Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:image-20240710152102-2.png]]
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is LHT65N LoRaWAN Temperature & Humidity Sensor ==
18
19
20 (((
21 The Dragino (% style="color:blue" %)**LHT65N Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
22 )))
23
24 (((
25 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
26 )))
27
28 (((
29 LHT65N has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
30 )))
31
32 (((
33 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
34 )))
35
36 (((
37 LHT65N supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
38 )))
39
40 (((
41 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
42 )))
43
44
45 == 1.2 Features ==
46
47
48 * LoRaWAN v1.0.3 Class A protocol
49 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
50 * AT Commands to change parameters
51 * Remote configure parameters via LoRaWAN Downlink
52 * Firmware upgradeable via program port
53 * Built-in 2400mAh battery for up to 10 years of use.
54 * Built-in Temperature & Humidity sensor
55 * Optional External Sensors
56 * Tri-color LED to indicate working status
57 * Datalog feature (Max 3328 records)
58
59 == 1.3 Specification ==
60
61
62 (% style="color:#037691" %)**Built-in Temperature Sensor:**
63
64 * Resolution: 0.01 °C
65 * Accuracy Tolerance : Typ ±0.3 °C
66 * Long Term Drift: < 0.02 °C/yr
67 * Operating Range: -40 ~~ 85 °C
68
69 (% style="color:#037691" %)**Built-in Humidity Sensor:**
70
71 * Resolution: 0.04 %RH
72 * Accuracy Tolerance : Typ ±3 %RH
73 * Long Term Drift: < 0.25 RH/yr
74 * Operating Range: 0 ~~ 96 %RH
75
76 (% style="color:#037691" %)**External Temperature Sensor:**
77
78 * Resolution: 0.0625 °C
79 * ±0.5°C accuracy from -10°C to +85°C
80 * ±2°C accuracy from -55°C to +125°C
81 * Operating Range: -55 °C ~~ 125 °C
82
83 = 2. Connect LHT65N to IoT Server =
84
85 == 2.1 How does LHT65N work? ==
86
87
88 (((
89 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
90 )))
91
92 (((
93 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
94 )))
95
96
97 == 2.2 How to Activate LHT65N? ==
98
99
100 (((
101 The LHT65N has two working modes:
102 )))
103
104 * (((
105 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
106 )))
107 * (((
108 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
109 )))
110
111 (((
112 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
113 )))
114
115 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
116
117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
118 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
119 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
120 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
121 )))
122 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
124 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
125 )))
126 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
127
128 == 2.3 Example to join LoRaWAN network ==
129
130
131 (% class="wikigeneratedid" %)
132 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
133
134 (% class="wikigeneratedid" %)
135 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
136
137
138 (((
139 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
140 )))
141
142
143 === 2.3.1 Step 1: Create Device n TTN ===
144
145
146 (((
147 Create a device in TTN V3 with the OTAA keys from LHT65N.
148 )))
149
150 (((
151 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
152 )))
153
154 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
155
156 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
157
158 Add APP EUI in the application.
159
160 (% style="color:blue" %)**1. Create application**
161
162 [[image:image-20240304102625-1.png||_mstalt="427661" height="535" width="1015"]]
163
164
165 [[image:image-20220522232932-4.png||_mstalt="430157"]]
166
167 (% style="color:blue" %)**2. Register end device **
168
169 [[image:image-20220522232954-5.png||_mstalt="431847"]]
170
171
172
173 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
174
175
176 [[image:image-20220522233026-6.png||_mstalt="429403"]]
177
178
179 Input APP EUI,  APP KEY and DEV EUI:
180
181
182 [[image:image-20220522233118-7.png||_mstalt="430430"]]
183
184
185 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
186
187
188 (((
189 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
190 )))
191
192 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
193
194
195 == 2.4 Uplink Payload (Fport~=2) ==
196
197
198 (((
199 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
200 )))
201
202 (((
203 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
204 )))
205
206 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
207 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
208 **Size(bytes)**
209 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
210 **2**
211 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
212 **2**
213 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
214 **2**
215 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
216 **1**
217 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
218 **4**
219 )))
220 |(% style="width:97px" %)(((
221 Value
222 )))|(% style="width:39px" %)(((
223 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
224 )))|(% style="width:100px" %)(((
225 (((
226 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
227 )))
228 )))|(% style="width:77px" %)(((
229 (((
230 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
231 )))
232 )))|(% style="width:47px" %)(((
233 [[Ext>>||anchor="H2.4.5Ext23"]] #
234 )))|(% style="width:51px" %)(((
235 [[Ext value>>||anchor="H2.4.6Extvalue"]]
236 )))
237
238 * The First 6 bytes: has fix meanings for every LHT65N.
