Version 351.1 by Karry Zhuang on 2024/10/12 09:41

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||_mstalt="451230" height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino (% style="color:blue" %)**LHT65N Vibration sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Vibration Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.25 RH/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Vibration Sensor:**
76
77 * Acceleration:±2g,±4g,±8g;±16g
78 * Frequency:25Hz,50Hz,100Hz,200Hz,400Hz
79
80 = 2. Connect LHT65N to IoT Server =
81
82 == 2.1 How does LHT65N work? ==
83
84
85 (((
86 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
87 )))
88
89 (((
90 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
91 )))
92
93
94 == 2.2 How to Activate LHT65N? ==
95
96
97 (((
98 The LHT65N has two working modes:
99 )))
100
101 * (((
102 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
103 )))
104 * (((
105 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
106 )))
107
108 (((
109 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
110 )))
111
112 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
113
114 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
115 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
116 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
117 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
118 )))
119 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
120 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
121 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
122 )))
123 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
124
125 == 2.3 Example to join LoRaWAN network ==
126
127
128 (% class="wikigeneratedid" %)
129 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
130
131 (% class="wikigeneratedid" %)
132 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
133
134
135 (((
136 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
137 )))
138
139
140 === 2.3.1 Step 1: Create Device on TTN ===
141
142
143 (((
144 Create a device in TTN V3 with the OTAA keys from LHT65N.
145 )))
146
147 (((
148 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
149 )))
150
151 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
152
153 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
154
155 Add APP EUI in the application.
156
157 (% style="color:blue" %)**1. Create application**
158
159 [[image:image-20240304102625-1.png||_mstalt="427661" height="535" width="1015"]]
160
161
162 [[image:image-20220522232932-4.png||_mstalt="430157"]]
163
164 (% style="color:blue" %)**2. Register end device **
165
166 [[image:image-20240710153745-4.png||height="406" width="735"]]
167
168
169
170 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
171
172
173 [[image:image-20220522233026-6.png||_mstalt="429403"]]
174
175
176 Input JoinEUI(APPEUI),  DEVEUI and APPKEY:
177
178
179 [[image:image-20240710154010-5.png||height="598" width="644"]]
180
181
182 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
183
184
185 (((
186 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
187 )))
188
189 [[image:image-20241011171332-1.png||height="238" width="816"]]
190
191
192 === (% id="cke_bm_247514S" style="display:none" %) (%%)2.3.3 Decoder in TTN V3 ===
193
194
195 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
196
197 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
198
199
200 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
201
202
203 == 2.4 Uplink Payload (Fport~=2) ==
204
205
206 (((
207 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
208 )))
209
210 (((
211 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
212
213 There are four different working modes:
214
215
216 VIBMOD=1 vib count, work min
217 VIBMOD=2 TempC_SHT, Hum_SHT, vib count
218 VIBMOD=3 TempC_SHT, Hum_SHT, vib min
219 VIBMOD=4 X, Y, Z
220
221
222 )))
223
224 === 2.4.1 VIBMOD~=1 ===
225
226
227 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
228 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
229 **Size(bytes)**
230 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
231 **2**
232 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
233 1
234 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
235 **4**
236 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
237 4
238 )))
239 |(% style="width:110px" %)(((
240 Value
241 )))|(% style="width:71px" %)(((
242 BAT
243 )))|(% style="width:99px" %)MOD
244 Alarm
245 TDC|(% style="width:132px" %)vib_count|(% style="width:54px" %)work_min
246
247 [[image:image-20241011175741-3.png||height="187" width="1023"]]
248
249
250 ==== 2.4.1.1 BAT-Battery Info ====
251
252
253 These two bytes of BAT include  the actually voltage
254
255
256 [[image:image-20241012091339-4.png||height="92" width="787"]]
257
258
259 Check the battery voltage for LHT65N.
260
261 * 0x0BF2/1000=3.058V
262
263 (% class="wikigeneratedid" %)
264 ==== ====
265
266 ==== 2.4.1.2 VIBMOD and Alarm and TDC ====
267
268
269 [[image:image-20241012092023-5.png||height="89" width="792"]]
270
271 bytes[2]=06
272
273 Current working mode=(bytes[2]>>2)&0x07=1
274
275 Current alarm situation= (bytes[2] & 0x01)? "TRUE":"FALSE";=0=FALSE
276
277 Whether the current data occurs is TDC (the data will be uploaded by the alarm)= (bytes[2] & 0x02)? "YES":"NO";=00000010 (non -zero value)=YES
278
279
280
281 ==== (% style="color:inherit; font-family:inherit; font-size:23px" %)2.4.1.3 (%%)vib_count ====
282
283
284 vib_count it means how many vibration events have been recorded
285
286 [[image:image-20241012092938-6.png||height="102" width="770"]]
287
288 * 0x00000007=7
289
290 ==== ====
291
292 ==== (% style="color:inherit; font-family:inherit; font-size:23px" %)2.4.1.4 (%%)work_min ====
293
294
295 It means how long the current vibration sensor has worked in the latest triggering.
296
297 [[image:image-20241012093112-7.png||height="68" width="775"]]
298
299 * 0x00000000=0
300
301 0 means that the current vibration sensor is not triggered.
