Version 47.5 by Xiaoling on 2023/05/23 13:56

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16 {{toc/}}
17
18
19
20
21
22
23 = 1. Introduction =
24
25 == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26
27
28 (((
29 The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
30 )))
31
32 (((
33 It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
34 )))
35
36 (((
37 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
38 )))
39
40 (((
41 LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
42 )))
43
44 (((
45 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
46 )))
47
48
49 [[image:1654503236291-817.png]]
50
51
52 [[image:1654503265560-120.png]]
53
54
55 == 1.2 ​Features ==
56
57
58 * LoRaWAN 1.0.3 Class A
59 * Ultra low power consumption
60 * Monitor Soil Moisture
61 * Monitor Soil Temperature
62 * Monitor Soil Conductivity
63 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
64 * AT Commands to change parameters
65 * Uplink on periodically
66 * Downlink to change configure
67 * IP66 Waterproof Enclosure
68 * 4000mAh or 8500mAh Battery for long term use
69
70 == 1.3 Specification ==
71
72
73 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74
75 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
76 |(% style="background-color:#d9e2f3; color:#0070c0; width:95px" %)**Parameter**|(% style="background-color:#d9e2f3; color:#0070c0; width:147px" %)**Soil Moisture**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Soil Conductivity**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Soil Temperature**
77 |(% style="width:95px" %)Range|(% style="width:146px" %)0-100.00%|(% style="width:137px" %)(((
78 0-20000uS/cm
79 (25℃)(0-20.0EC)
80 )))|(% style="width:140px" %)-40.00℃~85.00℃
81 |(% style="width:95px" %)Unit|(% style="width:146px" %)V/V %|(% style="width:137px" %)uS/cm|(% style="width:140px" %)℃
82 |(% style="width:95px" %)Resolution|(% style="width:146px" %)0.01%|(% style="width:137px" %)1 uS/cm|(% style="width:140px" %)0.01℃
83 |(% style="width:95px" %)Accuracy|(% style="width:146px" %)(((
84 ±3% (0-53%)
85 ±5% (>53%)
86 )))|(% style="width:137px" %)2%FS|(% style="width:140px" %)(((
87 -10℃~50℃:<0.3℃
88 All other: <0.6℃
89 )))
90 |(% style="width:95px" %)(((
91 Measure
92 Method
93 )))|(% style="width:146px" %)FDR , with temperature &EC compensate|(% style="width:137px" %)Conductivity , with temperature compensate|(% style="width:140px" %)RTD, and calibrate
94
95 [[image:image-20220606162220-5.png]]
96
97
98 == 1.4 Dimension ==
99
100
101 **Main Device Dimension:**
102
103 See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
104
105 [[image:image-20221008140228-2.png||height="358" width="571"]]
106
107
108 **Probe Dimension**
109
110 [[image:image-20221008135912-1.png]]
111
112
113 == ​1.5 Applications ==
114
115
116 * Smart Agriculture​
117
118 == 1.6 Firmware Change log ==
119
120
121 **LSE01 v1.0 :**  Release
122
123
124 = 2. Configure LSE01 to connect to LoRaWAN network =
125
126 == 2.1 How it works ==
127
128
129 (((
130 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
131 )))
132
133 (((
134 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
135 )))
136
137
138 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
139
140
141 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
142
143
144 [[image:1654503992078-669.png]]
145
146
147 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
148
149
150 (% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
151
152 Each LSE01 is shipped with a sticker with the default device EUI as below:
153
154 [[image:image-20230426084640-1.png]]
155
156
157 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
158
159 **Add APP EUI in the application**
160
161
162 [[image:1654504596150-405.png]]
163
164
165
166 **Add APP KEY and DEV EUI**
167
168 [[image:1654504683289-357.png]]
169
170
171
172 (% style="color:blue" %)**Step 2**(%%): Power on LSE01
173
174
175 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
176
177 [[image:image-20220606163915-7.png]]
178
179
180 (% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
181
182 [[image:1654504778294-788.png]]