239
240 * The 7th byte (EXT #): defines the external sensor model.
241
242 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
243
244 === 2.4.1 Decoder in TTN V3 ===
245
246
247 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
248
249 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
250
251
252 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
253
254
255 === 2.4.2 BAT-Battery Info ===
256
257
258 These two bytes of BAT include the battery state and the actually voltage.
259
260 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
261 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
262 **Bit(bit)**
263 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
264 |(% style="width:66px" %)(((
265 Value
266 )))|(% style="width:250px" %)(((
267 BAT Status
268 00(b): Ultra Low ( BAT <= 2.50v)
269 01(b): Low (2.50v <=BAT <= 2.55v)
270 10(b): OK (2.55v <= BAT <=2.65v)
271 11(b): Good (BAT >= 2.65v)
272 )))|(% style="width:152px" %)Actually BAT voltage
273
274 **(b)stands for binary**
275
276
277 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
278
279
280 Check the battery voltage for LHT65N.
281
282 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
283
284 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
285
286 === 2.4.3 Built-in Temperature ===
287
288
289 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
290
291 * Temperature:  0x0ABB/100=27.47℃
292
293 [[image:image-20220522235639-3.png||_mstalt="432120"]]
294
295 * Temperature:  (0xF5C6-65536)/100=-26.18℃
296
297 === 2.4.4 Built-in Humidity ===
298
299
300 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
301
302 * Humidity:    0x025C/10=60.4%
303
304 === 2.4.5 Ext # ===
305
306
307 Bytes for External Sensor:
308
309 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
310 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
311 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
312 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
313 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
314 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
315 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
316 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
317 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
318 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
319
320 === 2.4.6 Ext value ===
321
322 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
323
324
325 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
326 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
327 **Size(bytes)**
328 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
329 **2**
330 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
331 2
332 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
333 **2**
334 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
335 1
336 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
337 2
338 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
339 2
340 )))
341 |(% style="width:110px" %)(((
342 Value
343 )))|(% style="width:71px" %)(((
344 BAT & BAT Status
345 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
346 Status & Ext
347 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
348
349 [[image:image-20220522235639-5.png||_mstalt="432848"]]
350
351
352 * DS18B20 temp=0x0ADD/100=27.81℃
353
354 The last 2 bytes of data are meaningless
355
356 [[image:image-20220522235639-6.png||_mstalt="433212"]]
357
358
359 * External temperature= (0xF54F-65536)/100=-27.37℃
360
361 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
362
363 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
364
365 The last 2 bytes of data are meaningless
366
367 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
368
369
370 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
371
372
373 (((
374 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
375 )))
376
377 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
378 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
379 **Size(bytes)**
380 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
381 **2**
382 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
383 **2**
384 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
385 **2**
386 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
387 **1**
388 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
389 **4**
390 )))
391 |(% style="width:110px" %)(((
392 Value
393 )))|(% style="width:71px" %)(((
394 External temperature
395 )))|(% style="width:99px" %)(((
396 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
397 )))|(% style="width:132px" %)(((
398 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
399 )))|(% style="width:54px" %)(((
400 Status & Ext
401 )))|(% style="width:64px" %)(((
402 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
403 )))
404
405 * **Battery status & Built-in Humidity**
406
407 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
408 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
409 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
410 BAT Status
411 00(b): Ultra Low ( BAT <= 2.50v)
412 01(b): Low  (2.50v <=BAT <= 2.55v)
413 10(b): OK   (2.55v <= BAT <=2.65v)
414 11(b): Good   (BAT >= 2.65v)
415 )))|(% style="width:132px" %)(((
416 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
417 )))
418
419 * **Status & Ext Byte**
420
421 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
422 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
423 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
424
425 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
426 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
427 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
428
429 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
430
431
432 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
433 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
434 **Size(bytes)**
435 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
436 **2**
437 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
438 2
439 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
440 **2**
441 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
442 1
443 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
444 2
445 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
446 2
447 )))
448 |(% style="width:110px" %)(((
449 Value
450 )))|(% style="width:71px" %)(((
451 BAT & BAT Status
452 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
453 Status & Ext
454 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
455
456 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
457
458 be used to power the external ADC sensor; user can control the power on time for this