302
303
304 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
305
306
307 [[image:image-20230717151328-8.png||_mstalt="433173" height="463" width="384"]]
308
309
310 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
311
312
313 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
314 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
315 **Size(bytes)**
316 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
317 **2**
318 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
319 2
320 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
321 **2**
322 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
323 1
324 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
325 2
326 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
327 2
328 )))
329 |(% style="width:110px" %)(((
330 Value
331 )))|(% style="width:71px" %)(((
332 BAT & BAT Status
333 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
334 Status & Ext
335 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
336
337 [[image:image-20220906102307-7.png||_mstalt="430443"]]
338
339 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
340
341 The external cable NE2 can be use for MOD4 and MOD8
342
343
344 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
345
346
347 [[image:image-20230717151245-7.png||_mstalt="432133" height="467" width="466"]]
348
349 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
350
351 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
352 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
353 **Size(bytes)**
354 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
355 **2**
356 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
357 2
358 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
359 **2**
360 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
361 1
362 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
363 2
364 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
365 2
366 )))
367 |(% style="width:110px" %)(((
368 Value
369 )))|(% style="width:71px" %)(((
370 BAT & BAT Status
371 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
372 Status & Ext
373 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
374
375 [[image:SHT31.png||_mstalt="104715"]]
376
377
378 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
379
380
381 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
382
383
384 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
385
386 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
387
388 In Open State, the power consumption is the same as if there is no probe
389
390 In Close state, the power consumption will be 3uA higher than normal.
391
392 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
393
394
395 Ext=4,Interrupt Sensor:
396
397 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:504px" %)
398 |(% style="width:101px" %)(((
399 **AT+EXT=4,1**
400 )))|(% style="width:395px" %)(((
401 **Sent uplink packet in both rising and falling interrupt**
402 )))
403 |(% style="width:101px" %)(((
404 **AT+EXT=4,2**
405 )))|(% style="width:395px" %)(((
406 **Sent uplink packet only in falling interrupt**
407 )))
408 |(% style="width:101px" %)(((
409 **AT+EXT=4,3**
410 )))|(% style="width:395px" %)(((
411 **Sent uplink packet only in rising interrupt**
412 )))
413
414 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
415 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
416 **Size(bytes)**
417 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
418 **2**
419 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
420 2
421 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
422 **2**
423 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
424 1
425 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)1|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
426 1
427 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
428 2
429 )))
430 |(% style="width:110px" %)(((
431 Value
432 )))|(% style="width:71px" %)(((
433 BAT & BAT Status
434 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
435 Status & Ext
436 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)senseless
437
438 Trigger by falling edge:
439
440 [[image:image-20220906101145-2.png||_mstalt="428324"]]
441
442
443 Trigger by raising edge:
444
445 [[image:image-20220906101145-3.png||_mstalt="428688"]]
446
447
448 (% style="color:blue" %)**BAT & BAT Status :**
449
450 Check the battery voltage.
451
452 Ex1: 0x0B45 = 2885mV
453
454 Ex2: 0x0B49 = 2889mV
455
456
457 (% style="color:blue" %)**TempC_SHT :**
458
459 The temperature detected by the built-in temperature and humidity sensor SHT31.
460
461 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
462
463 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
464
465 (FF3F & 8000: Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
466
467
468 (% style="color:blue" %)**Hum_SHT :**
469
470 The humidity detected by the built-in temperature and humidity sensor SHT31.
471
472 Read:0295(H)=661(D)    Value:  661 / 10=66.1, So 66.1%
473
474
475 (% style="color:blue" %)**Status & Ext :**
476
477 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
478 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
479 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
480
481 * (% style="color:#037691" %)**Poll Message Flag:**(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
482 * (% style="color:#037691" %)**Sync time OK:**(%%)  1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
483 * (% style="color:#037691" %)**Unix Time Request:**(%%) 1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
484
485 (% style="color:blue" %)**Exti_pin_level : **
486
487 * (% style="color:#037691" %)**Wet contacts:**(%%) high and low levels . 1: high level; 0: low level.