183
184
185 == 2.3 Uplink Payload ==
186
187 === 2.3.1 MOD~=0(Default Mode) ===
188
189
190 LSE01 will uplink payload via LoRaWAN with below payload format: 
191
192 (((
193 Uplink payload includes in total 11 bytes.
194 )))
195
196 (% border="1" cellspacing="5" style="background-color:#ffffcc; width:500px" %)
197 |=(% scope="row" %)(((
198 **Size(bytes)**
199 )))|**2**|**2**|**2**|**2**|**2**|**1**
200 |=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 Temperature
202 (Reserve, Ignore now)
203 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
204 MOD & Digital Interrupt(Optional)
205 )))
206
207 === 2.3.2 MOD~=1(Original value) ===
208
209
210 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
211
212 (% border="1" cellspacing="5" style="background-color:#ffffcc; width:500px" %)
213 |=(% scope="row" %)(((
214 **Size(bytes)**
215 )))|**2**|**2**|**2**|**2**|**2**|**1**
216 |=**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
217 Temperature
218 (Reserve, Ignore now)
219 )))|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Dielectric constant>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
220 MOD & Digital Interrupt(Optional)
221 )))
222
223 === 2.3.3 Battery Info ===
224
225
226 (((
227 Check the battery voltage for LSE01.
228 )))
229
230 (((
231 Ex1: 0x0B45 = 2885mV
232 )))
233
234 (((
235 Ex2: 0x0B49 = 2889mV
236 )))
237
238
239 === 2.3.4 Soil Moisture ===
240
241
242 (((
243 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
244 )))
245
246 (((
247 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
248 )))
249
250 (((
251
252 )))
253
254 (((
255 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
256 )))
257
258
259 === 2.3.5 Soil Temperature ===
260
261
262 (((
263 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
264 )))
265
266 (((
267 **Example**:
268 )))
269
270 (((
271 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
272 )))
273
274 (((
275 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
276 )))
277
278
279 === 2.3.6 Soil Conductivity (EC) ===
280
281
282 (((
283 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
284 )))
285
286 (((
287 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
288 )))
289
290 (((
291 Generally, the EC value of irrigation water is less than 800uS / cm.
292 )))
293
294 (((
295
296 )))
297
298 === 2.3.7 MOD ===
299
300
301 Firmware version at least v2.1 supports changing mode.
302
303 For example, bytes[10]=90
304
305 mod=(bytes[10]>>7)&0x01=1.
306
307
308 **Downlink Command:**
309
310 If payload = 0x0A00, workmode=0
311
312 If** **payload =** **0x0A01, workmode=1
313
314
315 === 2.3.8 ​Decode payload in The Things Network ===
316
317
318 While using TTN network, you can add the payload format to decode the payload.
319
320
321 [[image:1654505570700-128.png]]
322
323 (((
324 The payload decoder function for TTN is here:
325 )))
326
327 (((
328 LSE01 TTN Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
329 )))
330
331
332 == 2.4 Uplink Interval ==
333
334
335 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
336
337
338 == 2.5 Downlink Payload ==
339
340
341 By default, LSE01 prints the downlink payload to console port.
342
343 [[image:image-20220606165544-8.png]]
344
345
346 (((
347 (% style="color:blue" %)**Examples:**
348 )))
349
350 (((
351
352 )))
353
354 * (((
355 (% style="color:blue" %)**Set TDC**
356 )))
357
358 (((
359 If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
360 )))
361
362 (((
363 Payload:    01 00 00 1E    TDC=30S
364 )))
365
366 (((
367 Payload:    01 00 00 3C    TDC=60S
368 )))
369
370 (((
371
372 )))
373
374 * (((
375 (% style="color:blue" %)**Reset**
376 )))
377
378 (((
379 If payload = 0x04FF, it will reset the LSE01
380 )))
381
382
383 * (% style="color:blue" %)**CFM**
384
385 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
386
387
388 == 2.6 ​Show Data in DataCake IoT Server ==