459
460 (% style="color:blue" %)**sensor by setting:**
461
462 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
463
464 **For example:**
465
466 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
467
468
469 Or use **downlink command A2** to set the same.
470
471 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
472
473 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
474
475 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
476
477
478 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
479
480 [[image:image-20220628150714-4.png||_mstalt="431054"]]
481
482
483 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
484
485
486 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
487
488 [[image:image-20220628151005-5.png||_mstalt="429546"]]
489
490
491 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
492
493 [[image:image-20220628151056-6.png||_mstalt="431873"]]
494
495
496 3) Within range
497
498 [[image:image-20220628151143-7.png||_mstalt="431210"]]
499
500
501 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
502
503
504 [[image:image-20230717151328-8.png||_mstalt="433173" height="463" width="384"]]
505
506
507 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
508
509
510 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
511 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
512 **Size(bytes)**
513 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
514 **2**
515 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
516 2
517 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
518 **2**
519 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
520 1
521 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
522 2
523 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
524 2
525 )))
526 |(% style="width:110px" %)(((
527 Value
528 )))|(% style="width:71px" %)(((
529 BAT & BAT Status
530 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
531 Status & Ext
532 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
533
534 [[image:image-20220906102307-7.png||_mstalt="430443"]]
535
536 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
537
538 The external cable NE2 can be use for MOD4 and MOD8
539
540
541 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
542
543
544 [[image:image-20230717151245-7.png||_mstalt="432133" height="510" width="509"]]
545
546 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
547
548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
549 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
550 **Size(bytes)**
551 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
552 **2**
553 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
554 2
555 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
556 **2**
557 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
558 1
559 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
560 2
561 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
562 2
563 )))
564 |(% style="width:110px" %)(((
565 Value
566 )))|(% style="width:71px" %)(((
567 BAT & BAT Status
568 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
569 Status & Ext
570 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
571
572 [[image:SHT31.png||_mstalt="104715"]]
573
574
575 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
576
577
578 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
579
580
581 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
582
583 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
584
585 In Open State, the power consumption is the same as if there is no probe
586
587 In Close state, the power consumption will be 3uA higher than normal.
588
589 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
590
591
592 Ext=4,Interrupt Sensor:
593
594 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
595 |(% style="width:101px" %)(((
596 **AT+EXT=4,1**
597 )))|(% style="width:395px" %)(((
598 **Sent uplink packet in both rising and falling interrupt**
599 )))
600 |(% style="width:101px" %)(((
601 **AT+EXT=4,2**
602 )))|(% style="width:395px" %)(((
603 **Sent uplink packet only in falling interrupt**
604 )))
605 |(% style="width:101px" %)(((
606 **AT+EXT=4,3**
607 )))|(% style="width:395px" %)(((
608 **Sent uplink packet only in rising interrupt**
609 )))
610
611 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
612 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
613 **Size(bytes)**
614 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
615 **2**
616 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
617 2
618 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
619 **2**
620 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
621 1
622 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
623 1
624 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
625 1
626 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
627 3
628 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
629 3
630 )))
631 |(% style="width:110px" %)(((
632 Value
633 )))|(% style="width:71px" %)(((
634 BAT & BAT Status
635 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
636 Status & Ext
637 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)Exit_count|(% style="width:64px" %)Exit_duration
638
639 Trigger by falling edge:
640
641 [[image:image-20220906101145-2.png||_mstalt="428324"]]
642
643
644 Trigger by raising edge:
645
646 [[image:image-20220906101145-3.png||_mstalt="428688"]]
647
648
649 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
650
651
652 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
653
654
655 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
656
657 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
658
659
660 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
661
662 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
663
664
665 Ext=8, Counting Sensor ( 4 bytes):
666
667 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
668 |(% style="width:131px" %)(((
669 **AT+EXT=8,0**
670 )))|(% style="width:195px" %)(((
671 **Count at falling interrupt**
672 )))
673 |(% style="width:131px" %)(((
674 **AT+EXT=8,1**
675 )))|(% style="width:195px" %)(((
676 **Count at rising interrupt**
677 )))
678 |(% style="width:131px" %)(((
679 **AT+SETCNT=60**
680 )))|(% style="width:195px" %)(((
681 **Sent current count to 60**
682 )))
683
684 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:420px" %)
685 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
686 **Size(bytes)**
687 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
688 **2**
689 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
