Version 45.1 by Edwin Chen on 2022/10/08 14:04

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16 {{toc/}}
17
18
19
20
21
22
23 = 1. Introduction =
24
25
26 == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
27
28 (((
29
30
31 The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
32 )))
33
34 (((
35 It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
36 )))
37
38 (((
39 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
40 )))
41
42 (((
43 LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
44 )))
45
46 (((
47 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 )))
49
50
51 [[image:1654503236291-817.png]]
52
53
54 [[image:1654503265560-120.png]]
55
56
57
58 == 1.2 ​Features ==
59
60
61 * LoRaWAN 1.0.3 Class A
62 * Ultra low power consumption
63 * Monitor Soil Moisture
64 * Monitor Soil Temperature
65 * Monitor Soil Conductivity
66 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
67 * AT Commands to change parameters
68 * Uplink on periodically
69 * Downlink to change configure
70 * IP66 Waterproof Enclosure
71 * 4000mAh or 8500mAh Battery for long term use
72
73
74
75 == 1.3 Specification ==
76
77
78 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
79
80 [[image:image-20220606162220-5.png]]
81
82
83 == 1.4 Dimension ==
84
85 Main Device Dimension:
86
87 See LSN50v2 from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/ >>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
88
89 [[image:image-20221008140228-2.png||height="358" width="571"]]
90
91 Probe Dimension
92
93 [[image:image-20221008135912-1.png]]
94
95
96
97 == ​1.5 Applications ==
98
99
100 * Smart Agriculture​
101
102
103
104 == 1.6 Firmware Change log ==
105
106
107 **LSE01 v1.0 :**  Release
108
109
110
111 = 2. Configure LSE01 to connect to LoRaWAN network =
112
113
114 == 2.1 How it works ==
115
116
117 (((
118 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
119 )))
120
121 (((
122 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
123 )))
124
125
126
127 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
128
129
130 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
131
132
133 [[image:1654503992078-669.png]]
134
135
136 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
137
138
139 (% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
140
141 Each LSE01 is shipped with a sticker with the default device EUI as below:
142
143 [[image:image-20220606163732-6.jpeg]]
144
145
146 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
147
148 **Add APP EUI in the application**
149
150
151 [[image:1654504596150-405.png]]
152
153
154
155 **Add APP KEY and DEV EUI**
156
157 [[image:1654504683289-357.png]]
158
159
160
161 (% style="color:blue" %)**Step 2**(%%): Power on LSE01
162
163
164 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
165
166 [[image:image-20220606163915-7.png]]
167
168
169 (% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
170
171 [[image:1654504778294-788.png]]
172
173
174
175 == 2.3 Uplink Payload ==
176
177
178 === 2.3.1 MOD~=0(Default Mode) ===
179
180
181 LSE01 will uplink payload via LoRaWAN with below payload format: 
182
183 (((
184 Uplink payload includes in total 11 bytes.
185 )))
186
187 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
188 |(((
189 **Size**
190
191 **(bytes)**
192 )))|**2**|**2**|**2**|**2**|**2**|**1**
193 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
194 Temperature
195
196 (Reserve, Ignore now)
197 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
198 MOD & Digital Interrupt
199
200 (Optional)
201 )))
202
203
204
205 === 2.3.2 MOD~=1(Original value) ===
206
207
208 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
209
210 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
211 |(((
212 **Size**
213
214 **(bytes)**
215 )))|**2**|**2**|**2**|**2**|**2**|**1**
216 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
217 Temperature
218
219 (Reserve, Ignore now)
220 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
221 MOD & Digital Interrupt
222
223 (Optional)
224 )))
225
226
227
228 === 2.3.3 Battery Info ===
229
230
231 (((
232 Check the battery voltage for LSE01.
233 )))
234
235 (((
236 Ex1: 0x0B45 = 2885mV
237 )))
238
239 (((
240 Ex2: 0x0B49 = 2889mV
241 )))
242
243
244
245 === 2.3.4 Soil Moisture ===
246
247
248 (((
249 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
250 )))
251
252 (((
253 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
254 )))
255
256 (((
257
258 )))
259
260 (((
261 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
262 )))
263
264
265
266 === 2.3.5 Soil Temperature ===
267
268
269 (((
270 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
271 )))
272
273 (((
274 **Example**:
275 )))
276
277 (((
278 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
279 )))
280
281 (((
282 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
283 )))
284
285
286
287 === 2.3.6 Soil Conductivity (EC) ===
288
289
290 (((
291 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
292 )))
293
294 (((
295 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
296 )))
297
298 (((
299 Generally, the EC value of irrigation water is less than 800uS / cm.
300 )))
301
302 (((
303
304 )))
305
306 (((
307
308 )))
309
310 === 2.3.7 MOD ===
311
312
313 Firmware version at least v2.1 supports changing mode.
314
315 For example, bytes[10]=90
316
317 mod=(bytes[10]>>7)&0x01=1.
