Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20241204094648-1.jpeg||height="544" width="544"]]
3
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 What is the LHT65N-VIB LoRaWAN Vibration Sensor? ==
21
22
23 The Dragino LHT65N-VIB (% style="color:blue" %)**LoRaWAN Vibration Sensor**(%%) is designed to (% style="color:blue" %)**detect and measure vibrations, shocks, and accelerations of an object**(%%). By analyzing the object's motion, the LHT65N-VIB can send meaningful data such as alarms, device runtime, vibration counts, and vibration strength to an IoT platform for further analysis.
24
25 It can be used in professional wireless sensor network applications, including (% style="color:blue" %)**equipment status monitoring, water leakage alarms, usage statistics, vibration intensity detection**(%%), and more.
26
27 The LHT65N-VIB (% style="color:blue" %)**supports a datalogging feature**(%%), allowing it to record data when there is no network coverage. Users can retrieve the sensor readings later, ensuring no data is missed.
28
29 The LHT65N-VIB enables users to send data over extremely long distances. It offers ultra-long-range spread spectrum communication and high interference immunity while minimizing current consumption.
30
31 The LHT65N-VIB has a(% style="color:blue" %)** built-in 2400mAh non-rechargeable battery**(%%), which can last up to (% class="mark" %)3 years*(%%).
32
33 The LHT65N-VIB is fully compatible with the LoRaWAN v1.0.3, Class A mode and can work with a standard LoRaWAN gateway.
34
35 (% class="mark" %)*The actual battery life depends on how frequently data is transmitted. Please refer to the battery analyzer chapter for more details.
36
37
38 == 1.2 Assembling the vibration probe ==
39
40
41 The LHT65N-VIB is sold with an external vibration sensor probe. The vibration sensor probe can be connected to the LHT65N-VIB using the USB Type-C connector. You can find the USB Type-C port on the LHT65N-VIB after removing the blue plastic cap.
42
43
44 [[image:lht65n-vib-probe.jpeg]]
45
46
47 == 1.2 Features ==
48
49
50 * LoRaWAN v1.0.3, Class A mode
51 * Frequency Bands: CN470, EU433, KR920, US915, EU868, AS923, AU915
52 * Detects object vibration status
53 * Detects vibration alarms
54 * 3-axis accelerometer for x, y, z axes
55 * Calculates device runtime
56 * Built-in 2400mAh battery for long-term use
57 * Built-in temperature and humidity sensor
58 * Tri-color LED to indicate working status
59 * Datalog feature (up to 3328 records)
60 * AT commands to change parameters
61 * Remote configuration of parameters via LoRaWAN downlink
62 * Firmware upgradeable via programming port
63
64 == 1.3 Specification ==
65
66
67 (% style="color:#037691" %)**Built-in Temperature Sensor:**
68
69 * Resolution: 0.01 °C
70 * Accuracy tolerance : Typ ±0.3 °C
71 * Long Term Drift: < 0.02 °C/yr
72 * Operating range: -40 ~~ 85 °C
73
74 (% style="color:#037691" %)**Built-in Humidity Sensor:**
75
76 * Resolution: 0.04 %RH
77 * Accuracy tolerance : Typ ±3 %RH
78 * Long Term Drift: < 0.25 RH/yr
79 * Operating range: 0 ~~ 96 %RH
80
81 (% style="color:#037691" %)**External Vibration Sensor:**
82
83 * Detecting object vibration status
84 * accelerator for x,y,z
85 * Small size for easy installation
86 * Acceleration: ±2g,±4g,±8g;±16g
87 * Frequency: 25 Hz, 50 Hz,100 Hz, 200 Hz, 400 Hz
88
89 = 2. Registering LHT65N-VIB with a LoRaWAN Network Server =
90
91
92 **The LHT65N-VIB can be registered with any LoRaWAN network server. In this documentation, we use The Things Stack as an example, but similar settings may apply to other LoRaWAN network servers.**
93
94
95 == 2.1 How does the LHT65N-VIB work? ==
96
97
98 (((
99 The LHT65N-VIB is configured in LoRaWAN Class A mode by default. Each LHT65N-VIB is shipped with a unique global registration key that supports OTAA (Over-The-Air-Activation). To use the LHT65N-VIB with a LoRaWAN network, you first need to register the device with the network using the provided registration keys for OTAA support.
100
101 The LHT65N-VIB's registration information can be found inside the device package.
102
103 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
104
105 The registration information includes the following:
106
107 * DevEUI
108 * AppEUI
109 * AppKey
110
111 Once registered, if the LHT65N-VIB is within the coverage area of the LoRaWAN network, it can automatically join the network. After successfully joining, the LHT65N-VIB will begin measuring environmental temperature and humidity and will start transmitting sensor data to the LoRaWAN network server. The default uplink transmission interval is 20 minutes.
112
113
114 )))
115
116 == 2.2 How to Activate LHT65N-VIB? ==
117
118
119 (((
120 (((
121 The LHT65N-VIB has two modes:
122 )))
123
124 * (((
125 (% style="color:blue" %)**Deep sleep mode**(%%): In this mode, the LHT65N-VIB doesn't perform any LoRaWAN activation. It is used for storage and shipping to conserve battery life.
126 )))
127
128 (((
129 * (% style="color:blue" %)**Working mode**(%%): In this mode, the LHT65N-VIB works as a LoRaWAN sensor, joining the LoRaWAN network and sending sensor data to the server. Between each sampling/TX/RX cycle, the LHT65N-VIB enters STOP mode (IDLE mode), where it consumes the same power as in deep sleep mode.
130 )))
131
132 The LHT65N-VIB is set in deep sleep mode by default. The **ACT** button on the front can be used to switch between different modes. See the image below:
133 )))
134
135 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
136
137 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
138 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Usage of the ACT button**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
139 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1 - 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
140 If LHT65N-VIB is already joined to the LoRaWAN network, it will send an uplink packet. If an external sensor is connected, the (% style="color:blue" %)**Blue LED** (%%)will blink once. If there is no external sensor, the (% style="color:red" %)**Red LED**(%%) will blink once.
141 )))
142 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Activate Device|(% style="background-color:#f2f2f2; width:225px" %)(((
143 The(% style="background-color:#f2f2f2; color:green" %)** Green LED**(%%) will blink quickly 5 times, indicating that the LHT65N-VIB is entering working mode and starting to join the LoRaWAN network. The (% style="background-color:#f2f2f2; color:green" %)**Green LED**(%%) will solid for 5 seconds after successfully joining the network.
144 )))
145 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)The (% style="color:red" %)**Red LED**(%%) will remain solid for 5 seconds, indicating that the LHT65N-VIB is in Deep Sleep Mode.
146
147 {{info}}
148 We recommend that you activate the device using the ACT button after adding its registration information to the LoRaWAN network server. Otherwise, the device will continuously send join-request messages in an attempt to join a LoRaWAN network but will fail.
149 {{/info}}
150
151
152 == 2.3 Registering with The Things Stack ==
153
154
155 (% class="wikigeneratedid" %)
156 In this section we will guide you through on how to register the LHT65N-VIB with The Things Stack. If your area has **The Things Stack** community network coverage, you can use it without setting up your own network. If not, you can set up your own LoRaWAN network coverage by using our [[**LPS8N**>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]] LoRaWAN gateway.
157
158 (% class="wikigeneratedid" %)
159 The typical end-to-end network setup with LHT65N-VIB and LPS8v2 is shown below:
160
161 (% class="wikigeneratedid" %)
162 [[image:lht65n-vib-nw-diagram.jpg||height="363" width="1359"]]
163
164
165 === 2.3.1 Add LHT65N-VIB to The Things Stack ===
166
167
168 * From the LoRaWAN device repository
169 * Manually
170
171 ==== 3.2.2.1 Creating an application ====
172
173
174 Sign up for a free account with [[The Things Stack Sandbox>>url:https://eu1.cloud.thethings.network]] if you do not have one yet. Then, create an application as shown in the screenshots below.
175
176
177 ==== 3.2.2.2 Adding using the LoRaWAN device repository ====
178
179
180 You can refer to the screenshots below to register your LHT65N-VIB using The Things Stack's LoRaWAN device repository.
181
182 On The Things Stack console:
183
184 ~1. Click **Applications**.
185
186 2. Click <**your application**>. E.g. dragino-docs
187
188 3 Click **End devices**.
189
190 4. Click **+ Register end devic**e button.
191
192
193 [[image:lht65n-vib-1.png]]
194
195
196 On the Register end device page:
197
198 ~1. Click **Select the end device in the LoRaWAN Device Repository** option.
199
200 2. Select the following parameters:
201
202 * **End device brand**: Dragon Technology Co., Limited
203 * **Model**: LHT65 - Temperature and Humidity Sensor. //**The LHT65N-VIB Vibration Sensor uses the same template as the LHT65 - Temperature and Humidity Sensor.**//
204 * **Hardware Ver**: Unknown Ver.
205 * **Firmware Ver**: 1.9.1
206 * **Profile (Region)**: Select the region that matches your device. E.g.: EU_863_870
207
208 3. **Frequency plan**: Select the frequency plan that matches your device. E.g.: Europe 863-870 MHz (SF9 for RX2 - recommended).
209
210 [[image:lht65n-vib-9.png]]
211
212
213 4. **JoinEUI**: Enter the AppEUI of the device (see the registration information sticker) and Click the **Confirm** button.
214
215 5. **DevEUI**: Enter the DevEUI of the device (see the registration information sticker).
216
217 6. **AppKey**: Enter the AppKey of the device (see the registration information sticker).
218
219 7. **End device ID**: Enter a name for your end device to uniquely identify it within this application.
220
221 8. Click **View registered end device** option.