690 2
691 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
692 **2**
693 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
694 1
695 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
696 4
697 )))
698 |(% style="width:110px" %)(((
699 Value
700 )))|(% style="width:71px" %)(((
701 BAT & BAT Status
702 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
703 Status & Ext
704 )))|(% style="width:64px" %)Exit_count
705
706 [[image:image-20220906101320-6.png||_mstalt="428064"]]
707
708
709 (% style="color:blue" %)**A2 downlink Command:**
710
711 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
712
713 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
714
715 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
716
717 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
718
719 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
720
721
722 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
723
724
725 (((
726 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
727 )))
728
729 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
730 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
731 **Size(bytes)**
732 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
733 **2**
734 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
735 **2**
736 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
737 **2**
738 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
739 **1**
740 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
741 **4**
742 )))
743 |(% style="width:110px" %)(((
744 Value
745 )))|(% style="width:71px" %)(((
746 External temperature
747 )))|(% style="width:99px" %)(((
748 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
749 )))|(% style="width:132px" %)(((
750 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
751 )))|(% style="width:54px" %)(((
752 Status & Ext
753 )))|(% style="width:64px" %)(((
754 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
755 )))
756
757 * **Battery status & Built-in Humidity**
758
759 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
760 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
761 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
762 BAT Status
763 00(b): Ultra Low ( BAT <= 2.50v)
764 01(b): Low  (2.50v <=BAT <= 2.55v)
765 10(b): OK   (2.55v <= BAT <=2.65v)
766 11(b): Good   (BAT >= 2.65v)
767 )))|(% style="width:132px" %)(((
768 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
769 )))
770
771 * **Status & Ext Byte**
772
773 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
774 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
775 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
776
777 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
778 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
779 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
780
781 == 2.5 Show data on Datacake ==
782
783
784 (((
785 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
786 )))
787
788
789 (((
790 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
791 )))
792
793 (((
794 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
795 )))
796
797
798 (((
799 Add Datacake:
800 )))
801
802 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
803
804
805 Select default key as Access Key:
806
807
808 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
809
810
811 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
812
813 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
814
815
816 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
817
818
819 == 2.6 Datalog Feature ==
820
821
822 (((
823 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
824 )))
825
826
827 === 2.6.1 Ways to get datalog via LoRaWAN ===
828
829
830 There are two methods:
831
832 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
833
834
835 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
836
837
838 (% style="color:red" %)**Note for method 2:**
839
840 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
841 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
842
843 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
844
845 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
846
847
848 === 2.6.2 Unix TimeStamp ===
849
850
851 LHT65N uses Unix TimeStamp format based on
852
853
854 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
855
856
857 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
858
859 Below is the converter example
860
861 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
862
863
864 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
865
866
867 === 2.6.3 Set Device Time ===
868
869
870 (((
871 (% style="color:blue" %)**There are two ways to set device's time:**
872 )))
873
874 (((
875 **1.  Through LoRaWAN MAC Command (Default settings)**
876 )))
877
878 (((
879 User need to set SYNCMOD=1 to enable sync time via MAC command.
880 )))
881
882 (((
883 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
884 )))
885
886 (((
887 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
888 )))
889
890
891 (((
892 **2. Manually Set Time**
893 )))
894
895 (((
896 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
897 )))
898
899
900 === 2.6.4 Poll sensor value ===
901
902
903 User can poll sensor value based on timestamps from the server. Below is the downlink command.
904
905 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
906 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
907 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
908
909 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
910
911 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
912
913 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
914
915 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
916
917
918 === 2.6.5 Datalog Uplink payload ===
919
920
921 The Datalog poll reply uplink will use below payload format.
922
923 **Retrieval data payload:**
924
925 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
926 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
927 **Size(bytes)**
928 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
929 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
930
931 **Poll message flag & Ext:**
932
933 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
934 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
935 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
936
937 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
938
939 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
940
941 * Poll Message Flag is set to 1.