488 * (% style="color:#037691" %)**Dry contacts:**(%%)  1: closed; 0: open
489
490 (% style="color:blue" %)**Exti_status :**
491
492 Determines whether the uplink packet is generated by an interrupt.
493
494 1: Interrupt packet
495
496 0: Normal TDC uplink packet
497
498
499 (% style="color:blue" %)**senseless :**
500
501 Reserved position, meaningless. The value is fixed to 0x7FFF.
502
503
504 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
505
506
507 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
508
509
510 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
511
512 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
513
514
515 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
516
517 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
518
519
520 Ext=8, Counting Sensor ( 4 bytes):
521
522 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:330px" %)
523 |(% style="width:131px" %)(((
524 **AT+EXT=8,0**
525 )))|(% style="width:195px" %)(((
526 **Count at falling interrupt**
527 )))
528 |(% style="width:131px" %)(((
529 **AT+EXT=8,1**
530 )))|(% style="width:195px" %)(((
531 **Count at rising interrupt**
532 )))
533 |(% style="width:131px" %)(((
534 **AT+SETCNT=60**
535 )))|(% style="width:195px" %)(((
536 **Sent current count to 60**
537 )))
538
539 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
540 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
541 **Size(bytes)**
542 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
543 **2**
544 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
545 2
546 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
547 **2**
548 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
549 1
550 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
551 4
552 )))
553 |(% style="width:110px" %)(((
554 Value
555 )))|(% style="width:71px" %)(((
556 BAT & BAT Status
557 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
558 Status & Ext
559 )))|(% style="width:64px" %)Exit_count
560
561 [[image:image-20220906101320-6.png||_mstalt="428064"]]
562
563
564 (% style="color:blue" %)**A2 downlink Command:**
565
566 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
567
568 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
569
570 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
571
572 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
573
574 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
575
576
577 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
578
579
580 (((
581 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
582 )))
583
584 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
585 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
586 **Size(bytes)**
587 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
588 **2**
589 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
590 **2**
591 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
592 **2**
593 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
594 **1**
595 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
596 **4**
597 )))
598 |(% style="width:110px" %)(((
599 Value
600 )))|(% style="width:71px" %)(((
601 External temperature
602 )))|(% style="width:99px" %)(((
603 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
604 )))|(% style="width:132px" %)(((
605 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
606 )))|(% style="width:54px" %)(((
607 Status & Ext
608 )))|(% style="width:64px" %)(((
609 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
610 )))
611
612 * **Battery status & Built-in Humidity**
613
614 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:461px" %)
615 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
616 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
617 BAT Status
618 00(b): Ultra Low ( BAT <= 2.50v)
619 01(b): Low  (2.50v <=BAT <= 2.55v)
620 10(b): OK   (2.55v <= BAT <=2.65v)
621 11(b): Good   (BAT >= 2.65v)
622 )))|(% style="width:132px" %)(((
623 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
624 )))
625
626 * **Status & Ext Byte**
627
628 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
629 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
630 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
631
632 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
633 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
634 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
635
636 == 2.5 Show data on Datacake ==
637
638
639 (((
640 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
641 )))
642
643
644 (((
645 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
646 )))
647
648 (((
649 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
650 )))
651
652
653 (((
654 Add Datacake:
655 )))
656
657 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
658
659
660 Select default key as Access Key:
661
662
663 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
664
665
666 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
667
668 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
669
670
671 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
672
673
674 == 2.6 Datalog Feature ==
675
676
677 (((
678 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
679 )))
680
681
682 === 2.6.1 Ways to get datalog via LoRaWAN ===
683
684
685 There are two methods:
686
687 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
688
689
690 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
691
692
693 (% style="color:red" %)**Note for method 2:**
694
695 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
696 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
697
698 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
699
700 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
701
702
703 === 2.6.2 Unix TimeStamp ===
704
705
706 LHT65N uses Unix TimeStamp format based on
707
708
709 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
710
711
712 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
713
714 Below is the converter example
715
716 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
717
718
719 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
720
721
722 === 2.6.3 Set Device Time ===
723
724
725 (((
726 (% style="color:blue" %)**There are two ways to set device's time:**
727 )))
728
729 (((
730 **1.  Through LoRaWAN MAC Command (Default settings)**
731 )))
732
733 (((
734 User need to set SYNCMOD=1 to enable sync time via MAC command.
735 )))
736
737 (((
738 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
739 )))
740
741 (((
742 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
743 )))
744
745
746 (((
747 **2. Manually Set Time**
748 )))
749
750 (((
751 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
752 )))
753
754
755 === 2.6.4 Poll sensor value ===
756
757
758 User can poll sensor value based on timestamps from the server. Below is the downlink command.
759
760 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
761 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
762 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
763
764 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
765
766 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
767
768 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
769
770 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
771
772
773 === 2.6.5 Datalog Uplink payload ===
774
775
776 The Datalog poll reply uplink will use below payload format.
777
778 **Retrieval data payload:**
779
780 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %)
781 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
782 **Size(bytes)**
783 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
784 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
785
786 **Poll message flag & Ext:**
787
788 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
789 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
790 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
791
792 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
793
794 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
795
796 * Poll Message Flag is set to 1.
797
798 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
799
800 For example, in US915 band, the max payload for different DR is:
801
802 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
803
804 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