222
223 9. Click **Register end device** button.
224
225
226 [[image:lht65n-vib-2.png]]
227
228
229 You will be navigated to the **Device overview **page.
230
231
232 ==== 3.2.2.3 Adding manually ====
233
234
235 You can refer to the screenshots below to register your LHT65N-VIB using The Things Stack's manual option.
236
237
238 1-4: Same as in the section 3.2.2.2.
239
240 5. Select **Enter end device specifies manually** option.
241
242 6. **Frequency plan**: Select the frequency plan that matches your device. E.g.: Europe 863-870 MHz (SF9 for RX2 - recommended).
243
244 7. **LoRaWAN version**: LoRaWAN Specification 1.0.3
245
246 8. Regional Parameters version: You can't change it and it will select automatically.
247
248
249 [[image:lht65n-vib-3.png]]
250
251
252 9. Click on the **Show advanced activation, LoRaWAN class and cluster settings **to expand the section.
253
254 10. Select **Over the air activation (OTAA**) option.
255
256 ~11. Select **None (class A only)**.
257
258 12. **JoinEUI**: Enter the **AppEUI** of the device (see the registration information sticker) and Click the **Confirm** button.
259
260
261 [[image:lht65n-vib-4.png]]
262
263
264 13. **DevEUI**: Enter the DevEUI of the device (see the registration information sticker).
265
266 14. **AppKey**: Enter the AppKey of the device (see the registration information sticker).
267
268 15. **End device ID**: Enter a name for your end device to uniquely identify it within this application.
269
270 16. Click **View registered end device** option.
271
272 17. Click **Register end device** button.
273
274 [[image:lht65n-vib-5.png]]
275
276
277 You will be navigated to the **Device overview **page.
278
279
280 === 2.3.2 Activate the LHT65N-VIB by pressing and holding the ACT button for more than 5 seconds. ===
281
282 (((
283
284
285 Press and hold the **ACT** button for more than 5 seconds to activate the LHT65N-VIB. It will then join The Things Stack. Once successfully connected, the device will begin uplinking sensor data to The Things Stack, which can be viewed on the Live data panel.
286 )))
287
288 [[image:image-20241011171332-1.png||height="238" width="816"]]
289
290
291 === 2.3.3 Uplink Decoder in The Things Stack ===
292
293
294 When the uplink payload arrives in The Things Stack, it is displayed in HEX format, which is not easy to read. You can add the LHT65N-VIB decoder in The Things Stack for easier readability of each sensor readings.
295
296 The uplink decoder can be added to the** Payload Formatters** of your device in The Things Stack. Refer to the screenshot below.
297
298 ~1. Click **Uplink** tab.
299
300 2. **Formatter type:** Select Custom Javascript formatter.
301
302 3. **Formatter code**: Copy the uplink payload formatter code from our [[dragino-end-node-decoder GitHub repository>>https://github.com/dragino/dragino-end-node-decoder/blob/main/LHT65N-VIB/LHT65N-VIB_TTN_Decoder.txt]] and paste it here.
303
304 4. Finally, click on the **Save changes** button.
305
306 [[image:Screenshot 2024-12-03 at 17.34.15.png]]
307
308
309 == 2.4 Uplink Payload (FPort~=2) ==
310
311 (((
312
313
314 The uplink payload is a total of 11 bytes. Uplink packets use **FPort=2 **and, by default, are sent (% style="color:#4f81bd" %)**every 20 minutes.**
315 )))
316
317 (((
318 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) blinks once.
319
320 There are four different working modes, and the uplink payload format varies for each mode:
321
322 * **VIBMOD=1** : vibration count, work_min
323 * **VIBMOD=2** : TempC_SHT, Hum_SHT, vib_count
324 * **VIBMOD=3** : TempC_SHT, Hum_SHT, vib_min
325 * **VIBMOD=4** : X, Y, Z
326
327
328 )))
329
330 === 2.4.1 VIBMOD~=1 : Vibration Count, Run Time ===
331
332
333 VIBMOD=1 represent the battery voltage, working mode, alarm status, TDC, vibration count, and work_min. The uplink payload is shown below.
334
335 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
336 |=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
337 **Size(bytes)**
338 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)(((
339 **2**
340 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
341 1
342 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
343 **4**
344 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
345 4
346 )))
347 |(% style="width:110px" %)(((
348 Value
349 )))|(% style="width:71px" %)(((
350 BAT
351 )))|(% style="width:99px" %)MOD
352 Alarm
353 TDC|(% style="width:132px" %)vib_count|(% style="width:54px" %)work_min
354
355 [[image:image-20241011175741-3.png||height="187" width="1023"]]
356
357
358 The following subsections describe each field:
359
360
361 ==== 2.4.1.1 BAT (Battery Voltage) ====
362
363
364 These two bytes represent the battery voltage. See the image below.
365
366 [[image:image-20241012091339-4.png||height="92" width="787"]]
367
368
369 Calculate the battery voltage for the LHT65N-VIB, if the BAT=0B F2.
370
371 Convert 0x0BF2 to decimal (3058) and then divide by 1000 to get the voltage.
372
373 * (% class="mark" style="color:#ff0000; font-family:Arial,sans-serif; font-size:10.5pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)0x0BF2 (hex) = 3058 (dec)
374 * (% class="mark" style="color:#ff0000; font-family:Arial,sans-serif; font-size:10.5pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)3058/1000 = 3.058 V
375
376 ==== 2.4.1.2 MOD, Alarm, and TDC ====
377
378
379 This byte represent working mode, alarm status, and TCD. See the image below.
380
381 [[image:image-20241012092023-5.png||height="89" width="792"]]
382
383 [[image:image-20250320103348-1.png||height="77" width="785"]]
384
385 (% class="mark" %)bytes[2]=0x06=0000 0110
386
387 (% class="mark" %)**Current working mode:**
388
389 * (% class="mark" %)(bytes[2]>>2)&0x07
390 * (% class="mark" %)Shift two bits to right (0000 0110 -> 0000 0001)
391 * (% class="mark" %)Then bitwise AND with 0x07 (0000 0001 & 0000 0111 = 0000 0001 = **1**)
392
393 (% class="mark" %)**Current alarm status:**
394
395 * (% class="mark" %)(bytes[2] & 0x01)? "TRUE":"FALSE"
396 * (% class="mark" %)0000 0110 & 0000 0001 = 0000 0000 = 0 = **FALSE**
397
398 (% class="mark" %)**Is the current data triggered by TDC (data uploaded due to alarm)?**
399
400 * (% class="mark" %)(bytes[2] & 0x02)? "YES":"NO"
401 * (% class="mark" %)0000 0110 & 0000 0010 = 0000 0010 = 2 (NON-ZERO VALUE) = **YES**
402
403 ==== 2.4.1.3 vib_count ====
404
405
406 These 4 bytes (vib_count) represent the number of vibration events that has been recorded. See the image below.
407
408 [[image:image-20241012092938-6.png||height="102" width="770"]]
409
410 * (% class="mark" %)0x00000007=7
411
412 ==== 2.4.1.4 work_min ====
413
414
415 These 4 bytes (work_min) indicate the duration the current vibration sensor has been active since the latest trigger. See the image below.
416
417 [[image:image-20241012093112-7.png||height="68" width="775"]]
418
419 * (% class="mark" %)0x00000000=0
420
421 (% class="mark" %)0 means that the current vibration sensor is not triggered.
422
423
424 === 2.4.2 VIBMOD~=2 : Vibration Count,Temperature,Humidity ===
425
426
427 VIBMOD=2 represent the battery voltage, working mode, alarm status, TDC, vibration count, TempC_SHT, and Hum_SHT. The uplink payload is shown below.
428
429
430 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:380px" %)
431 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
432 **Size(bytes)**
433 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)(((
434 **2**
435 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
436 1
437 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
438 **4**
439 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
440 2
441 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
442 2
443 )))
444 |(% style="width:110px" %)(((
445 Value
446 )))|(% style="width:71px" %)(((
447 BAT
448 )))|(% style="width:99px" %)MOD
449 Alarm
450 TDC|(% style="width:132px" %)vib_count|(% style="width:54px" %)TempC_SHT|(% style="width:54px" %)Hum_SHT
451
452 [[image:image-20241012093705-8.png||height="106" width="879"]]
453
454
455 ==== 2.4.2.1 BAT (Battery Voltage) ====
456
457
458 These two bytes represent the battery voltage. See the image below.
459
460 [[image:image-20241012094035-9.png||height="71" width="946"]]
461
462
463 Calculate the battery voltage for LHT65N-VIB.
464
465 * (% class="mark" %)0x0BC6/1000=3.014V
466
467 ==== 2.4.2.2 VIBMOD, Alarm and TDC ====
468
469
470 This byte represent working mode, alarm status, and TCD. See the image below.
471
472 [[image:image-20241012094131-10.png||height="126" width="934"]]
473
474 (% class="mark" %)bytes[2]=0x0A=0000 0101
475
476 (% class="mark" %)Current working mode=(bytes[2]>>2)&0x07=2
477
478 (% class="mark" %)Current alarm situation= (bytes[2] & 0x01)? "TRUE":"FALSE";=0=FALSE
479
480 (% class="mark" %)Whether the current data occurs is TDC (the data will be uploaded by the alarm)= (bytes[2] & 0x02)? "YES":"NO";=00000010 (non -zero value)=YES
481
482
483 ==== 2.4.2.3 vib_count ====
484
485
486 These 4 bytes represent the number of vibration events that has been recorded. See the image below.
487
488 [[image:image-20241012094340-11.png||height="92" width="954"]]
489
490 * (% class="mark" %)0x00000000=0
491
492 ==== 2.4.2.4 TempC_SHT ====
493
494
495 These 2 bytes represent the temperature measured by the built-in temperature & humidity sensor, SHT31.
496
497 [[image:image-20241012094549-12.png||height="64" width="941"]]
498
499 * (% class="mark" %)0x0B22/100=28.5 C
500
501 ==== 2.4.2.5 Hum_SHT ====
502
503
504 These 2 bytes represent the humidity measured by the built-in temperature & humidity sensor, SHT31.
505
506 [[image:image-20241012094803-13.png||height="76" width="950"]]
507
508 * (% class="mark" %)0x0212/10=53
509
510 === 2.4.3 VIBMOD~=3: Run Time,Temperature,Humidity ===
511
512
513 VIBMOD=3 represents the battery voltage, working mode, alarm status, TDC, TempC_SHT, Hum_SHT, and work_min. The uplink payload is shown below.