318
319
320 **Downlink Command:**
321
322 If payload = 0x0A00, workmode=0
323
324 If** **payload =** **0x0A01, workmode=1
325
326
327
328 === 2.3.8 ​Decode payload in The Things Network ===
329
330
331 While using TTN network, you can add the payload format to decode the payload.
332
333
334 [[image:1654505570700-128.png]]
335
336 (((
337 The payload decoder function for TTN is here:
338 )))
339
340 (((
341 LSE01 TTN Payload Decoder:  [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
342 )))
343
344
345
346 == 2.4 Uplink Interval ==
347
348
349 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
350
351
352
353 == 2.5 Downlink Payload ==
354
355
356 By default, LSE01 prints the downlink payload to console port.
357
358 [[image:image-20220606165544-8.png]]
359
360
361 (((
362 (% style="color:blue" %)**Examples:**
363 )))
364
365 (((
366
367 )))
368
369 * (((
370 (% style="color:blue" %)**Set TDC**
371 )))
372
373 (((
374 If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
375 )))
376
377 (((
378 Payload:    01 00 00 1E    TDC=30S
379 )))
380
381 (((
382 Payload:    01 00 00 3C    TDC=60S
383 )))
384
385 (((
386
387 )))
388
389 * (((
390 (% style="color:blue" %)**Reset**
391 )))
392
393 (((
394 If payload = 0x04FF, it will reset the LSE01
395 )))
396
397
398 * (% style="color:blue" %)**CFM**
399
400 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
401
402
403
404 == 2.6 ​Show Data in DataCake IoT Server ==
405
406
407 (((
408 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
409 )))
410
411 (((
412
413 )))
414
415 (((
416 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
417 )))
418
419 (((
420 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
421 )))
422
423
424 [[image:1654505857935-743.png]]
425
426
427 [[image:1654505874829-548.png]]
428
429
430 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
431
432 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
433
434
435 [[image:1654505905236-553.png]]
436
437
438 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
439
440 [[image:1654505925508-181.png]]
441
442
443
444 == 2.7 Frequency Plans ==
445
446
447 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
448
449
450
451 === 2.7.1 EU863-870 (EU868) ===
452
453
454 (% style="color:#037691" %)** Uplink:**
455
456 868.1 - SF7BW125 to SF12BW125
457
458 868.3 - SF7BW125 to SF12BW125 and SF7BW250
459
460 868.5 - SF7BW125 to SF12BW125
461
462 867.1 - SF7BW125 to SF12BW125
463
464 867.3 - SF7BW125 to SF12BW125
465
466 867.5 - SF7BW125 to SF12BW125
467
468 867.7 - SF7BW125 to SF12BW125
469
470 867.9 - SF7BW125 to SF12BW125
471
472 868.8 - FSK
473
474
475 (% style="color:#037691" %)** Downlink:**
476
477 Uplink channels 1-9 (RX1)
478
479 869.525 - SF9BW125 (RX2 downlink only)
480
481
482
483 === 2.7.2 US902-928(US915) ===
484
485
486 Used in USA, Canada and South America. Default use CHE=2
487
488 (% style="color:#037691" %)**Uplink:**
489
490 903.9 - SF7BW125 to SF10BW125
491
492 904.1 - SF7BW125 to SF10BW125
493
494 904.3 - SF7BW125 to SF10BW125
495
496 904.5 - SF7BW125 to SF10BW125
497
498 904.7 - SF7BW125 to SF10BW125
499
500 904.9 - SF7BW125 to SF10BW125
501
502 905.1 - SF7BW125 to SF10BW125
503
504 905.3 - SF7BW125 to SF10BW125
505
506
507 (% style="color:#037691" %)**Downlink:**
508
509 923.3 - SF7BW500 to SF12BW500
510
511 923.9 - SF7BW500 to SF12BW500
512
513 924.5 - SF7BW500 to SF12BW500
514