805
806 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
807
808 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
809
810 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
811
812
813 **Example:**
814
815 If LHT65N has below data inside Flash:
816
817 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
818 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
819 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
820 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
821 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
822 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
823 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
824 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
825 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
826 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
827
828 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
829
830 Where : Start time: 60065F97 = time 21/1/19 04:27:03
831
832 Stop time: 60066DA7= time 21/1/19 05:27:03
833
834
835 **LHT65N will uplink this payload.**
836
837 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
838
839
840 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
841
842 Where the first 11 bytes is for the first entry:
843
844 7FFF089801464160065F97
845
846 Ext sensor data=0x7FFF/100=327.67
847
848 Temp=0x088E/100=22.00
849
850 Hum=0x014B/10=32.6
851
852 poll message flag & Ext=0x41,means reply data,Ext=1
853
854 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
855
856
857 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
858
859
860 (((
861 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
862 )))
863
864 (((
865 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
866
867
868 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
869
870 (((
871 (% class="box infomessage" %)
872 (((
873 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
874 )))
875 )))
876
877 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
878
879 **~ AT+WMOD=1,60,-10,20**
880
881
882 Explain:
883
884 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
885 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
886 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C(Set the temperature range value with a coefficient of 100)
887
888 (% style="color:#4f81bd" %)**Downlink Command:**
889
890 **Example: **A5013CFC1807D0
891
892 MOD=01
893
894 CITEMP=3C(S) =60(S)
895
896 TEMPlow=FC18 = -1000/100=-10(℃)
897
898 TEMPhigh=07D0=2000/100=20(℃)
899
900
901 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
902
903 **AT+WMOD=2,60,5** 
904
905 Explain:
906
907 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
908 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
909 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
910
911 (% style="color:#4f81bd" %)**Downlink Command**
912
913 **Example: **A5023C05
914
915 MOD=02
916
917 CITEMP=3C(S)=60(S)
918
919 temperature fluctuation=05(℃)
920
921
922 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
923
924 **AT+WMOD=3,1,60,20,-16,32,1**   
925
926 Explain:
927
928 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
929 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
930 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
931 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
932 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
933 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
934
935 (% style="color:#4f81bd" %)**Downlink Command:**
936
937 **Example: **A50301003C14FFF0002001
938
939 MOD=03
940
941 TEMP=DS18B20
942
943 CITEMP=003C(S)=60(S)
944
945 Total number of acquisitions=14
946
947 TEMPlow=FFF0=-16(℃)
948
949 TEMPhigh=0020=20(℃)
950
951 ARTEMP=01
952
953
954 **Uplink payload( Fport=3)**
955
956 **Example: CBEA**01**0992**//0A41//**09C4**
957
958 BatV=CBEA
959
960 TEMP=DS18B20
961
962 Temp1=0992  ~/~/ 24.50℃
963
964 Temp2=0A41  ~/~/ 26.25℃
965
966 Temp3=09C4  ~/~/ 25.00℃
967
968 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
969
970 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
971 )))
972
973
974 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
975
976
977 (% class="box infomessage" %)
978 (((
979 (((
980 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
981 )))
982
983 (((
984 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
985 )))
986
987 (((
988 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
989 )))
990
991 (((
992 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
993 )))
994
995 (((
996 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
997 )))
998 )))
999
1000 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1001
1002 Total bytes: 8 bytes
1003
1004 **Example:**AA0100010001003C
1005
1006 WMOD=01
1007
1008 CITEMP=0001
1009
1010 TEMPlow=0001
1011
1012 TEMPhigh=003C
1013
1014
1015 == 2.8 LED Indicator ==
1016
1017
1018 The LHT65 has a triple color LED which for easy showing different stage .
1019
1020 While user press ACT button, the LED will work as per LED status with ACT button.
1021
1022 In a normal working state:
1023
1024 * For each uplink, the BLUE LED or RED LED will blink once.
1025 BLUE LED when external sensor is connected.
1026 * RED LED when external sensor is not connected
1027 * For each success downlink, the PURPLE LED will blink once
1028
1029 == 2.9 installation ==
1030
1031
1032 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1033
1034
1035 = 3. Sensors and Accessories =
1036
1037 == 3.1 E2 Extension Cable ==
1038
1039
1040 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1041
1042
1043 **1m long breakout cable for LHT65N. Features:**
1044
1045 * (((
1046 Use for AT Command, works for both LHT52/LHT65N
1047 )))
1048 * (((
1049 Update firmware for LHT65N, works for both LHT52/LHT65N
1050 )))
1051 * (((
1052 Supports ADC mode to monitor external ADC
1053 )))
1054 * (((
1055 Supports Interrupt mode
1056 )))
1057 * (((
1058 Exposed All pins from the LHT65N Type-C connector.
1059
1060
1061
1062 )))
1063
1064 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1065
1066
1067 == 3.2 E3 Temperature Probe ==
1068
1069
1070 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1071
1072
1073 Temperature sensor with 2 meters cable long
1074
1075 * Resolution: 0.0625 °C
1076 * ±0.5°C accuracy from -10°C to +85°C
1077 * ±2°C accuracy from -55°C to +125°C
1078 * Operating Range: -40 ~~ 125 °C
1079 * Working voltage 2.35v ~~ 5v
1080
1081 == 3.3 E31F Temperature Probe ==
1082
1083
1084 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1085
1086
1087 Temperature sensor with 1 meters cable long
1088
1089
1090 **Built-in Temperature Sensor:**
1091
1092 * Resolution: 0.01 °C
1093 * Accuracy Tolerance : Typ ±0.3 °C
1094 * Long Term Drift: < 0.02 °C/yr
1095 * Operating Range: -40 ~~ 80 °C
1096
1097 **Built-in Humidity Sensor:**
1098
1099 * Resolution: 0.04 % RH
1100 * Accuracy Tolerance : Typ ±3 % RH
1101 * Long Term Drift: < 0.02 °C/yr
1102 * Operating Range: 0 ~~ 96 % RH
1103
1104 **External Temperature Sensor :**
1105
1106 * Resolution: 0.01 °C
1107 * Accuracy Tolerance : Typical ±0.3 °C
1108 * Long Term Drift: < 0.02 °C/yr
1109 * Operating Range: -40 ~~ 125 °C
1110
1111 **External Humidity Sensor :**
1112
1113 * Resolution: 0.04 % RH
1114 * Accuracy Tolerance : Typ ±3 % RH
1115 * Long Term Drift: < 0.02 °C/yr
1116 * Operating Range: 0 ~~ 96 % RH
1117
1118 == 3.4 NE117 Temperature Probe (Model: LHT65N-NE117) ==
1119
1120
1121 External Temperature Sensor – NE117:
1122 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1123
1124 * Silica gel cable
1125 * ±0.1 °C (maximum) from –20 °C to 50 °C
1126 * ±0.2 °C (maximum) from –40 °C to 100 °C
1127 * ±0.3 °C (maximum) from –55 °C to 150 °C
1128
1129 [[image:image-20240422093011-1.png||height="349" width="350"]]
1130
1131
1132 == 3.5 Dry Contact Probe (Model: LHT65N-DC) ==
1133
1134
1135 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1136 * 3 wires: VCC/GND/INT
1137 * Cable Lenght: 1 meter
1138
1139 [[image:image-20240705140520-1.png||height="439" width="380"]](% style="display:none" %)
1140
1141 LHT65-DC can be used to connect various types of external sensor. below.
1142
1143 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>Main.User Manual for LoRaWAN End Nodes.LHT65N LoRaWAN Temperature & Humidity Sensor Manual.LHT65-DC Connection Instruction.WebHome]].