514
515 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:380px" %)
516 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
517 **Size(bytes)**
518 )))|=(% style="width: 40px;background-color:#4F81BD;color:white" %)(((
519 **2**
520 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
521 1
522 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
523 **2**
524 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
525 2
526 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
527 4
528 )))
529 |(% style="width:110px" %)(((
530 Value
531 )))|(% style="width:71px" %)(((
532 BAT
533 )))|(% style="width:99px" %)MOD
534 Alarm
535 TDC|(% style="width:132px" %)TempC_SHT|(% style="width:54px" %)Hum_SHT|(% style="width:54px" %)work_min
536
537 [[image:image-20241012094926-14.png||height="91" width="984"]]
538
539
540 ==== 2.4.3.1 BAT (Battery Voltage) ====
541
542
543 These 2 bytes represent the battery voltage.
544
545 [[image:image-20241012095155-15.png]]
546
547 * (% class="mark" %)0x0BC2/1000=3.01V
548
549 ==== 2.4.3.2 VIBMOD and Alarm and TDC ====
550
551
552 This byte represents the working mode, alarm status, and TDC.
553
554 [[image:image-20241012095322-16.png||height="101" width="1094"]]
555
556 (% class="mark" %)bytes[2]=0x0A=0000 1110
557
558 (% class="mark" %)Current working mode=(bytes[2]>>2)&0x07=3
559
560 (% class="mark" %)Current alarm situation= (bytes[2] & 0x01)? "TRUE":"FALSE";=0=FALSE
561
562 (% class="mark" %)Whether the current data occurs is TDC (the data will be uploaded by the alarm)= (bytes[2] & 0x02)? "YES":"NO";=00000010 (non -zero value)=YES
563
564
565 ==== 2.4.3.3 TempC_SHT ====
566
567
568 These 2 bytes represent the temperature measured by the built-in temperature & humidity sensor, SHT31.
569
570 [[image:image-20241012095445-17.png]]
571
572 * (% class="mark" %)0x0B21/100=28.49 C
573
574 ==== 2.4.3.4 Hum_SHT ====
575
576
577 These 2 bytes represent the humidity measured by the built-in temperature & humidity sensor, SHT31.
578
579 [[image:image-20241012095509-18.png]]
580
581 * (% class="mark" %)0x0213/10=53.1
582
583 ==== 2.4.3.5 work_min ====
584
585
586 These 4 bytes (work_min) indicate the duration the current vibration sensor has been active since the latest trigger. See the image below.
587
588 [[image:image-20241012095558-19.png||height="83" width="1029"]]
589
590 * (% class="mark" %)0x00000000=0
591
592 (% class="mark" %)0 means that the current vibration sensor is not triggered.
593
594
595 === 2.4.4 VIBMOD~=4 :Three-axis X-Y-Z vibration data(FPort~=7) ===
596
597
598 VIBMOD=4 represents the battery voltage and the accelerometer data. The uplink payload is shown below.
599
600 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:310px" %)
601 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
602 **Size(bytes)**
603 )))|=(% style="width: 50px; background-color: rgb(79, 129, 189); color: white;" %)(((
604 **2**
605 )))|=(% style="width: 50px; background-color: rgb(79, 129, 189); color: white;" %)(((
606 2
607 )))|=(% style="width: 50px; background-color: rgb(79, 129, 189); color: white;" %)(((
608 **2**
609 )))|=(% style="width: 50px; background-color: rgb(79, 129, 189); color: white;" %)(((
610 2
611 )))|=(% style="width: 50px; background-color: rgb(79, 129, 189); color: white;" %)(((
612 2
613 )))
614 |(% style="width:110px" %)(((
615 Value
616 )))|(% style="width:40px" %)(((
617 BAT
618 )))|(% style="width:50px" %)X|(% style="width:44px" %)Y|(% style="width:43px" %)Z|(% style="width:133px" %)......
619
620 [[image:image-20250321144440-1.png||height="73" width="876"]]
621
622
623 (% class="mark" %)The first two bytes represent the battery voltage, for example 0B 4E.
624
625 (% class="mark" %)The reset of the bytes represents the accelerometer data on axis X, Y, and Z. Each axis represent in 2 bytes.
626
627 (% class="mark" %)**X = 0x03F5/1000=1.013.**
628
629 (% class="mark" %)**Y=0xFFE9/1000=-0.023 In binary, it is represented as 1111 1111 1110 1001. The highest bit is 1, indicating a negative number in two's complement notation, and its value is -0.023.**
630
631 (% class="mark" %)**Z=0xFEB2/1000=-0.334 In binary, it is represented as 1111 1110 1011 0010. The highest bit is 1, indicating a negative number in two's complement notation, and its value is -0.334.**
632
633
634 == 2.5 Integrating with IoT platforms ==
635
636
637 The LHT65N-VIB sensor data can be integrated with other IoT platforms for better visualizing and analyzing the data. In this section, we will show you how to integrate sensor data from The Things Stack with some popular IoT platforms.
638
639
640 === 2.5.1 Integrate and show data on ThingsEye ===
641
642
643 The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
644
645 {{info}}
646 The integration will link The Things Stack application (with all the devices) with ThingsEye. You can select sensor data fields from each device when creating the ThingsEye dashboards.
647 {{/info}}
648
649
650 ==== 2.5.1.1 Configuring The Things Stack ====
651
652
653 We use The Things Stack Sandbox in this example:
654
655 * In **The Things Stack Sandbox**, go to the **Application **for the LHT65N-VIB you added.
656 * Select **MQTT** under **Integrations** in the left menu.
657 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
658 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
659
660 {{info}}
661 The username and  password (API key) you created here are required in the next section.
662 {{/info}}
663
664
665 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/tts-mqtt-integration.png?rev=1.1||alt="tts-mqtt-integration.png"]]
666
667
668 ==== 2.5.1.2 Configuring ThingsEye.io ====
669
670
671 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
672
673 * Login to your [[ThingsEye.io >>url:https://thingseye.io]]account.
674 * Under the **Integrations center**, click **Integrations**.
675 * Click the **Add integration** button (the button with the **+** symbol).
676
677 (% class="wikigeneratedid" %)
678 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-io-step-1.png?rev=1.2||alt="thingseye-io-step-1.png"]]
679
680
681 On the **Add integration** window, configure the following:
682
683 **Basic settings:**
684
685 * Select **The Things Stack Community** from the **Integration type** list.
686 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
687 * Ensure the following options are turned on.
688 ** Enable integration
689 ** Debug mode
690 ** Allow create devices or assets
691 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
692
693 (% class="wikigeneratedid" %)
694 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-io-step-2.png?rev=1.1||alt="thingseye-io-step-2.png"]]
695
696
697 **Uplink data converter:**
698
699 * Click the **Create new** button if it is not selected by default.
700 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
701 * Click the **JavaScript** button.
702 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>url:https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
703 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
704
705 (% class="wikigeneratedid" %)
706 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-io-step-3.png?rev=1.1||alt="thingseye-io-step-3.png"]]
707
708
709 **Downlink data converter (this is an optional step):**
710
711 * Click the **Create new** button if it is not selected by default.
712 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
713 * Click the **JavaScript** button.
714 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>url:https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
715 * Click the **Next** button. You will be navigated to the **Connection** tab.
716
717 (% class="wikigeneratedid" %)
718 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-io-step-4.png?rev=1.1||alt="thingseye-io-step-4.png"]]
719
720
721 **Connection:**
722
723 * Choose **Region** from the **Host type**.
724 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
725 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **2.5.1.1 Configuring The Things Stack**).
726 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
727
728 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/message-1.png?rev=1.1||alt="message-1.png"]]
729
730
731 * Click the **Add** button.
732
733 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-io-step-5.png?rev=1.1||alt="thingseye-io-step-5.png"]]
734
735
736 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
737
738 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye.io_integrationsCenter_integrations.png?rev=1.2||alt="thingseye.io_integrationsCenter_integrations.png"]]
739
740
741 ==== 2.5.1.3 Viewing integration details ====
742
743
744 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
745
746 (% class="wikigeneratedid" %)
747 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/integration-details.png?rev=1.1||alt="integration-details.png"]]
748
749
750 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
751
752 {{info}}
753 See also [[ThingsEye documentation>>url:https://wiki.thingseye.io/xwiki/bin/view/Main/]].
754 {{/info}}
755
756 * To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
757
758 [add JSON payload screen capture here]
759
760
761 ==== 2.5.1.4 Viewing events ====
762
763
764 The **Events **tab displays all the uplink messages from the LHT65N-VIB.
765
766 * Select **Debug **from the **Event type** dropdown.
767 * Select the** time frame** from the **time window**.