389
390
391 (((
392 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
393 )))
394
395 (((
396
397 )))
398
399 (((
400 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
401 )))
402
403 (((
404 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
405 )))
406
407
408 [[image:1654505857935-743.png]]
409
410
411 [[image:1654505874829-548.png]]
412
413
414 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
415
416 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
417
418
419 [[image:1654505905236-553.png]]
420
421
422 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
423
424 [[image:1654505925508-181.png]]
425
426
427 == 2.7 Frequency Plans ==
428
429
430 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
431
432
433 === 2.7.1 EU863-870 (EU868) ===
434
435
436 (% style="color:#037691" %)** Uplink:**
437
438 868.1 - SF7BW125 to SF12BW125
439
440 868.3 - SF7BW125 to SF12BW125 and SF7BW250
441
442 868.5 - SF7BW125 to SF12BW125
443
444 867.1 - SF7BW125 to SF12BW125
445
446 867.3 - SF7BW125 to SF12BW125
447
448 867.5 - SF7BW125 to SF12BW125
449
450 867.7 - SF7BW125 to SF12BW125
451
452 867.9 - SF7BW125 to SF12BW125
453
454 868.8 - FSK
455
456
457 (% style="color:#037691" %)** Downlink:**
458
459 Uplink channels 1-9 (RX1)
460
461 869.525 - SF9BW125 (RX2 downlink only)
462
463
464 === 2.7.2 US902-928(US915) ===
465
466
467 Used in USA, Canada and South America. Default use CHE=2
468
469 (% style="color:#037691" %)**Uplink:**
470
471 903.9 - SF7BW125 to SF10BW125
472
473 904.1 - SF7BW125 to SF10BW125
474
475 904.3 - SF7BW125 to SF10BW125
476
477 904.5 - SF7BW125 to SF10BW125
478
479 904.7 - SF7BW125 to SF10BW125
480
481 904.9 - SF7BW125 to SF10BW125
482
483 905.1 - SF7BW125 to SF10BW125
484
485 905.3 - SF7BW125 to SF10BW125
486
487
488 (% style="color:#037691" %)**Downlink:**
489
490 923.3 - SF7BW500 to SF12BW500
491
492 923.9 - SF7BW500 to SF12BW500
493
494 924.5 - SF7BW500 to SF12BW500
495
496 925.1 - SF7BW500 to SF12BW500
497
498 925.7 - SF7BW500 to SF12BW500
499
500 926.3 - SF7BW500 to SF12BW500
501
502 926.9 - SF7BW500 to SF12BW500
503
504 927.5 - SF7BW500 to SF12BW500
505
506 923.3 - SF12BW500(RX2 downlink only)
507
508
509 === 2.7.3 CN470-510 (CN470) ===
510
511
512 Used in China, Default use CHE=1
513
514 (% style="color:#037691" %)**Uplink:**
515
516 486.3 - SF7BW125 to SF12BW125
517
518 486.5 - SF7BW125 to SF12BW125
519
520 486.7 - SF7BW125 to SF12BW125
521
522 486.9 - SF7BW125 to SF12BW125
523
524 487.1 - SF7BW125 to SF12BW125
525
526 487.3 - SF7BW125 to SF12BW125
527
528 487.5 - SF7BW125 to SF12BW125
529
530 487.7 - SF7BW125 to SF12BW125
531
532
533 (% style="color:#037691" %)**Downlink:**
534
535 506.7 - SF7BW125 to SF12BW125
536
537 506.9 - SF7BW125 to SF12BW125
538
539 507.1 - SF7BW125 to SF12BW125
540
541 507.3 - SF7BW125 to SF12BW125
542
543 507.5 - SF7BW125 to SF12BW125
544
545 507.7 - SF7BW125 to SF12BW125
546
547 507.9 - SF7BW125 to SF12BW125
548
549 508.1 - SF7BW125 to SF12BW125
550
551 505.3 - SF12BW125 (RX2 downlink only)
552
553
554 === 2.7.4 AU915-928(AU915) ===
555
556
557 Default use CHE=2
558
559 (% style="color:#037691" %)**Uplink:**
560
561 916.8 - SF7BW125 to SF12BW125
562
563 917.0 - SF7BW125 to SF12BW125
564
565 917.2 - SF7BW125 to SF12BW125
566
567 917.4 - SF7BW125 to SF12BW125
568
569 917.6 - SF7BW125 to SF12BW125
570
571 917.8 - SF7BW125 to SF12BW125
572
573 918.0 - SF7BW125 to SF12BW125
574
575 918.2 - SF7BW125 to SF12BW125
576
577
578 (% style="color:#037691" %)**Downlink:**
579
580 923.3 - SF7BW500 to SF12BW500
581
582 923.9 - SF7BW500 to SF12BW500
583
584 924.5 - SF7BW500 to SF12BW500
585
586 925.1 - SF7BW500 to SF12BW500
587
588 925.7 - SF7BW500 to SF12BW500
589
590 926.3 - SF7BW500 to SF12BW500
591
592 926.9 - SF7BW500 to SF12BW500
593
594 927.5 - SF7BW500 to SF12BW500
595
596 923.3 - SF12BW500(RX2 downlink only)
597
598