1144
1145 [[image:image-20240422100149-5.png||height="163" width="510"]]
1146
1147 [[image:image-20240422100217-6.png||height="141" width="507"]]
1148
1149
1150 == 3.6 Door Sensor (Model: LHT65N-DS) ==
1151
1152
1153 * Aluminum Alloy Door Sensor
1154 * Detect Distance: ~~3cm
1155 * Cable Lenght: 1 meter
1156
1157 **Notice: When order LHT65N-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1158
1159 [[image:image-20240705144054-2.png||height="423" width="343"]]
1160
1161
1162 == 3.6 NIS Certificate Probe (Model: LHT65N-NIS) ==
1163
1164
1165 External Probe:
1166
1167 * Unique NIST Certi cate for each probe
1168 * External NIST Traceable probe with unique ID
1169
1170 **Notice: AT+PID=1 is by default enable, so LHT65N will also uplink the probe ID to platform.**
1171
1172 [[image:image-20240705145640-3.png]]
1173
1174
1175 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1176
1177
1178 (((
1179 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1180 )))
1181
1182 * (((
1183 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1184 )))
1185
1186 * (((
1187 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1188 )))
1189
1190 (((
1191 There are two kinds of commands to configure LHT65N, they are:
1192 )))
1193
1194 * (((
1195 (% style="color:#4f81bd" %)**General Commands**.
1196 )))
1197
1198 (((
1199 These commands are to configure:
1200 )))
1201
1202 1. (((
1203 General system settings like: uplink interval.
1204 )))
1205 1. (((
1206 LoRaWAN protocol & radio-related commands.
1207 )))
1208
1209 (((
1210 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1211 )))
1212
1213 * (((
1214 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1215 )))
1216
1217 (((
1218 These commands are only valid for LHT65N, as below:
1219 )))
1220
1221
1222 == 4.1 Set Transmit Interval Time ==
1223
1224
1225 Feature: Change LoRaWAN End Node Transmit Interval.
1226
1227
1228 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1229
1230 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1231 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1232 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1233 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1234
1235 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1236
1237 Format: Command Code (0x01) followed by 3 bytes time value.
1238
1239 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1240
1241 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1242
1243 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1244
1245 == 4.2 Set External Sensor Mode ==
1246
1247
1248 Feature: Change External Sensor Mode.
1249
1250 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1251
1252 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:468px" %)
1253 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**
1254 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1255 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1256 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1257
1258 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1259
1260 Total bytes: 2 ~~ 5 bytes
1261
1262 **Example:**
1263
1264 * 0xA201: Set external sensor type to E1
1265
1266 * 0xA209: Same as AT+EXT=9
1267
1268 * 0xA20702003c: Same as AT+SETCNT=60
1269
1270 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1271
1272
1273 **Feature**: If PID is enabled, LHT65N will send the DS18B20 temperature probe ID on:
1274
1275 * First Packet after OTAA Join
1276 * Every 24 hours since the first packet.
1277
1278 PID is default set to disable (0)
1279
1280 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1281
1282 (% style="color:#4f81bd" %)**AT Command:**
1283
1284 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1285 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1286 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1287
1288 (% style="color:#4f81bd" %)**Downlink Command:**
1289
1290 * **0xA800**  **~-~->** AT+PID=0
1291 * **0xA801**     **~-~->** AT+PID=1
1292
1293 == 4.4 Set Password ==
1294
1295
1296 Feature: Set device password, max 9 digits
1297
1298 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1299
1300 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1301 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1302 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1303 123456
1304
1305 OK
1306 )))
1307 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1308
1309 (% style="color:#4f81bd" %)**Downlink Command:**
1310
1311 No downlink command for this feature.
1312
1313
1314 == 4.5 Quit AT Command ==
1315
1316
1317 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1318
1319 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1320
1321 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1322 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1323 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1324
1325 (% style="color:#4f81bd" %)**Downlink Command:**
1326
1327 No downlink command for this feature.
1328
1329
1330 == 4.6 Set to sleep mode ==
1331
1332
1333 Feature: Set device to sleep mode
1334
1335 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1336 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1337
1338 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1339
1340 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1341 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1342 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1343 Clear all stored sensor data…
1344
1345 OK
1346 )))
1347
1348 (% style="color:#4f81bd" %)**Downlink Command:**
1349
1350 * There is no downlink command to set to Sleep mode.