768
769 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-events.png?rev=1.1||alt="thingseye-events.png"]]
770
771
772 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
773
774 [[image:lht65n-vib.png]]
775
776
777 ==== 2.5.1.5 Viewing Sensor data on a dashboard ====
778
779
780 You can create a dashboard with ThingsEye to visualize the sensor data coming from the LHT65N-VIB. The following image shows a dashboard created for the LHT65N-VIB. See **Creating a dashboard** in ThingsEye documentation for more information.
781
782
783 [[image:lht65n-vib-dashboard.png]]
784
785
786
787 ==== 2.5.1.6 Deleting an integration ====
788
789
790 If you want to delete an integration, click the **Delete integration** button on the Integrations page.
791
792
793 === 2.5.2 Integrate and show data on Datacake ===
794
795
796 (((
797 The **Datacake **IoT platform provides a user-friendly interface to display sensor data. With this integration, once you receive the sensor data in **The Things Stack** application, you can send it to **Datacake** for further processing.
798
799 * Ensure that LHT65N-VIB is properly connected to The Things Stack.
800
801 Now configure your The Things Stack application to forward data to Datacake by adding an integration with webhooks.
802
803 * In The Things Stack console, navigate to **Applications → <your application> → Integrations → Webhooks → + Add webhook.**
804
805 [[image:eu1.cloud.thethings.network_console_applications_dragino-docs_integrations_webhooks(Laptop with HiDPI screen).png]]
806
807 * In the **Choose webhook template** page, select **Datacake**.
808 )))
809
810
811 [[image:eu1.cloud.thethings.network_console_applications_dragino-docs_integrations_webhooks_add_template(Laptop with HiDPI screen).png]]
812
813 (((
814
815
816 In Datacake, go to **Account Settings**, then navigate to the **API Token** tab. Click the **Copy** button to copy the **API token**.
817
818 [[image:datacake-1.png]]
819
820
821 On the **Setup webhook for Datacake** page, enter the **Webhook ID** and paste the **Datacake API Token**. Then select the **Create Datacake webhook** button.
822
823 [[image:eu1.cloud.thethings.network_console_applications_dragino-docs_integrations_webhooks_add_template(Laptop with HiDPI screen) (2).png]]
824
825
826 )))
827
828 In the Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65N-VIB as follows.
829
830 ~1. On the left navigation, select **Devices**.
831
832 2. Click **+ Add Device** button.
833
834 [[image:datacake-7.png]]
835
836
837 ~1. On the **Add Device** window, select the connectivity type of your device, in this case select **LoRaWAN**.
838
839 2. Click **Next** button.
840
841 [[image:datacake-2.png]]
842
843
844 On the **Add LoRaWAN Device** window, under **Product**,
845
846 ~1. Select **New Product from template**.
847
848 2. Search for **lht65**
849
850 3. Select, **Dragino LHT65, LHT65N+ Temp & Hum **from the filtered list.
851
852 Click **Next** button.
853
854 [[image:datacake-3.png]]
855
856
857 On the **Add LoRaWAN Device** window, under **Network Server,**
858
859 ~1. Select **The Things Stack V3**.
860
861 Click **Next** button.
862
863 [[image:datacake-5.png]]
864
865
866 On the **Add LoRaWAN Device** window, under **Devices**,
867
868 ~1. Enter your LHT65N-VIB's **DevEUI** in the **DevEUI** field.
869
870 2. Assign a **name** for your device in the **Name** field.
871
872 Click **Next** button.
873
874 [[image:datacake-6.png]]
875
876
877 [will be continued... add more screenshots here]
878
879 [[image:image-20220523000825-10.png||_mstalt="450619"]]
880
881
882 == 2.8 LED Indicator ==
883
884
885 The LHT65N-VIB has a **tri-color LED** for easily indicating different stages.
886
887 When the user presses the ACT button, the LED will function according to the LED status linked to the ACT button.
888
889 In a normal working state:
890
891 * For each uplink, the **BLUE** or **RED** LED will blink once:
892 ** **BLUE LED**: Indicates an external sensor is connected.
893 ** **RED LED**: Indicates no external sensor is connected.
894 * For each successful downlink, the **PURPLE** **LED** will blink once.
895
896 == 2.9 Installation ==
897
898 This sections explains the assembling and installation instructions.
899
900 === 2.9.1 Attaching the vibration probe ===
901
902 The LHT65N-VIB is sold with an external vibration sensor probe. The vibration sensor probe can be connected to the LHT65N-VIB using its USB Type-C connector. You can find the USB Type-C port on the LHT65N-VIB after removing the blue plastic cap.
903
904 [[image:lht65n-vib-probe.jpeg]]
905
906
907 === 2.9.2 Installing on an object ===
908
909 The LHT65N should be installed vertically on objects, with the sensor parallel to the object's surface.
910
911 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
912
913
914 = 3. Configure the LHT65N-VIB via AT commands or LoRaWAN downlinks =
915
916
917 (((
918 You can configure the LHT65N-VIB via AT commands or LoRaWAN Downlinks.
919 )))
920
921 * (((
922 Configure via AT Commands: See the [[FAQ>>||anchor="H6.FAQ"]] for instructions on **How to connect to the LHT65N-VIB's UART interface**
923 )))
924
925 * (((
926 LoRaWAN downlink instructions for different platforms: Refer to the [[IoT LoRaWAN Server>>doc:Main.WebHome]]
927 )))
928
929 (((
930
931
932 There are two kinds of commands to configure the LHT65N-VIB:
933 )))
934
935 (((
936 (% style="color:#4f81bd" %)**1. General Commands**.
937 )))
938
939 (((
940 These commands are the same for all Dragino devices that support the DLWS-005 LoRaWAN Stack (Note~*~*). You can find these commands on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
941
942 These commands can be used to configure:
943 )))
944
945 (((
946 * General system settings, such as uplink interval.
947 )))
948
949 (((
950 * LoRaWAN protocol and radio-related settings.
951 )))
952
953 (((
954
955
956 (% style="color:#4f81bd" %)**2. Commands design specially for the LHT65N**(%%)-VIB
957 )))
958
959 (((
960 These commands are only valid for the LHT65N-VIB and are listed below:
961 )))
962
963
964 == 3.1 Set Uplink Transmit Interval ==
965
966
967 **Feature**: Change the LHT65N-VIB's uplink transmission Interval.
968
969 (% style="color:#4f81bd" %)**AT command**
970
971 (% border="2" style="width:500px" %)
972 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+TDC
973 |(% style="width:142px" %)**Parameters**|(% style="width:356px" %)**time** : time in milliseconds
974 |(% style="width:142px" %)**Get**|(% style="width:356px" %)AT+TDC=?
975 |(% style="width:142px" %)**Response**|(% style="width:356px" %)returns the current uplink interval
976 |(% style="width:142px" %)**Set**|(% style="width:356px" %)AT+TDC=<time>
977 |(% style="width:142px" %)**Response**|(% style="width:356px" %)<time> OK
978 |(% style="width:142px" %)**Example**|(% style="width:356px" %)AT+TDC=60000 ~/~/ Set uplink time interval to 60 seconds.
979
980 (% style="color:#4f81bd" %)**Downlink command**
981
982 (% border="2" style="width:500px" %)
983 |(% style="width:141px" %)**Prefix**|(% style="width:357px" %)0x01
984 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)**time** : time in seconds - 3 bytes in hexadecimal
985 |(% style="width:141px" %)**Payload format**|(% style="width:357px" %)<prefix><time>
986 |(% style="width:141px" %)**Example**|(% style="width:357px" %)(((
987 * 01**00001E ** ~/~/ Set uplink interval (TDC) to 30 seconds
988
989 * 01**00003C**  ~/~/ Set uplink interval (TDC) to 60 seconds
990 )))
991
992 == 3.2 Set Vibration Sensor Mode ==
993
994
995 **Feature**: Sets the Vibration Sensor Mode.
996
997 (% style="color:#4f81bd" %)**AT command**
998
999 (% border="2" style="width:500px" %)
1000 |(% style="width:143px" %)**Command**|(% style="width:355px" %)AT+VIBMOD
1001 |(% style="width:143px" %)**Parameters**|(% style="width:355px" %)(((
1002 **mode** : 1, 2, 3, 4
1003
1004 **alarm_time**: Sets the duration of continuous operation required to trigger the alarm (unit: seconds). (Set AlarmTimeout to 0 to disable the alarm.) - only applicable with mode 1, 2, 3
1005
1006 **stop_duration_time**: Specifies the interval after which the event is counted as a trigger. - only applicable with mode 1, 2, 3
1007
1008 **collection_interval **: Collection Interval (unit: seconds) - only applicable with mode 4.
1009
1010 **groups** : Number of groups - only applicable with mode 4
1011 )))
1012 |(% style="width:143px" %)**Set**|(% style="width:355px" %)(((
1013 for mode 1,2,3:
1014
1015 AT+VIBMOD=<mode><alarm_timeout><stop_duration_time>
1016
1017 for mode 4:
1018
1019 AT+VIBMOD=<mode><collection_interval><gropus>
1020 )))
1021 |(% style="width:143px" %)**Example**|(% style="width:355px" %)(((
1022 **AT+VIBMOD=1,60,10**
1023
1024 **MOD1** will display **vib_count** and **work_min** without temperature and humidity. If vibration stops for more than 60 seconds, an alarm message is generated.