599 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
600
601
602 (% style="color:#037691" %)**Default Uplink channel:**
603
604 923.2 - SF7BW125 to SF10BW125
605
606 923.4 - SF7BW125 to SF10BW125
607
608
609 (% style="color:#037691" %)**Additional Uplink Channel**:
610
611 (OTAA mode, channel added by JoinAccept message)
612
613 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
614
615 922.2 - SF7BW125 to SF10BW125
616
617 922.4 - SF7BW125 to SF10BW125
618
619 922.6 - SF7BW125 to SF10BW125
620
621 922.8 - SF7BW125 to SF10BW125
622
623 923.0 - SF7BW125 to SF10BW125
624
625 922.0 - SF7BW125 to SF10BW125
626
627
628 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
629
630 923.6 - SF7BW125 to SF10BW125
631
632 923.8 - SF7BW125 to SF10BW125
633
634 924.0 - SF7BW125 to SF10BW125
635
636 924.2 - SF7BW125 to SF10BW125
637
638 924.4 - SF7BW125 to SF10BW125
639
640 924.6 - SF7BW125 to SF10BW125
641
642
643 (% style="color:#037691" %)** Downlink:**
644
645 Uplink channels 1-8 (RX1)
646
647 923.2 - SF10BW125 (RX2)
648
649
650 === 2.7.6 KR920-923 (KR920) ===
651
652
653 Default channel:
654
655 922.1 - SF7BW125 to SF12BW125
656
657 922.3 - SF7BW125 to SF12BW125
658
659 922.5 - SF7BW125 to SF12BW125
660
661
662 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
663
664 922.1 - SF7BW125 to SF12BW125
665
666 922.3 - SF7BW125 to SF12BW125
667
668 922.5 - SF7BW125 to SF12BW125
669
670 922.7 - SF7BW125 to SF12BW125
671
672 922.9 - SF7BW125 to SF12BW125
673
674 923.1 - SF7BW125 to SF12BW125
675
676 923.3 - SF7BW125 to SF12BW125
677
678
679 (% style="color:#037691" %)**Downlink:**
680
681 Uplink channels 1-7(RX1)
682
683 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
684
685
686 === 2.7.7 IN865-867 (IN865) ===
687
688
689 (% style="color:#037691" %)** Uplink:**
690
691 865.0625 - SF7BW125 to SF12BW125
692
693 865.4025 - SF7BW125 to SF12BW125
694
695 865.9850 - SF7BW125 to SF12BW125
696
697
698 (% style="color:#037691" %) **Downlink:**
699
700 Uplink channels 1-3 (RX1)
701
702 866.550 - SF10BW125 (RX2)
703
704
705 == 2.8 LED Indicator ==
706
707
708 The LSE01 has an internal LED which is to show the status of different state.
709
710 * Blink once when device power on.
711 * Solid ON for 5 seconds once device successful Join the network.
712 * Blink once when device transmit a packet.
713
714 == 2.9 Installation in Soil ==
715
716
717 **Measurement the soil surface**
718
719
720 [[image:1654506634463-199.png]] ​
721
722
723 (((
724 (((
725 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
726 )))
727 )))
728
729
730
731 [[image:1654506665940-119.png]]
732
733
734 (((
735 Dig a hole with diameter > 20CM.
736 )))
737
738 (((
739 Horizontal insert the probe to the soil and fill the hole for long term measurement.
740 )))
741
742
743 == 2.10 ​Firmware Change Log ==
744
745
746 (((
747 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0>>https://www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0]]
748 )))
749
750 (((
751 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
752 )))
753
754 (((
755
756 )))
757
758 (((
759 **V1.0.**
760 )))
761
762 (((
763 Release
764 )))
765
766
767 == 2.11 Battery & Power Consumption ==
768
769
770 LSE01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
771
772 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
773
774
775 = 3. ​Using the AT Commands =
776
777 == 3.1 Access AT Commands ==
778
779
780 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
781
782
783 [[image:1654501986557-872.png||height="391" width="800"]]
784
785
786 Or if you have below board, use below connection:
787
788
789 [[image:1654502005655-729.png||height="503" width="801"]]
790
791
792 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
793
794
795 [[image:1654502050864-459.png||height="564" width="806"]]
796
797
798 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]].