1351
1352 == 4.7 Set system time ==
1353
1354
1355 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1356
1357 (% style="color:#4f81bd" %)**AT Command:**
1358
1359 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1360 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1361 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1362 OK
1363
1364 Set System time to 2021-01-20 00:59:12
1365 )))
1366
1367 (% style="color:#4f81bd" %)**Downlink Command:**
1368
1369 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1370
1371
1372 == 4.8 Set Time Sync Mode ==
1373
1374
1375 (((
1376 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1377 )))
1378
1379 (((
1380 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1381 )))
1382
1383 (% style="color:#4f81bd" %)**AT Command:**
1384
1385 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1386 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1387 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1388
1389 (% style="color:#4f81bd" %)**Downlink Command:**
1390
1391 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1392 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1393
1394
1395 == 4.9 Set Time Sync Interval ==
1396
1397
1398 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1399
1400 (% style="color:#4f81bd" %)**AT Command:**
1401
1402 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1403 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1404 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1405
1406 (% style="color:#4f81bd" %)**Downlink Command:**
1407
1408 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1409
1410
1411 == 4.10 Get data ==
1412
1413
1414 Feature: Get the current sensor data.
1415
1416 (% style="color:#4f81bd" %)**AT Command:**
1417
1418 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1419 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1420
1421 == 4.11 Print data entries base on page ==
1422
1423
1424 Feature: Print the sector data from start page to stop page (max is 416 pages).
1425
1426 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1427
1428 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1429 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1430 |(% style="width:156px" %)(((
1431 AT+PDTA=1,3
1432 Print page 1 to 3
1433 )))|(% style="width:311px" %)(((
1434 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1435 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1436 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1437 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1438 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1439 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1440 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1441 8019570
1442 8019580
1443 8019590
1444 80195A0
1445 80195B0
1446 80195C0
1447 80195D0
1448 80195E0
1449 80195F0
1450
1451 OK
1452 )))
1453
1454 (% style="color:#4f81bd" %)**Downlink Command:**
1455
1456 No downlink commands for feature
1457
1458
1459 == 4.12 Print last few data entries ==
1460
1461
1462 Feature: Print the last few data entries
1463
1464 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1465
1466 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1467 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1468 |(% style="width:156px" %)(((
1469 AT+PLDTA=5
1470 Print last 5 entries
1471 )))|(% style="width:311px" %)(((
1472 Stop Tx and RTP events when read sensor data
1473 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1474 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1475 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1476 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1477 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1478 Start Tx and RTP events
1479 OK
1480 )))
1481
1482 (% style="color:#4f81bd" %)**Downlink Command:**
1483
1484 No downlink commands for feature
1485
1486
1487 == 4.13 Clear Flash Record ==
1488
1489
1490 Feature: Clear flash storage for data log feature.
1491
1492 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1493
1494 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1495 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1496 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1497 Clear all stored sensor data…
1498
1499 OK
1500 )))
1501
1502 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1503
1504 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1505
1506 == 4.14 Auto Send None-ACK messages ==
1507
1508
1509 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1510
1511 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1512
1513 The default factory setting is 0
1514
1515 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1516 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1517 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1518
1519 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1520
1521 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1522
1523 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1524
1525
1526 Feature: Set internal and external temperature sensor alarms.
1527
1528 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1529 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1530 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1531
1532 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1533
1534 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1535
1536 0): Cancel
1537
1538 1): Threshold alarm
1539
1540 2): Fluctuation alarm
1541
1542 3): Sampling multiple times and uplink together
1543
1544
1545 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1546
1547 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1548
1549
1550 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1551
1552 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1553
1554 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1555
1556
1557 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1558
1559 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1560
1561 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1562
1563
1564 **3): If Alarm Mode is set to 3:**
1565
1566 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1567 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1568 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1569 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1570 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1571 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1572
1573 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1574
1575 0xA5 00 ~-~- AT+WMOD=0.
1576
1577 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1578
1579 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1580
1581 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1582
1583 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1584
1585 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1586
1587
1588 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1589
1590
1591 Feature: use downlink to get firmware version.
1592
1593 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1594
1595 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:360px" %)
1596 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1597 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1598
1599 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1600
1601 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1602
1603 (% style="color:#037691" %)**Sensor model**
1604
1605 0x0b: LHT65N
1606
1607
1608 (% style="color:#037691" %)**Firmware version**
1609
1610 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1611
1612 Example: 0x0140=V1.4.0
1613
1614
1615 (% style="color:#037691" %)** Frequency Band:**
1616
1617 * 0x01: EU868
1618 * 0x02: US915
1619 * 0x03: IN865
1620 * 0x04: AU915
1621 * 0x05: KZ865
1622 * 0x06: RU864
1623 * 0x07: AS923
1624 * 0x08: AS923-1
1625 * 0x09: AS923-2
1626 * 0xa0: AS923-3
1627
1628 (% style="color:#037691" %)**Subband**
1629
1630 value 0x00 ~~ 0x08
1631
1632 Example: 0xFF ~-~--> " NULL"
1633
1634
1635 (% style="color:#037691" %)**Battery**
1636
1637 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1638
1639 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1640
1641
1642 == 4.17 Setting LEDAlarm ==
1643
1644 Feature: Setting LEDAlarm
1645
1646 The default factory setting is 0
1647
1648 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:367px" %)
1649 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1650 |(% style="width:158px" %)AT+LEDALARM=1|(% style="width:118px" %)Setting LEDAlarm|(% style="width:87px" %)OK
1651
1652 (% style="color:#4f81bd" %)**Downlink Command: 0x3601**
1653
1654 (% style="color:red" %)**Note: This alarm range is controlled by AT+ARTEMP. You need to set AT+WMOD=1 before use. **
1655
1656 = 5. Battery & How to replace =
1657
1658 == 5.1 Battery Type ==
1659
1660
1661 (((
1662 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1663 )))
1664
1665 (((
1666 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1667
1668 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1669 )))
1670
1671 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1672
1673
1674 == 5.2 Replace Battery ==
1675
1676
1677 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1678
1679 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1680
1681
1682 == 5.3 Battery Life Analyze ==
1683
1684
1685 (((
1686 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1687 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1688 )))
1689
1690
1691 (((
1692 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1693 )))
1694
1695
1696 = 6. FAQ =
1697
1698 == 6.1 How to connect to LHT65N UART interface? ==
1699
1700
1701 The LHT65N has the UART interface in its Type-C. The UART Interface can be used for
1702
1703 * Send AT Commands, and get output from LHT65N
1704 * Upgrade firmwre of LHT65N.