1025
1026 If vibration stops for more than 10 seconds, **vib_count** increases by one, and **work_min** resets to zero.
1027
1028
1029 **AT+VIBMOD=4,1,10**
1030
1031 MOD4 sets the collection interval to 10 seconds and collects 1 sets of data in total.
1032
1033 You can also set it to collect ten sets of data per second, AT+VIBMOD=4,10,1
1034 )))
1035
1036 [[image:image-20250321145711-2.png]]
1037
1038 [[image:image-20250321145842-3.png]]
1039
1040
1041 (% style="color:#4f81bd" %)**Downlink command**
1042
1043 (% border="2" style="width:500px" %)
1044 |(% style="width:137px" %)**Prefix**|(% style="width:361px" %)0x0A
1045 |(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1046 **mode** : 1, 2, 3, 4 [1 byte in hex]
1047
1048 **alarm_time**: Sets the duration of continuous operation required to trigger the alarm (unit: seconds). (Set AlarmTimeout to 0 to disable the alarm.) - only applicable with mode 1, 2, and 3 [2 byte in hex]
1049
1050 **stop_duration_time**: Specifies the interval after which the event is counted as a trigger. - only applicable with mode 1, 2, and 3 [2 bytes in hex]
1051
1052 **collection_interval **: Collection Interval (unit: seconds) - only applicable with mode 4. [2 bytes in hexadecimal]
1053
1054 **groups** : Number of groups - only applicable with mode 4. [2 bytes in hexadecimal]
1055 )))
1056 |(% style="width:137px" %)**Payload format**|(% style="width:361px" %)(((
1057 for mode 1, 2, 3:
1058
1059 <prefix><mode><alarm_time><stop_duration_time>
1060
1061
1062 for mode 4:
1063
1064 <prefix><mode><collection_interval><groups>
1065 )))
1066 |(% style="width:137px" %)**Example**|(% style="width:361px" %)(((
1067 * 0A01003C000A
1068
1069 **MOD1** will display **vib_count** and **work_min** without temperature and humidity. If vibration stops for more than 60 seconds, an alarm message is generated.
1070
1071 If vibration stops for more than 10 seconds, **vib_count** increases by one, and **work_min** resets to zero.
1072
1073 * 0A0400010A
1074
1075 **MOD4** sets the collection interval to 10 seconds and collects 1 sets of data in total.
1076 )))
1077
1078 == 3.3 Vibration sensitivity setting ==
1079
1080
1081 **Feature**: Allows adjustment of sensitivity settings for different usage scenarios.
1082
1083
1084 (% style="color:#4f81bd" %)**AT Command:**
1085
1086 (% border="2" style="width:500px" %)
1087 |(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+VIBSET
1088 |(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1089 **acceleration** :
1090
1091 * 0: ±2g
1092 * 1: ±4g
1093 * 2: ±8g
1094 * 3: ±16g
1095
1096 **frequency** :
1097
1098 * 0:25Hz
1099 * 1:50Hz
1100 * 2:100Hz
1101 * 3:200Hz
1102 * 4:400Hz
1103
1104 **threshold** : interrupt threshold
1105
1106 **duration** : Interrupt detection duration in milliseconds
1107 )))
1108 |(% style="width:134px" %)**Set**|(% style="width:364px" %)AT+VIBSET=<acceleration><frequency><threshold><duration>
1109 |(% style="width:134px" %)**Response**|(% style="width:364px" %)OK
1110 |(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1111 **~ AT+VIBSET=0,4,10,12**
1112
1113 The acceleration is set to ±2g, and the frequency is 400 Hz. The threshold is set to 10 × 16 mg, meaning a change between 158 and 162 mg can be detected.
1114 )))
1115
1116 If you want to detect an event lasting at least 30 milliseconds, set the register to 30/2.5 = 12 counts. When the time difference between consecutive readings exceeds 12 duration LSBs, an interrupt will be triggered. See the figure below for specific values.
1117
1118
1119 The following screenshots are taken from data sheets of the internal sensors:
1120
1121 [[image:image-20241014154353-1.png||height="307" width="727"]]
1122
1123 [[image:image-20241014154413-2.png||height="509" width="715"]]
1124
1125
1126 (% style="color:#4f81bd" %)**Downlink Command**
1127
1128 (% border="2" style="width:500px" %)
1129 |(% style="width:156px" %)**Prefix**|(% style="width:342px" %)0x09
1130 |(% style="width:156px" %)**Parameters**|(% style="width:342px" %)(((
1131 **acceleration** : 2 bytes in hex
1132
1133 * 0: ±2g
1134 * 1: ±4g
1135 * 2: ±8g
1136 * 3: ±16g
1137
1138 **frequency** : 2 bytes in hex
1139
1140 * 0:25Hz
1141 * 1:50Hz
1142 * 2:100Hz
1143 * 3:200Hz
1144 * 4:400Hz
1145
1146 **threshold** : interrupt threshold - 2 bytes in hex
1147
1148 **duration** : Interrupt detection duration in milliseconds - 2 bytes in hex
1149 )))
1150 |(% style="width:156px" %)**Example**|(% style="width:342px" %)(((
1151 09**00040A0C**
1152
1153 The acceleration is set to ±2g, and the frequency is 400 Hz. The threshold is set to 10 × 16 mg, meaning a change between 158 and 162 mg can be detected.
1154 )))
1155
1156 == 3.4 Set Password ==
1157
1158
1159 **Feature**: Set device password, up to 9 digits
1160
1161 (% style="color:#4f81bd" %)**AT Command:**
1162
1163 (% border="2" style="width:500px" %)
1164 |(% style="width:152px" %)**Command**|(% style="width:346px" %)AT+PWORD
1165 |(% style="width:152px" %)**Parameters**|(% style="width:346px" %)**password** : any password
1166 |(% style="width:152px" %)**Get**|(% style="width:346px" %)AT+PWORD=?
1167 |(% style="width:152px" %)**Response**|(% style="width:346px" %)Returns the current password
1168 |(% style="width:152px" %)**Set**|(% style="width:346px" %)AT+PWORD=<password>
1169 |(% style="width:152px" %)**Response**|(% style="width:346px" %)OK
1170 |(% style="width:152px" %)**Example**|(% style="width:346px" %)(((
1171 * AT+PWORD=? ~/~/ show the current password, 123456 for example
1172 * AT+PWORD=999999. ~/~/ set the password to 999999
1173 )))
1174
1175 (% style="color:#4f81bd" %)**Downlink Command:**
1176
1177 There is no downlink command available for this feature.
1178
1179
1180 == 3.5 Quit AT Command ==
1181
1182
1183 **Feature**: Quit AT Command mode, so you need to input the password again before using AT Commands.
1184
1185 (% style="color:#4f81bd" %)**AT Command:**
1186
1187 (% border="2" style="width:500px" %)
1188 |(% style="width:156px" %)**Command**|(% style="width:342px" %)AT+DISAT
1189 |(% style="width:156px" %)**Parameters**|(% style="width:342px" %)none
1190 |(% style="width:156px" %)**Set**|(% style="width:342px" %)AT+DISAT
1191 |(% style="width:156px" %)**Response**|(% style="width:342px" %)OK
1192 |(% style="width:156px" %)**Example**|(% style="width:342px" %)AT+DISAT ~/~/ quit AT command mode
1193
1194 (% style="color:#4f81bd" %)**Downlink Command**
1195
1196 There is no downlink command available for this feature.
1197
1198
1199 == 3.6 Set to sleep mode ==
1200
1201
1202 **Feature**: Set device to sleep mode.
1203
1204 (% style="color:#4f81bd" %)**AT Command:**
1205
1206 (% border="2" style="width:500px" %)
1207 |(% style="width:154px" %)**Command**|(% style="width:344px" %)AT+SLEEP
1208 |(% style="width:154px" %)**Parameters**|(% style="width:344px" %)(((
1209 mode : mode
1210
1211 **0** :  Normal working mode - The device enters sleep mode and uses lower power when there are no LoRa messages.
1212
1213 **1** : Deep sleep mode -The device does not activate LoRa and is intended for storage or shipping.
1214 )))
1215 |(% style="width:154px" %)**Set**|(% style="width:344px" %)AT+SLEEP=<mode>
1216 |(% style="width:154px" %)**Response**|(% style="width:344px" %)OK
1217 |(% style="width:154px" %)**Example**|(% style="width:344px" %)(((
1218 * **AT+SLEEP=0 ~/~/ **set to normal working mode.
1219 * **AT+SLEEP=1 ~/~/ **set to Deep sleep mode.
1220 )))
1221
1222 (% style="color:#4f81bd" %)**Downlink Command**
1223
1224 There is no downlink command available for this feature.
1225
1226
1227 == 3.7 Set system time ==
1228
1229
1230 **Feature**: Set the system time.
1231
1232 (% style="color:#4f81bd" %)**AT Command:**
1233
1234 (% border="2" style="width:500px" %)
1235 |(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+TIMESTAMP
1236 |(% style="width:142px" %)**Parameters**|(% style="width:356px" %)**time** : time in UNIX format. [[See here for format details.>>||anchor="H2.6.2UnixTimeStamp"]]
1237 |(% style="width:142px" %)**Set**|(% style="width:356px" %)AT+TIMESTAMP=<time>
1238 |(% style="width:142px" %)**Response**|(% style="width:356px" %)OK
1239 |(% style="width:142px" %)**Example**|(% style="width:356px" %)(((
1240 * AT+TIMESTAMP=1611104352 ~/~/ Set System time to 2021-01-20 00:59:12
1241 )))
1242
1243 (% style="color:#4f81bd" %)**Downlink Command:**
1244
1245 (% border="2" style="width:500px" %)
1246 |(% style="width:141px" %)**Prefix**|(% style="width:357px" %)0x30
1247 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)**time** : time in UNIX format. [[See here for format details.>>||anchor="H2.6.2UnixTimeStamp"]] - 5 bytes in hexadecimal
1248 |(% style="width:141px" %)**Example**|(% style="width:357px" %)(((
1249 * 30**6007806000**  ~/~/ Set System time to 2021-01-20 00:59:12
1250 )))
1251
1252 == 3.8 Set Time Sync Mode ==
1253
1254
1255 (((
1256 **Feature**: Enable/Disable system time synchronization via the LoRaWAN MAC Command (DeviceTimeReq). The LoRaWAN server must support the v1.0.3 protocol to respond to this command.