942
943 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
944
945 For example, in US915 band, the max payload for different DR is:
946
947 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
948
949 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
950
951 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
952
953 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
954
955 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
956
957
958 **Example:**
959
960 If LHT65N has below data inside Flash:
961
962 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
963 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
964 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
965 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
966 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
967 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
968 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
969 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
970 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
971 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
972
973 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
974
975 Where : Start time: 60065F97 = time 21/1/19 04:27:03
976
977 Stop time: 60066DA7= time 21/1/19 05:27:03
978
979
980 **LHT65N will uplink this payload.**
981
982 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
983
984
985 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
986
987 Where the first 11 bytes is for the first entry:
988
989 7FFF089801464160065F97
990
991 Ext sensor data=0x7FFF/100=327.67
992
993 Temp=0x088E/100=22.00
994
995 Hum=0x014B/10=32.6
996
997 poll message flag & Ext=0x41,means reply data,Ext=1
998
999 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1000
1001
1002 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1003
1004
1005 (((
1006 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1007 )))
1008
1009 (((
1010 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1011
1012
1013 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1014
1015 (((
1016 (% class="box infomessage" %)
1017 (((
1018 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1019 )))
1020 )))
1021
1022 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1023
1024 **~ AT+WMOD=1,60,-10,20**
1025
1026
1027 Explain:
1028
1029 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1030 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1031 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C
1032
1033 (% style="color:#4f81bd" %)**Downlink Command:**
1034
1035 **Example: **A5013CFC180014
1036
1037 MOD=01
1038
1039 CITEMP=3C(S) =60(S)
1040
1041 TEMPlow=FC18 = -10(℃)
1042
1043 TEMPhigh=0014=20(℃)
1044
1045
1046 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1047
1048 **AT+WMOD=2,60,5** 
1049
1050 Explain:
1051
1052 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1053 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1054 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1055
1056 (% style="color:#4f81bd" %)**Downlink Command**
1057
1058 **Example: **A5023C05
1059
1060 MOD=02
1061
1062 CITEMP=3C(S)=60(S)
1063
1064 temperature fluctuation=05(℃)
1065
1066
1067 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1068
1069 **AT+WMOD=3,1,60,20,-16,32,1**   
1070
1071 Explain:
1072
1073 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1074 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1075 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1076 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1077 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1078 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1079
1080 (% style="color:#4f81bd" %)**Downlink Command:**
1081
1082 **Example: **A50301003C14FFF0002001
1083
1084 MOD=03
1085
1086 TEMP=DS18B20
1087
1088 CITEMP=003C(S)=60(S)
1089
1090 Total number of acquisitions=14
1091
1092 TEMPlow=FFF0=-16(℃)
1093
1094 TEMPhigh=0020=20(℃)
1095
1096 ARTEMP=01
1097
1098
1099 **Uplink payload( Fport=3)**
1100
1101 **Example: CBEA**01**0992**//0A41//**09C4**
1102
1103 BatV=CBEA
1104
1105 TEMP=DS18B20
1106
1107 Temp1=0992  ~/~/ 24.50℃
1108
1109 Temp2=0A41  ~/~/ 26.25℃
1110
1111 Temp3=09C4  ~/~/ 25.00℃
1112
1113 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1114
1115 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1116 )))
1117
1118
1119 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1120
1121
1122 (% class="box infomessage" %)
1123 (((
1124 (((
1125 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1126 )))
1127
1128 (((
1129 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1130 )))
1131
1132 (((
1133 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1134 )))
1135
1136 (((
1137 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1138 )))
1139
1140 (((
1141 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1142 )))
1143 )))
1144
1145 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1146
1147 Total bytes: 8 bytes
1148
1149 **Example:**AA0100010001003C
1150
1151 WMOD=01
1152
1153 CITEMP=0001
1154
1155 TEMPlow=0001
1156
1157 TEMPhigh=003C
1158
1159
1160 == 2.8 LED Indicator ==
1161
1162
1163 The LHT65 has a triple color LED which for easy showing different stage .
1164
1165 While user press ACT button, the LED will work as per LED status with ACT button.
1166
1167 In a normal working state:
1168
1169 * For each uplink, the BLUE LED or RED LED will blink once.