1705
1706 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N**
1707
1708
1709 **Option of USB TTL adapter:**
1710
1711 * CP2101 USB TTL Adapter
1712 * CH340 USB TTL Adapter
1713 * FT232 USB TTL Adapter
1714
1715 **Option of Type-C Adapter:**
1716
1717 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1718
1719
1720 **Connection:**
1721
1722 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N GND**
1723 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N TXD**
1724 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N RXD**
1725
1726 (((
1727
1728
1729 Connection Example:
1730
1731 [[image:1655802313617-381.png||_mstalt="293917"]]
1732
1733
1734 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1735
1736
1737 == 6.2 How to use AT Commands? ==
1738
1739
1740 First, Connect PC and LHT65N via USB TTL adapter as **FAQ 6.1**
1741
1742 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1743 )))
1744
1745
1746 Input password and ATZ to activate LHT65N,As shown below:
1747
1748 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1749
1750
1751 AT Command List is as below:
1752
1753 AT+<CMD>? :  Help on <CMD>
1754
1755 AT+<CMD> :  Run <CMD>
1756
1757 AT+<CMD>=<value> :  Set the value
1758
1759 AT+<CMD>=? :  Get the value
1760
1761 AT+DEBUG:  Set more info output
1762
1763 ATZ:  Trig a reset of the MCU
1764
1765 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1766
1767 AT+DEUI:  Get or Set the Device EUI
1768
1769 AT+DADDR:  Get or Set the Device Address
1770
1771 AT+APPKEY:  Get or Set the Application Key
1772
1773 AT+NWKSKEY:  Get or Set the Network Session Key
1774
1775 AT+APPSKEY:  Get or Set the Application Session Key
1776
1777 AT+APPEUI:  Get or Set the Application EUI
1778
1779 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1780
1781 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1782
1783 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1784
1785 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1786
1787 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1788
1789 AT+RX2FQ:  Get or Set the Rx2 window frequency
1790
1791 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1792
1793 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1794
1795 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1796
1797 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1798
1799 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1800
1801 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1802
1803 AT+NWKID:  Get or Set the Network ID
1804
1805 AT+FCU:  Get or Set the Frame Counter Uplink
1806
1807 AT+FCD:  Get or Set the Frame Counter Downlink
1808
1809 AT+CLASS:  Get or Set the Device Class
1810
1811 AT+JOIN:  Join network
1812
1813 AT+NJS:  Get the join status
1814
1815 AT+SENDB:  Send hexadecimal data along with the application port
1816
1817 AT+SEND:  Send text data along with the application port
1818
1819 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1820
1821 AT+RECV:  Print last received data in raw format
1822
1823 AT+VER:  Get current image version and Frequency Band
1824
1825 AT+CFM:  Get or Set the confirmation mode (0-1)
1826
1827 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1828
1829 AT+SNR:  Get the SNR of the last received packet
1830
1831 AT+RSSI:  Get the RSSI of the last received packet
1832
1833 AT+TDC:  Get or set the application data transmission interval in ms
1834
1835 AT+PORT:  Get or set the application port
1836
1837 AT+DISAT:  Disable AT commands
1838
1839 AT+PWORD: Set password, max 9 digits
1840
1841 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1842
1843 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1844
1845 AT+PDTA:  Print the sector data from start page to stop page
1846
1847 AT+PLDTA:  Print the last few sets of data
1848
1849 AT+CLRDTA:  Clear the storage, record position back to 1st
1850
1851 AT+SLEEP:  Set sleep mode
1852
1853 AT+EXT:  Get or Set external sensor model
1854
1855 AT+BAT:  Get the current battery voltage in mV
1856
1857 AT+CFG:  Print all configurations
1858
1859 AT+WMOD:  Get or Set Work Mode
1860
1861 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1862
1863 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1864
1865 AT+SETCNT:  Set the count at present
1866
1867 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1868
1869 AT+RPL:  Get or set response level
1870
1871 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1872
1873 AT+LEAPSEC:  Get or Set Leap Second
1874
1875 AT+SYNCMOD:  Get or Set time synchronization method
1876
1877 AT+SYNCTDC:  Get or set time synchronization interval in day
1878
1879 AT+PID:  Get or set the PID
1880
1881
1882 == 6.3 How to use Downlink commands? ==
1883
1884
1885 **Downlink commands:**
1886
1887
1888 (% style="color:blue" %)**TTN:**
1889
1890 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1891
1892
1893
1894 (% style="color:blue" %)**Helium: **
1895
1896 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1897
1898
1899
1900 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1901
1902
1903 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1904
1905
1906 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1907
1908
1909
1910 (% style="color:blue" %)**AWS-IOT :**
1911
1912 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1913
1914
1915 == 6.4 How to change the uplink interval? ==
1916
1917
1918 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1919
1920
1921 == 6.5 How to upgrade firmware? ==
1922
1923
1924 The firmware (% style="color:blue" %)**before V1.4**(%%) does not have wireless upgrade function, and the starting address of the firmware is **0x08000000**.