1257
1258 (% style="color:#4f81bd" %)**AT Command:**
1259
1260 (% border="2" style="width:500px" %)
1261 |(% style="width:157px" %)**Command**|(% style="width:341px" %)AT+SYNCMOD
1262 |(% style="width:157px" %)**Parameters**|(% style="width:341px" %)(((
1263 **time_sync_mode** : Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1264
1265 **1** : enable (default)
1266
1267 **0** : disable
1268 )))
1269 |(% style="width:157px" %)**Set**|(% style="width:341px" %)AT+SYNCMOD=<time_sync_mode>
1270 |(% style="width:157px" %)**Example**|(% style="width:341px" %)(((
1271 * AT+SYNCMOD=0 ~/~/ Disable the time sync mode
1272 )))
1273 |(% style="width:157px" %)**Note**|(% style="width:341px" %)If you want to set a different time than the LoRaWAN server, you need to set this to 0.
1274
1275
1276 )))
1277
1278 (% style="color:#4f81bd" %)**Downlink Command:**
1279
1280 (% border="2" style="width:500px" %)
1281 |(% style="width:162px" %)**Prefix**|(% style="width:336px" %)0x28
1282 |(% style="width:162px" %)**Parameters**|(% style="width:336px" %)(((
1283 **time_sync_mode** : Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq) - 1 byte in hexadecimal
1284
1285 **1** : enable (default)
1286
1287 **0** : disable
1288 )))
1289 |(% style="width:162px" %)**Example**|(% style="width:336px" %)(((
1290 * 28** 01**  ~/~/ Enable the time sync mode
1291 * 28 **00**  ~/~/ Disable the time sync mode
1292 )))
1293
1294 == 3.9 Set Time Sync Interval ==
1295
1296
1297 **Feature**: Define system time synchronization interval. The** **default value is 10 days.
1298
1299 (% style="color:#4f81bd" %)**AT Command:**
1300
1301 (% border="2" style="width:500px" %)
1302 |(% style="width:158px" %)**Command**|(% style="width:340px" %)AT+SYNCTDC
1303 |(% style="width:158px" %)**Parameters**|(% style="width:340px" %)**sync_interval** : synchronization interval
1304 |(% style="width:158px" %)**Set**|(% style="width:340px" %)AT+SYNCTDC=<sync_interval>
1305 |(% style="width:158px" %)**Response**|(% style="width:340px" %)
1306 |(% style="width:158px" %)**Example**|(% style="width:340px" %)(((
1307 * AT+SYNCTDC=10 ~/~/ Set synchronization interval to 10
1308 )))
1309
1310 (% style="color:#4f81bd" %)**Downlink Command:**
1311
1312 (% border="2" style="width:500px" %)
1313 |(% style="width:155px" %)**Prefix**|(% style="width:343px" %)0x29
1314 |(% style="width:155px" %)**Parameters**|(% style="width:343px" %)**sync_interval** : synchronization interval - 1 byte in hexadecimal
1315 |(% style="width:155px" %)**Example**|(% style="width:343px" %)(((
1316 * 29**0A**  ~/~/ Set synchronization interval to 10
1317 )))
1318
1319 == 3.10 Get data ==
1320
1321
1322 **Feature**: Get the current sensor data.
1323
1324 (% style="color:#4f81bd" %)**AT Command:**
1325
1326 (% border="2" style="width:500px" %)
1327 |(% style="width:157px" %)**Command**|(% style="width:341px" %)AT+GETSENSORVALUE
1328 |(% style="width:157px" %)**Parameters**|(% style="width:341px" %)(((
1329 **mode** : defines data retrieve and upload behavior
1330
1331 **0** : The serial port retrieves the current sensor reading.
1332
1333 **1** : The serial port retrieves the current sensor reading and uploads it.
1334 )))
1335 |(% style="width:157px" %)**Set**|(% style="width:341px" %)AT+GETSENSORVALUE=<mode>
1336 |(% style="width:157px" %)**Response**|(% style="width:341px" %)
1337 |(% style="width:157px" %)**Example**|(% style="width:341px" %)(((
1338 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port retrieves the current sensor reading.
1339 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port retrieves the current sensor reading and uploads it.
1340 )))
1341
1342 (% style="color:#4f81bd" %)**Downlink Command:**
1343
1344 There is no downlink command for this feature.
1345
1346
1347 == 3.11 Print data entries base on page ==
1348
1349
1350 **Feature**: Print sensor data from start page to stop page (max is 416 pages).
1351
1352 (% style="color:#4f81bd" %)**AT Command:**
1353
1354 (% border="2" style="width:500px" %)
1355 |(% style="width:148px" %)**Command**|(% style="width:349px" %)AT+PDTA
1356 |(% style="width:148px" %)**Parameters**|(% style="width:349px" %)(((
1357 **start** : start page number
1358
1359 **end** : end page number
1360 )))
1361 |(% style="width:148px" %)**Command format**|(% style="width:349px" %)AT+PDTA=<start>,<end>
1362 |(% style="width:148px" %)**Example**|(% style="width:349px" %)(((
1363 AT+PDTA=1,3 ~/~/ Prints sensor data from page 1 to 3
1364 )))
1365 |(% style="width:148px" %)**Example response**|(% style="width:349px" %)(((
1366 Stop Tx events when read sensor data
1367
1368 8031000 2024/10/12 08:26:16 1 2807 tdc:yes alarm:false event_count:0 work_min:0
1369
1370 8031010 2024/10/12 08:26:40 1 2804 tdc:no alarm:false event_count:0 work_min:0
1371
1372 8031020 1970/1/1 00:00:10 1 2806 tdc:yes alarm:false event_count:0 work_min:0
1373
1374 8031030 2024/10/12 08:28:18 1 2805 tdc:yes alarm:false event_count:0 work_min:0
1375
1376 8031040 2024/10/12 08:29:18 1 2804 tdc:yes alarm:false event_count:0 work_min:0
1377
1378 8031050 2024/10/12 08:30:18 1 2806 tdc:yes alarm:false event_count:1 work_min:0
1379
1380 8031060 2024/10/12 08:30:27 1 2806 tdc:no alarm:true event_count:2 work_min:0
1381
1382 8031070 2024/10/12 08:31:18 1 2806 tdc:yes alarm:false event_count:3 work_min:1
1383
1384 [Rx][16:33:25.888] 8031080 2024/10/12 08:32:18 1 2806 tdc:yes alarm:false event_count:3 work_min:1
1385
1386 8031090 2024/10/12 08:33:18 1 2807 tdc:yes alarm:false event_count:3 work_min:1
1387
1388 80310A0
1389
1390 80310B0
1391
1392 80310C0
1393
1394 80310D0
1395
1396 80310E0
1397
1398 80310F0
1399
1400 8031100
1401
1402 8031110
1403
1404 8031120
1405
1406 8031130
1407
1408 8031140
1409
1410 8031150
1411
1412 8031160
1413
1414 8031170
1415
1416 Start Tx events
1417
1418 OK
1419 )))
1420
1421 (% style="color:#4f81bd" %)**Downlink Command:**
1422
1423 There is no downlink command for this feature.
1424
1425
1426 == 3.12 Print last few data entries ==
1427
1428
1429 **Feature**: Print the last few data entries.
1430
1431 (% style="color:#4f81bd" %)**AT Command:**
1432
1433 (% border="2" style="width:500px" %)
1434 |(% style="width:147px" %)**Command**|(% style="width:351px" %)AT+PLDTA
1435 |(% style="width:147px" %)**Parameters**|(% style="width:351px" %)**num_entries** : number of data entries you want to print.
1436 |(% style="width:147px" %)**Command format**|(% style="width:351px" %)AT+PLDTA=<num_entries>
1437 |(% style="width:147px" %)**Example**|(% style="width:351px" %)AT+PLDTA=5 ~/~/ Print last 5 entries
1438 |(% style="width:147px" %)**Example output**|(% style="width:351px" %)(((
1439 Stop Tx events when read sensor data
1440
1441 0001 2024/10/12 08:33:18 1 2807 tdc:yes alarm:false event_count:3 work_min:1
1442
1443 0002 2024/10/12 08:34:50 1 2808 tdc:yes alarm:false event_count:3 work_min:1
1444
1445 0003 2024/10/12 08:35:50 1 2808 tdc:yes alarm:false event_count:3 work_min:1
1446
1447 0004 2024/10/12 08:36:50 1 2809 tdc:yes alarm:false event_count:3 work_min:1
1448
1449 0005 2024/10/12 08:37:50 1 2810 tdc:yes alarm:false event_count:3 work_min:1
1450 Start Tx and RTP events
1451 OK
1452 )))
1453
1454 (% style="color:#4f81bd" %)**Downlink Command:**
1455
1456 There is no downlink command for this feature.
1457
1458
1459 == 3.13 Clear Flash Record ==
1460
1461
1462 **Feature**: Clear the flash storage used by the data log feature.
1463
1464 (% style="color:#4f81bd" %)**AT Command:**
1465
1466 (% border="2" style="width:500px" %)
1467 |(% style="width:133px" %)**Command**|(% style="width:365px" %)AT+CLRDTA
1468 |(% style="width:133px" %)**Parameters**|(% style="width:365px" %)NO
1469 |(% style="width:133px" %)**Example**|(% style="width:365px" %)AT+CLRDTA ~/~/ Clear all stored sensor data in the flash.