515 925.1 - SF7BW500 to SF12BW500
516
517 925.7 - SF7BW500 to SF12BW500
518
519 926.3 - SF7BW500 to SF12BW500
520
521 926.9 - SF7BW500 to SF12BW500
522
523 927.5 - SF7BW500 to SF12BW500
524
525 923.3 - SF12BW500(RX2 downlink only)
526
527
528
529 === 2.7.3 CN470-510 (CN470) ===
530
531
532 Used in China, Default use CHE=1
533
534 (% style="color:#037691" %)**Uplink:**
535
536 486.3 - SF7BW125 to SF12BW125
537
538 486.5 - SF7BW125 to SF12BW125
539
540 486.7 - SF7BW125 to SF12BW125
541
542 486.9 - SF7BW125 to SF12BW125
543
544 487.1 - SF7BW125 to SF12BW125
545
546 487.3 - SF7BW125 to SF12BW125
547
548 487.5 - SF7BW125 to SF12BW125
549
550 487.7 - SF7BW125 to SF12BW125
551
552
553 (% style="color:#037691" %)**Downlink:**
554
555 506.7 - SF7BW125 to SF12BW125
556
557 506.9 - SF7BW125 to SF12BW125
558
559 507.1 - SF7BW125 to SF12BW125
560
561 507.3 - SF7BW125 to SF12BW125
562
563 507.5 - SF7BW125 to SF12BW125
564
565 507.7 - SF7BW125 to SF12BW125
566
567 507.9 - SF7BW125 to SF12BW125
568
569 508.1 - SF7BW125 to SF12BW125
570
571 505.3 - SF12BW125 (RX2 downlink only)
572
573
574
575 === 2.7.4 AU915-928(AU915) ===
576
577
578 Default use CHE=2
579
580 (% style="color:#037691" %)**Uplink:**
581
582 916.8 - SF7BW125 to SF12BW125
583
584 917.0 - SF7BW125 to SF12BW125
585
586 917.2 - SF7BW125 to SF12BW125
587
588 917.4 - SF7BW125 to SF12BW125
589
590 917.6 - SF7BW125 to SF12BW125
591
592 917.8 - SF7BW125 to SF12BW125
593
594 918.0 - SF7BW125 to SF12BW125
595
596 918.2 - SF7BW125 to SF12BW125
597
598
599 (% style="color:#037691" %)**Downlink:**
600
601 923.3 - SF7BW500 to SF12BW500
602
603 923.9 - SF7BW500 to SF12BW500
604
605 924.5 - SF7BW500 to SF12BW500
606
607 925.1 - SF7BW500 to SF12BW500
608
609 925.7 - SF7BW500 to SF12BW500
610
611 926.3 - SF7BW500 to SF12BW500
612
613 926.9 - SF7BW500 to SF12BW500
614
615 927.5 - SF7BW500 to SF12BW500
616
617 923.3 - SF12BW500(RX2 downlink only)
618
619
620
621 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
622
623
624 (% style="color:#037691" %)**Default Uplink channel:**
625
626 923.2 - SF7BW125 to SF10BW125
627
628 923.4 - SF7BW125 to SF10BW125
629
630
631 (% style="color:#037691" %)**Additional Uplink Channel**:
632
633 (OTAA mode, channel added by JoinAccept message)
634
635 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
636
637 922.2 - SF7BW125 to SF10BW125
638
639 922.4 - SF7BW125 to SF10BW125
640
641 922.6 - SF7BW125 to SF10BW125
642
643 922.8 - SF7BW125 to SF10BW125
644
645 923.0 - SF7BW125 to SF10BW125
646
647 922.0 - SF7BW125 to SF10BW125
648
649
650 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
651
652 923.6 - SF7BW125 to SF10BW125
653
654 923.8 - SF7BW125 to SF10BW125
655
656 924.0 - SF7BW125 to SF10BW125
657
658 924.2 - SF7BW125 to SF10BW125
659
660 924.4 - SF7BW125 to SF10BW125
661
662 924.6 - SF7BW125 to SF10BW125
663
664
665 (% style="color:#037691" %)** Downlink:**
666
667 Uplink channels 1-8 (RX1)
668
669 923.2 - SF10BW125 (RX2)
670
671
672
673 === 2.7.6 KR920-923 (KR920) ===
674
675
676 Default channel:
677
678 922.1 - SF7BW125 to SF12BW125
679
680 922.3 - SF7BW125 to SF12BW125
681
682 922.5 - SF7BW125 to SF12BW125
683
684
685 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
686
687 922.1 - SF7BW125 to SF12BW125
688
689 922.3 - SF7BW125 to SF12BW125
690
691 922.5 - SF7BW125 to SF12BW125
692
693 922.7 - SF7BW125 to SF12BW125
694
695 922.9 - SF7BW125 to SF12BW125