1925 (% style="color:blue" %)**Since and including V1.4**(%%), LHT65N supports wireless upgrade, and its firmware is divided into **bootloader + working firmware**. Burning bootloader selects address** 0x08000000**, and burning working firmware selects address **0x0800D000**.
1926
1927
1928 LHT65N has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
1929
1930
1931 Use UART connection to update the firmware, detailed description of UART refer to [[FAQ 6.1>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/#H6.1HowtoconnecttoLHT65NUARTinterface3F]], Connection Example:
1932
1933 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/1655802313617-381.png?rev=1.1||alt="1655802313617-381.png"]]
1934
1935 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20240122092100-1.jpeg?width=643&height=466&rev=1.1||alt="image-20240122092100-1.jpeg"]]
1936
1937 (% style="color:red" %)**Note: To use the **(% style="color:blue" %)**TremoProgrammer **(% style="color:red" %)**the node must be put into burn mode, i.e. the USB-TTL adapter 3.3V must be connected to the BOOT_CONTROL pin of the LHT65N.**
1938
1939 * For the connection ** E2 cable <~-~-~-~-> USB-TTL adapter**:
1940
1941 (% style="background-color:yellow" %)** Port 4(Blue wire)<~-~-~-~->USB-TTL 3V3**
1942
1943 [[image:image-20240720093846-3.jpeg||height="433" width="742"]]
1944
1945 * For the connection  **USB Type-C Extender<~-~-~-~->USB-TTL adapter**:
1946
1947 (% style="background-color:yellow" %)**Pin 6<~-~-~-~->USB-TTL 3V3**
1948
1949 [[image:image-20240720093332-1.jpeg||height="378" width="644"]]
1950
1951 === 6.5.1 Burning firmware before V1.3 (including V1.3) ===
1952
1953
1954 Burning firmware prior to and including V1.3 can only be done using the [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]], select the burn address: 0x08000000
1955
1956 According to the above instructions to **enter the burning mode**, re-install the battery to **reset the node**, press the ACT button LED does not light up, the node successfully entered the burning mode, **click "START".**
1957
1958 [[image:image-20240716174308-1.png||height="523" width="410"]]
1959
1960
1961 === 6.5.2 Updated firmware for V1.4 and above ===
1962
1963
1964 Updating firmware version V1.4 and above requires distinguishing whether the firmware comes with a bootloader or not.
1965
1966 * For version V1.4 and above, we ship nodes with bootloader, users can directly choose firmware without bootloader to upgrade directly. Use **TremoProgrammer** to start at address **0x0800D000**. Using **Dragino Sensor Manager Utility.exe** does not require address selection, but must use firmware without bootloader.
1967 * For nodes where the bootloader was accidentally erased, customers need to burn the bootloader and working firmware using** TremoProgrammer**.
1968
1969 The firmware of V1.4 and above updated on our official website will note whether it comes with bootloader or not, customers need to choose the appropriate update method according to the firmware type.
1970
1971
1972 ==== 6.5.2.1 Update firmware (Assume device already have bootloader) ====
1973
1974
1975 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
1976
1977 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
1978
1979
1980 (Recommanded way) OTA firmware update via wireless : **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1981
1982
1983 ==== 6.5.2.2 Update firmware (Assume device doesn't have bootloader) ====
1984
1985
1986 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above method( 6.5.2.1) to update.
1987
1988 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
1989
1990 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1991
1992
1993
1994 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
1995
1996 Connect PC and LHT65N via USB TTL adapter .
1997
1998 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
1999
2000 **Connection method:**
2001
2002 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2003
2004 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2005
2006 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2007
2008 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2009
2010 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2011
2012
2013 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2014
2015 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2016
2017
2018 **Reset node:** Short-circuit the port3(RST) of the E2 cable to GND.  /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.
2019
2020 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2021
2022
2023 When this interface appears, it indicates that the download has been completed.
2024
2025 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2026
2027
2028 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND/ /The new motherboard cancels the RST, and the **battery needs to be reinstalled** to achieve the reset effect.), and the node exits burning mode.
2029
2030
2031 == 6.6 Why can't I see the datalog information ==
2032
2033
2034 ~1. The time is not aligned, and the correct query command is not used.
2035
2036 2. Decoder error, did not parse the datalog data, the data was filtered.
2037
2038
2039 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2040
2041
2042 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2043
2044 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2045
2046
2047 After there is UART Connectio, run below commands:
2048
2049 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2050
2051 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2052
2053 Example output:
2054
2055 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2056
2057
2058 = 7. Order Info =
2059
2060
2061 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2062
2063 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2064
2065 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2066 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2067 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2068 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2069 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2070 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2071 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2072 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2073
2074 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2075
2076 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2077
2078 = 8. Packing Info =
2079
2080
2081 **Package Includes**:
2082
2083 * LHT65N Temperature & Humidity Sensor x 1
2084 * Optional external sensor
2085
2086 = 9. Reference material =
2087
2088
2089 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2090
2091 = 10. FCC Warning =
2092
2093
2094 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2095
2096 (1) This device may not cause harmful interference;
2097
2098 (2) this device must accept any interference received, including interference that may cause undesired operation.