1470
1471 (% style="color:#4f81bd" %)**Downlink Command:**
1472
1473 (% border="2" style="width:500px" %)
1474 |(% style="width:129px" %)**Prefix**|(% style="width:369px" %)0xA3
1475 |(% style="width:129px" %)**Parameters**|(% style="width:369px" %)01 - always use 01 (hex) with the prefix
1476 |(% style="width:129px" %)**Example**|(% style="width:369px" %)A3 **01  **~/~/ Clear all stored sensor data in the flash.
1477
1478 == 3.14 Auto Send None-ACK messages ==
1479
1480
1481 **Feature**: LHT65N-VIB will wait for an ACK for each uplink. If LHT65N-VIB doesn't receive an ACK from the network server, it will assume the message didn't reach the server and store it. LHT65N-VIB continues sending messages periodically as usual. Once LHT65N-VIB receives an ACK from the network server, it will assume the network is functioning properly and start sending the messages that haven't arrived.
1482
1483 (% style="color:#4f81bd" %)**AT Command**
1484
1485 The default factory setting is 0
1486
1487 (% border="2" style="width:500px" %)
1488 |(% style="width:135px" %)**Command**|(% style="width:363px" %)AT+PNACKMD
1489 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)always 1
1490 |(% style="width:135px" %)**Command format**|(% style="width:363px" %)AT+PNACKMD=1 ~/~/ Polls non-ACK message
1491 |(% style="width:135px" %)**Response**|(% style="width:363px" %)OK
1492
1493 (% style="color:#4f81bd" %)**Downlink Command**
1494
1495 Prefix: 0x34
1496
1497 (% border="2" style="width:500px" %)
1498 |(% style="width:135px" %)**Prefix**|(% style="width:363px" %)0x34
1499 |(% style="width:135px" %)**Parameters**|(% style="width:363px" %)01 in hexadecimal
1500 |(% style="width:135px" %)**Payload format**|(% style="width:363px" %)34**01 ~/~/ **Polls non-ACK message
1501
1502 = 4. Batteries =
1503
1504 == 4.1 Battery Type ==
1505
1506
1507 (((
1508 **The LHT65N-VIB is equipped with a 2400mAh Li-MnO2 (CR17505) battery.** The battery is non-rechargeable with a low discharge rate, designed for up to 8–10 years of use. This type of battery is commonly used in IoT devices for long-term operation, such as in water meters.
1509
1510 **The discharge curve is nonlinear, so the battery level cannot be simply represented as a percentage.** Below is the battery performance:
1511 )))
1512
1513 (((
1514 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1515 )))
1516
1517 The minimum working voltage for the LHT65N-VIB is approximately 2.5V. When the battery voltage drops below 2.6V, it's time to replace the battery.
1518
1519
1520 == 4.2 Replacing Batteries ==
1521
1522
1523 The LHT65N-VIB has two screws on the back. Unscrew them to remove the battery cover and replace the battery inside. The sensor uses a standard CR17450 battery, and any brand should be suitable.
1524
1525 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1526
1527
1528 == 4.3 Battery Life Analysis ==
1529
1530
1531 (((
1532 Dragino battery-powered products all operate in Low Power mode. You can refer to the guidelines from this link to calculate the estimated battery life: [[https:~~/~~/www.dropbox.com/scl/fo/kpnidyj98435yc2kzcuol/AGMEYy8T-ToxrjBxVKiBJMw?rlkey=clgoex1idnfka8845d6e9ajue&st=m513k45l&dl=0>>https://www.dropbox.com/scl/fo/kpnidyj98435yc2kzcuol/AGMEYy8T-ToxrjBxVKiBJMw?rlkey=clgoex1idnfka8845d6e9ajue&st=m513k45l&dl=0]]
1533 )))
1534
1535 (((
1536 A detailed test report for the LHT65N-VIB on different frequencies can be found here: [[https:~~/~~/www.dropbox.com/scl/fo/wnqaiyoq21kyzrmre6kzn/ABAgXYDr03OGSrM2ODFjUJA?rlkey=jed5yinvpdd0fiqww7x7cw201&st=rdtlz5ik&dl=0>>https://www.dropbox.com/scl/fo/wnqaiyoq21kyzrmre6kzn/ABAgXYDr03OGSrM2ODFjUJA?rlkey=jed5yinvpdd0fiqww7x7cw201&st=rdtlz5ik&dl=0]]
1537 )))
1538
1539
1540 = 5. FAQ =
1541
1542 == 5.1 How to connect to LHT65N-VIB via UART interface? ==
1543
1544
1545 The LHT65N-VIB has the UART interface in its Type-C. The UART Interface can be used for
1546
1547 * Send AT Commands, and get output from LHT65N-VIB
1548 * Upgrade firmwre of LHT65N-VIB.
1549
1550 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N-VIB**
1551
1552
1553 === 5.1.1 Options for USB to TTL adapter ===
1554
1555
1556 * CP2101 USB TTL Adapter
1557 * CH340 USB TTL Adapter
1558 * FT232 USB TTL Adapter
1559
1560 === 5.1.2 Options for Type-C adapter ===
1561
1562
1563 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1564
1565
1566 **Connection:**
1567
1568 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N GND**
1569 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N TXD**
1570 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N RXD**
1571
1572 (((
1573
1574
1575 === 5.1.3 Connection Example ===
1576
1577
1578 [[image:1655802313617-381.png||_mstalt="293917"]]
1579
1580
1581 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1582
1583
1584 == 5.2 How to use AT commands? ==
1585
1586
1587 First, connect the PC and LHT65N-VIB via USB TTL adapter as described in **FAQ 6.1.**
1588
1589 On the PC, you need to set serial tool (such as **[[PuTTY>>https://www.putty.org]] **or** [[SecureCRT>>https://www.vandyke.com/products/securecrt/]]**) baud rate to **9600** to access the serial console for LHT65N-VIB. The AT commands are disabled by default, and the user needs to enter the password (default: 123456) to activate them. The timeout for inputting AT commands is 5 minutes; after 5 minutes, the user will need to input the password again. The user can use the AT+DISAT command to disable AT commands before the timeout.
1590
1591 Input the password and ATZ to activate the LHT65N-VIB, as shown below:
1592 )))
1593
1594 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1595
1596
1597 === 5.2.1 AT commands ===
1598
1599
1600 The AT command list is as below:
1601
1602 **AT+<CMD>?** : Help on <CMD>
1603
1604 **AT+<CMD>** : Run <CMD>
1605
1606 **AT+<CMD>=<value>** : Set the value
1607
1608 **AT+<CMD>=?** : Get the value
1609
1610 **AT+DEBUG :** Set more info output
1611
1612 **ATZ :** Triggers a reset of the MCU
1613
1614 **AT+FDR :** Reset Parameters to Factory Default, Keys Reserve
1615
1616 **AT+DEUI** : Get or Set the Device EUI
1617
1618 **AT+DADDR** : Get or Set the Device Address
1619
1620 **AT+APPKEY** : Get or Set the Application Key
1621
1622 **AT+NWKSKEY** : Get or Set the Network Session Key
1623
1624 **AT+APPSKEY** : Get or Set the Application Session Key
1625
1626 **AT+APPEUI** : Get or Set the Application EUI
1627
1628 **AT+ADR** : Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1629
1630 **AT+TXP** : Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1631
1632 **AT+DR **: Get or Set the Data Rate. (0-7 corresponding to DR_X)
1633
1634 **AT+DCS** : Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1635
1636 **AT+PNM** : Get or Set the public network mode. (0: off, 1: on)
1637
1638 **AT+RX2FQ** : Get or Set the Rx2 window frequency
1639
1640 **AT+RX2DR** : Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1641
1642 **AT+RX1DL** : Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1643
1644 **AT+RX2DL** : Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1645
1646 **AT+JN1DL** : Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1647
1648 **AT+JN2DL** : Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1649
1650 **AT+NJM** : Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1651
1652 **AT+NWKID** : Get or Set the Network ID
1653
1654 **AT+FCU** : Get or Set the Frame Counter Uplink
1655
1656 **AT+FCD** : Get or Set the Frame Counter Downlink
1657
1658 **AT+CLASS **: Get or Set the Device Class
1659
1660 **AT+JOIN **: Join network
1661
1662 **AT+NJS** : Get the join status
1663
1664 **AT+SENDB** : Send hexadecimal data along with the application port
1665
1666 **AT+SEND** : Send text data along with the application port
1667
1668 **AT+RECVB** : Print last received data in binary format (with hexadecimal values)
1669
1670 **AT+RECV** : Print last received data in raw format
1671
1672 **AT+VER** : Get current image version and Frequency Band
1673
1674 **AT+CFM** : Get or Set the confirmation mode (0-1)
1675
1676 **AT+SNR** : Get the SNR of the last received packet
1677
1678 **AT+RSSI** : Get the RSSI of the last received packet
1679
1680 **AT+TDC** : Get or set the application data transmission interval in ms
1681
1682 **AT+PORT** : Get or set the application port
1683
1684 **AT+DISAT** : Disable AT commands
1685
1686 **AT+PWORD** : Set password, max 9 digits
1687
1688 **AT+CHS** : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1689
1690 **AT+CHE** : Get or Set eight channels mode,Only for US915,AU915,CN470
1691
1692 **AT+PDTA** : Print the sector data from start page to stop page
1693
1694 **AT+PLDTA **: Print the last few sets of data
1695
1696 **AT+CLRDTA **: Clear the storage, record position back to 1st
1697
1698 **AT+SLEEP** : Set sleep mode
1699
1700 **AT+BAT **: Get the current battery voltage in mV
1701
1702 **AT+CFG** : Print all configurations
1703
1704 **AT+WMOD** : Get or Set Work Mode
1705
1706 **AT+ARTEMP** : Get or set the internal Temperature sensor alarm range
1707
1708 **AT+CITEMP** : Get or set the internal Temperature sensor collection interval in min