696
697 923.1 - SF7BW125 to SF12BW125
698
699 923.3 - SF7BW125 to SF12BW125
700
701
702 (% style="color:#037691" %)**Downlink:**
703
704 Uplink channels 1-7(RX1)
705
706 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
707
708
709
710 === 2.7.7 IN865-867 (IN865) ===
711
712
713 (% style="color:#037691" %)** Uplink:**
714
715 865.0625 - SF7BW125 to SF12BW125
716
717 865.4025 - SF7BW125 to SF12BW125
718
719 865.9850 - SF7BW125 to SF12BW125
720
721
722 (% style="color:#037691" %) **Downlink:**
723
724 Uplink channels 1-3 (RX1)
725
726 866.550 - SF10BW125 (RX2)
727
728
729
730
731 == 2.8 LED Indicator ==
732
733
734 The LSE01 has an internal LED which is to show the status of different state.
735
736 * Blink once when device power on.
737 * Solid ON for 5 seconds once device successful Join the network.
738 * Blink once when device transmit a packet.
739
740
741
742 == 2.9 Installation in Soil ==
743
744
745 **Measurement the soil surface**
746
747
748 [[image:1654506634463-199.png]] ​
749
750
751 (((
752 (((
753 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
754 )))
755 )))
756
757
758
759 [[image:1654506665940-119.png]]
760
761
762 (((
763 Dig a hole with diameter > 20CM.
764 )))
765
766 (((
767 Horizontal insert the probe to the soil and fill the hole for long term measurement.
768 )))
769
770
771
772 == 2.10 ​Firmware Change Log ==
773
774
775 (((
776 **Firmware download link:  **[[https:~~/~~/www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0>>https://www.dropbox.com/sh/8ixj7zgt477ip51/AADLrib9Oe6IuOpPF5o1GPf9a?dl=0]]
777 )))
778
779 (((
780
781 )))
782
783 (((
784 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
785 )))
786
787 (((
788
789 )))
790
791 (((
792 **V1.0.**
793 )))
794
795 (((
796 Release
797 )))
798
799
800
801 == 2.11 ​Battery Analysis ==
802
803
804 === 2.11.1 ​Battery Type ===
805
806
807 (((
808 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
809 )))
810
811 (((
812 The battery is designed to last for more than 5 years for the LSN50.
813 )))
814
815 (((
816 (((
817 The battery-related documents are as below:
818 )))
819 )))
820
821 * (((
822 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
823 )))
824 * (((
825 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
826 )))
827 * (((
828 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
829 )))
830
831 [[image:image-20220610172436-1.png]]
832
833
834
835 === 2.11.2 ​Battery Note ===
836
837
838 (((
839 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
840 )))
841
842
843
844 === 2.11.3 Replace the battery ===
845
846
847 (((
848 If Battery is lower than 2.7v, user should replace the battery of LSE01.
849 )))
850
851 (((
852 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
853 )))
854
855 (((
856 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
857 )))
858
859
860
861 = 3. ​Using the AT Commands =
862
863
864 == 3.1 Access AT Commands ==
865
866
867 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
868
869
870 [[image:1654501986557-872.png||height="391" width="800"]]
871
872
873 Or if you have below board, use below connection:
874
875
876 [[image:1654502005655-729.png||height="503" width="801"]]
877
878
879
880 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
881
882
883 [[image:1654502050864-459.png||height="564" width="806"]]
884
885
886 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]].
