -11.
744 +1.
745 +11.
728 728  111. ​Battery Note
729 729  
730 730  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
731 731  
732 732  
733 -1.
734 -11.
751 +1.
752 +11.
735 735  111. ​Replace the battery
736 736  
737 737  If Battery is lower than 2.7v, user should replace the battery of LSE01.
1654503236291-817.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -685.6 KB
Content
1654503265560-120.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1654503992078-669.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1654504596150-405.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -66.7 KB
Content
image-20220606162220-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -23.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0