1709
1710 **AT+SETCNT** : Set the count at present
1711
1712 **AT+RJTDC** : Get or set the ReJoin data transmission interval in min
1713
1714 **AT+RPL** : Get or set response level
1715
1716 **AT+TIMESTAMP** : Get or Set UNIX timestamp in second
1717
1718 **AT+LEAPSEC** : Get or Set Leap Second
1719
1720 **AT+SYNCMOD** : Get or Set time synchronization method
1721
1722 **AT+SYNCTDC** : Get or set time synchronization interval in day
1723
1724 **AT+PID** : Get or set the PID
1725
1726
1727 == 5.3 How to use Downlink commands? ==
1728
1729
1730 The following sections shows how to send downlinks to LHT65N-VIB from various LoRaWAN network servers.
1731
1732
1733 === (% style="color:blue" %)**5.3.1 The Things Stack**(%%) ===
1734
1735
1736 The following image shows how to send downlink commands (the payloads) from The Things Stack.
1737
1738
1739 [[image:eu1.cloud.thethings.network_console_applications_dragino-docs_devices_lt-22222-l_messaging_downlink(Laptop with HiDPI screen).png]]
1740
1741
1742 === (% style="color:blue" %)**5.3.2 Helium**(%%) ===
1743
1744
1745 The following image shows how to send downlink commands (the payloads) from Helium.
1746
1747 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1748
1749
1750 === (% style="color:blue" %)**5.3.3 ChirpStack**(%%) ===
1751
1752
1753 The following image shows how to send downlink commands (the payloads) from ChripStack. (% style="color:blue" %)**The downlink window will not be displayed until the network is accessed.**
1754
1755 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1756
1757
1758 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1759
1760
1761 The following image shows how to send downlink commands (the payloads) from AWS-IOT.
1762
1763
1764 === (% style="color:blue" %)**5.3.4 AWS-IoT**(%%) ===
1765
1766
1767 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1768
1769
1770 == 5.4 How to change the uplink interval? ==
1771
1772
1773 See the **Sub section 3.1**, **Set Transmit Interval Time**.
1774
1775
1776 == 5.5 How to upgrade the firmware? ==
1777
1778
1779 You can upgrade firmware of the LHT65N-VIB to:
1780
1781 * Change the frequency band/region.
1782 * Add new features.
1783 * Fix bugs.
1784
1785 The firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AMz-h4yQUzAm6A7EKnQh5bc/LoRaWAN%20End%20Node/LHT65N-VIB?dl=0&rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1]]**
1786
1787 **Methods to Update Firmware:**
1788
1789 * **Recommanded method**: OTA (Over-the-Air) firmware update via wireless. For instructions, visit: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1790 * **Alternative Method**: Update via UART TTL interface. For instructions, see: **[[Update Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1791
1792 == 5.6 Why can't I see the datalog information? ==
1793
1794
1795 ~1. The time is not aligned, and the correct query command was not used.
1796
1797 2. Decoder error: the datalog data was not parsed, and the data was filtered out.
1798
1799
1800 == 5.7 How can I read sensor data without LoRaWAN? (for calibration purpose) ==
1801
1802
1803 Some clients may need to calibrate sensor values in a lab environment. In these cases, it’s more convenient to read the data without a LoRaWAN network. To do this, you can use a USB Type-C breakout board to access the UART pins while keeping the probe connected. See below for details. For the pinout, please refer to the FAQ on [[How to connect LHT65-N via UART interface>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]].
1804
1805 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
1806
1807
1808 After the UART connection is established, run the commands below:
1809
1810 1.** AT+NJM=0      **~/~/ Set Device to ABP mode so it can work without joining the LoRaWAN network server.
1811
1812 2.** AT+GETSENSORVALUE=0      **~/~/ The serial port gets the reading from the current sensor.
1813
1814 **Example output:**
1815
1816 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
1817
1818
1819 = 6. Ordering Information =
1820
1821
1822 Part Number: (% style="color:#4f81bd" %)** LHT65N-VIB-XX**
1823
1824 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1825
1826 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1827 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1828 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1829 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1830 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1831 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1832 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1833 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1834
1835 = 7. Packing Information =
1836
1837
1838 The package includes:
1839
1840 * LHT65N-VIB LoRaWAN Vibration Sensor x 1
1841 * External vibration probe x 1
1842
1843 = 8. Reference Materials =
1844
1845
1846 * [[Datasheet, photos, firmware>>https://www.dropbox.com/scl/fo/zfqrx88n90zofefkgug2k/AP6y5A4ZDnP3d1EUrWvRk8w?rlkey=z8qn3nx8dhjp8gy0rd7btd6it&st=sgy7v350&dl=0]]
1847
1848 = 9. FCC Warning =
1849
1850
1851 This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
1852
1853 1. This device may not cause harmful interference.
1854 1. This device must accept any interference received, including interference that may cause undesired operation.
1855
1856 = 10. Use Cases =
1857
1858
1859 This section includes some example practical applications for the LHT65N-VIB.
1860
1861
1862 == 10.1 Install the LHT65N-VIB to monitor the usage of handwashing stations ==
1863
1864
1865 Device settings using AT command: AT+VIBMOD=1,120,5
1866
1867 This means that if the water faucet remains on, a vibration lasting more than 120 seconds will trigger an alarm. When the vibration stops for more than 5 seconds, the vibration count will increase by 1.
1868
1869 * The data begins to rise after 8 o'clock, indicating that the wash basin sensor is working normally.
1870 * During lunch time, from 12 noon to 1:30 PM, the data temporarily levels off but returns to normal operation after.
1871 * At 6 PM, after work hours, the data flattens out, with only a small amount recorded, caused by employees working overtime and using the wash basin.
1872
1873 [[image:image-20241101174220-2.png||height="349" width="560"]]
1874
1875
1876 * Number of wash basin alarms: 14 times
1877 * The rest period is concentrated around 12 o'clock, as people wash their hands during the lunch break.
1878 * The longer duration at 6 o'clock is due to someone needing to turn on the water to clean the toilet.
1879
1880 [[image:image-20241101175954-3.png||height="210" width="601"]]
1881
1882
1883 **Sink installation example:**
1884 Fix the probe to the water inlet pipe of the sink using a cable tie. Since the vibration in the middle is not as noticeable, and the water outlet on the right is larger than the one on the left, resulting in a larger vibration amplitude, the probe should be installed at the middle of the left water inlet pipe. This way, vibrations can be detected on both sides of the water pipe.
1885
1886 [[image:image-20241202160241-2.png]]
1887
1888
1889 == 10.2 Install LHT65N-VIB on the toilet water pipe to detect the number of times it is used and the leakage status ==
1890
1891 **Toilet installation example:**
1892 Fix the probe to the water inlet pipe of the toilet with a wire tie. When the toilet is used, the pipes began to fill with water and vibrate, and the LHT65N-VIB will start detecting vibrations in the water pipe.
1893
1894 **Note:** LHT65N-VIB should not be immersed in water. If necessary, ensure it is waterproofed.
1895
1896 [[image:image-20250325101740-1.png||height="493" width="375"]][[image:image-20250325101809-2.png||height="497" width="530"]]
1897
1898
1899 Device settings using AT command: AT+VIBMOD=1,150,5
1900
1901 This means that if the vibration exceeds 150 seconds, an alarm message will be issued. When the vibration stops for more than 5 seconds, the number of vibrations will increase by 1.
1902 When the toilet vibrates for only 150 seconds each time it is flushed, any vibration exceeding 150 seconds would indicate an abnormal situation.
1903
1904 * The data starts to rise after 8 o'clock, indicating that the toilet sensor is working normally.
1905 * The data remains flat with no abnormalities during the lunch break from 12:00 PM to 1:30 PM.
1906 * The data stops rising at 6:00 PM when work is over.
1907
1908 [[image:image-20241101181711-4.png||height="330" width="562"]]
1909
1910
1911 According to the calculation results in the given example, we can know that after pressing the flush button of the toilet, its maximum water filling time is set to 150 seconds. This means that under normal operating conditions, the water tank of the toilet should complete the water filling process within 150 seconds.
1912
1913 In order to ensure the normal operation of the system and detect potential problems in time, I adjusted the device accordingly, and the specific parameters were configured as AT+VIBMOD=1,150,5. This configuration means that in mode 1, when continuous vibration is detected for 150 seconds or more, the system will automatically trigger the alarm mechanism; if the vibration stops and exceeds 5 seconds, the timer will be reset and a new round of monitoring will begin.
1914
1915 The main purpose of this setting is to monitor the operating status of the toilet water filling system. Once the device sends an alarm signal, it usually indicates that the toilet water filling system may have a fault or there is a risk of leakage. In this case, it is recommended to immediately conduct a detailed inspection and necessary maintenance work on the toilet to avoid further water waste or other problems that may arise. In this way, water use efficiency can be effectively improved, the environment can be protected, and unnecessary economic losses can be reduced.
1916
1917 [[image:image-20241101182128-5.png||height="257" width="574"]]
1918
1919
1920
1921 == 10.3 VIBMOD4: Detect vibration intensity ==
1922
1923
1924 Set AT+VIBMOD=4,1,10 to collect a set of XYZ vibration data every ten seconds.
1925
1926 By analyzing the data collected in the graph, we can observe that the vibration amplitude of the machine varies significantly under different working conditions. This monitoring method not only helps to determine in real time whether the machine is operating normally but also allows for the early detection of any abnormal changes in vibration frequency. This, in turn, helps to effectively prevent potential failures and ensures the safe and stable operation of the equipment.
1927
1928 [[image:image-20241104105122-1.png||height="559" width="695"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0