887
888
889 (% style="background-color:#dcdcdc" %)**AT+<CMD>? **(%%) : Help on <CMD>
890
891 (% style="background-color:#dcdcdc" %)**AT+<CMD> **(%%) : Run <CMD>
892
893 (% style="background-color:#dcdcdc" %)**AT+<CMD>=<value>**(%%)  : Set the value
894
895 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?**(%%)  : Get the value
896
897
898 (% style="color:#037691" %)**General Commands**(%%)      
899
900 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
901
902 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
903
904 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
905
906 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
907
908
909 (% style="color:#037691" %)**Keys, IDs and EUIs management**
910
911 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
912
913 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
914
915 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
916
917 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
918
919 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
920
921 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
922
923 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
924
925 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
926
927 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
928
929 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
930
931 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
932
933 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
934
935 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
936
937 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
938
939 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
940
941 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
942
943
944 (% style="color:#037691" %)**LoRa Network Management**
945
946 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
947
948 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
949
950 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
951
952 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
953
954 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
955
956 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
957
958 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
959
960 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
961
962 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
963
964 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
965
966 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
967
968 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
969
970 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
971
972 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
973
974 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
975
976
977 (% style="color:#037691" %)**Information** 
978
979 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
980
981 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
982
983 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
984
985 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
986
987 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
988
989 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
990
991 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
992
993
994
995 = ​4. FAQ =
996
997
998 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
999
1000
1001 (((
1002 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1003 When downloading the images, choose the required image file for download. ​
1004 )))
1005
1006 (((
1007
1008 )))
1009
1010 (((
1011 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1012 )))
1013
1014 (((
1015
1016 )))
1017
1018 (((
1019 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1020 )))
1021
1022 (((
1023
1024 )))
1025
1026 (((
1027 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1028 )))
1029
1030 [[image:image-20220606154726-3.png]]
1031
1032
1033 When you use the TTN network, the US915 frequency bands use are:
1034
1035 * 903.9 - SF7BW125 to SF10BW125
1036 * 904.1 - SF7BW125 to SF10BW125
1037 * 904.3 - SF7BW125 to SF10BW125
1038 * 904.5 - SF7BW125 to SF10BW125
1039 * 904.7 - SF7BW125 to SF10BW125
1040 * 904.9 - SF7BW125 to SF10BW125
1041 * 905.1 - SF7BW125 to SF10BW125
1042 * 905.3 - SF7BW125 to SF10BW125
1043 * 904.6 - SF8BW500
1044
1045 (((
1046 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1047
1048 * (% style="color:#037691" %)**AT+CHE=2**
1049 * (% style="color:#037691" %)**ATZ**
1050 )))
1051
1052 (((
1053
1054
1055 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1056 )))
1057
1058 (((
1059
1060 )))
1061
1062 (((
1063 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1064 )))
1065
1066 [[image:image-20220606154825-4.png]]
1067
1068
1069
1070 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1071
1072
1073 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1074
1075
1076
1077 = 5. Trouble Shooting =
1078
1079
1080 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1081
1082
1083 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1084
1085
1086
1087 == 5.2 AT Command input doesn't work ==
1088
1089
1090 (((
1091 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1092 )))
1093
1094
1095
1096 == 5.3 Device rejoin in at the second uplink packet ==
1097
1098
1099 (% style="color:#4f81bd" %)**Issue describe as below:**
1100
1101 [[image:1654500909990-784.png]]
1102
1103
1104 (% style="color:#4f81bd" %)**Cause for this issue:**
1105
1106 (((
1107 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1108 )))
1109
1110
1111 (% style="color:#4f81bd" %)**Solution: **
1112
1113 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1114
1115 [[image:1654500929571-736.png||height="458" width="832"]]
1116
1117
1118
1119 = 6. ​Order Info =
1120
1121
1122 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1123
1124
1125 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1126
1127 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1128 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1129 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1130 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1131 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1132 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1133 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1134 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1135
1136 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1137
1138 * (% style="color:red" %)**4**(%%): 4000mAh battery
1139 * (% style="color:red" %)**8**(%%): 8500mAh battery
1140
1141 (% class="wikigeneratedid" %)
1142 (((
1143
1144
1145
1146 )))
1147
1148 = 7. Packing Info =
1149
1150 (((
1151
1152
1153 (% style="color:#037691" %)**Package Includes**:
1154 )))
1155
1156 * (((
1157 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1158 )))
1159
1160 (((
1161
1162
1163 (% style="color:#037691" %)**Dimension and weight**:
1164 )))
1165
1166 * (((
1167 Device Size: cm
1168 )))
1169 * (((
1170 Device Weight: g
1171 )))
1172 * (((
1173 Package Size / pcs : cm
1174 )))
1175 * (((
1176 Weight / pcs : g
1177
1178
1179
1180 )))
1181
1182 = 8. Support =
1183
1184
1185 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1186 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1187
1188