799
800
801 (% style="background-color:#dcdcdc" %)**AT+<CMD>? **(%%) : Help on <CMD>
802
803 (% style="background-color:#dcdcdc" %)**AT+<CMD> **(%%) : Run <CMD>
804
805 (% style="background-color:#dcdcdc" %)**AT+<CMD>=<value>**(%%)  : Set the value
806
807 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?**(%%)  : Get the value
808
809
810 (% style="color:#037691" %)**General Commands**(%%)      
811
812 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
813
814 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
815
816 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
817
818 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
819
820
821 (% style="color:#037691" %)**Keys, IDs and EUIs management**
822
823 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
824
825 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
826
827 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
828
829 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
830
831 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
832
833 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
834
835 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
836
837 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
838
839 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
840
841 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
842
843 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
844
845 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
846
847 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
848
849 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
850
851 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
852
853 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
854
855
856 (% style="color:#037691" %)**LoRa Network Management**
857
858 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
859
860 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
861
862 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
863
864 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
865
866 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
867
868 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
869
870 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
871
872 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
873
874 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
875
876 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
877
878 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
879
880 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
881
882 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
883
884 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
885
886 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
887
888
889 (% style="color:#037691" %)**Information** 
890
891 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
892
893 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
894
895 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
896
897 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
898
899 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
900
901 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
902
903 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
904
905
906 = ​4. FAQ =
907
908 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
909
910
911 (((
912 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
913 When downloading the images, choose the required image file for download. ​
914 )))
915
916 (((
917
918 )))
919
920 (((
921 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
922 )))
923
924 (((
925
926 )))
927
928 (((
929 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
930 )))
931
932 (((
933
934 )))
935
936 (((
937 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
938 )))
939
940 [[image:image-20220606154726-3.png]]
941
942
943 When you use the TTN network, the US915 frequency bands use are:
944
945 * 903.9 - SF7BW125 to SF10BW125
946 * 904.1 - SF7BW125 to SF10BW125
947 * 904.3 - SF7BW125 to SF10BW125
948 * 904.5 - SF7BW125 to SF10BW125
949 * 904.7 - SF7BW125 to SF10BW125
950 * 904.9 - SF7BW125 to SF10BW125
951 * 905.1 - SF7BW125 to SF10BW125
952 * 905.3 - SF7BW125 to SF10BW125
953 * 904.6 - SF8BW500
954
955 (((
956 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
957
958 * (% style="color:#037691" %)**AT+CHE=2**
959 * (% style="color:#037691" %)**ATZ**
960 )))
961
962 (((
963
964
965 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
966 )))
967
968 (((
969
970 )))
971
972 (((
973 The **AU915** band is similar. Below are the AU915 Uplink Channels.
974 )))
975
976 [[image:image-20220606154825-4.png]]
977
978
979 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
980
981
982 (((
983 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
984 )))
985
986
987 = 5. Trouble Shooting =
988
989 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
990
991
992 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
993
994
995 == 5.2 AT Command input doesn't work ==
996
997
998 (((
999 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1000 )))
1001
1002
1003 == 5.3 Device rejoin in at the second uplink packet ==
1004
1005
1006 (% style="color:#4f81bd" %)**Issue describe as below:**
1007
1008 [[image:1654500909990-784.png]]
1009
1010
1011 (% style="color:#4f81bd" %)**Cause for this issue:**
1012
1013 (((
1014 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1015 )))
1016
1017
1018 (% style="color:#4f81bd" %)**Solution: **
1019
1020 (((
1021 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1022 )))
1023
1024 [[image:1654500929571-736.png||height="458" width="832"]]
1025
1026
1027 = 6. ​Order Info =
1028
1029
1030 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1031
1032
1033 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1034
1035 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1036 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1037 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1038 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1039 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1040 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1041 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1042 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1043
1044 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1045
1046 * (% style="color:red" %)**4**(%%): 4000mAh battery
1047 * (% style="color:red" %)**8**(%%): 8500mAh battery
1048
1049 (% class="wikigeneratedid" %)
1050 (((
1051
1052
1053
1054 )))
1055
1056 = 7. Packing Info =
1057
1058 (((
1059
1060
1061 (% style="color:#037691" %)**Package Includes**:
1062 )))
1063
1064 * (((
1065 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1066 )))
1067
1068 (((
1069
1070
1071 (% style="color:#037691" %)**Dimension and weight**:
1072 )))
1073
1074 * (((
1075 Device Size: cm
1076 )))
1077 * (((
1078 Device Weight: g
1079 )))
1080 * (((
1081 Package Size / pcs : cm
1082 )))
1083 * (((
1084 Weight / pcs : g
1085
1086
1087
1088 )))
1089
1090 = 8. Support =
1091
1092
1093 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1094 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]