1170 BLUE LED when external sensor is connected.
1171 * RED LED when external sensor is not connected
1172 * For each success downlink, the PURPLE LED will blink once
1173
1174 == 2.9 installation ==
1175
1176
1177 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1178
1179
1180 = 3. Sensors and Accessories =
1181
1182 == 3.1 E2 Extension Cable ==
1183
1184
1185 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1186
1187
1188 **1m long breakout cable for LHT65N. Features:**
1189
1190 * (((
1191 Use for AT Command, works for both LHT52/LHT65N
1192 )))
1193 * (((
1194 Update firmware for LHT65N, works for both LHT52/LHT65N
1195 )))
1196 * (((
1197 Supports ADC mode to monitor external ADC
1198 )))
1199 * (((
1200 Supports Interrupt mode
1201 )))
1202 * (((
1203 Exposed All pins from the LHT65N Type-C connector.
1204
1205
1206
1207 )))
1208
1209 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1210
1211
1212 == 3.2 E3 Temperature Probe ==
1213
1214
1215 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1216
1217
1218 Temperature sensor with 2 meters cable long
1219
1220 * Resolution: 0.0625 °C
1221 * ±0.5°C accuracy from -10°C to +85°C
1222 * ±2°C accuracy from -55°C to +125°C
1223 * Operating Range: -40 ~~ 125 °C
1224 * Working voltage 2.35v ~~ 5v
1225
1226 == 3.3 E31F Temperature Probe ==
1227
1228
1229 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1230
1231
1232 Temperature sensor with 1 meters cable long
1233
1234
1235 **Built-in Temperature Sensor:**
1236
1237 * Resolution: 0.01 °C
1238 * Accuracy Tolerance : Typ ±0.3 °C
1239 * Long Term Drift: < 0.02 °C/yr
1240 * Operating Range: -40 ~~ 80 °C
1241
1242 **Built-in Humidity Sensor:**
1243
1244 * Resolution: 0.04 % RH
1245 * Accuracy Tolerance : Typ ±3 % RH
1246 * Long Term Drift: < 0.02 °C/yr
1247 * Operating Range: 0 ~~ 96 % RH
1248
1249 **External Temperature Sensor :**
1250
1251 * Resolution: 0.01 °C
1252 * Accuracy Tolerance : Typical ±0.3 °C
1253 * Long Term Drift: < 0.02 °C/yr
1254 * Operating Range: -40 ~~ 125 °C
1255
1256 **External Humidity Sensor :**
1257
1258 * Resolution: 0.04 % RH
1259 * Accuracy Tolerance : Typ ±3 % RH
1260 * Long Term Drift: < 0.02 °C/yr
1261 * Operating Range: 0 ~~ 96 % RH
1262
1263 == 3.4 NE117 Temperature Probe (Model: LHT65N-NE117) ==
1264
1265
1266 External Temperature Sensor – NE117:
1267 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1268
1269 * Silica gel cable
1270 * ±0.1 °C (maximum) from –20 °C to 50 °C
1271 * ±0.2 °C (maximum) from –40 °C to 100 °C
1272 * ±0.3 °C (maximum) from –55 °C to 150 °C
1273
1274 [[image:image-20240422093011-1.png||height="349" width="350"]]
1275
1276
1277 == 3.5 Dry Contact Probe (Model: LHT65N-DC) ==
1278
1279
1280 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1281 * 3 wires: VCC/GND/INT
1282 * Cable Lenght: 1 meter
1283
1284 [[image:image-20240705140520-1.png||height="439" width="380"]](% style="display:none" %)
1285
1286 LHT65-DC can be used to connect various types of external sensor. below.
1287
1288 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>Main.User Manual for LoRaWAN End Nodes.LHT65N LoRaWAN Temperature & Humidity Sensor Manual.LHT65-DC Connection Instruction.WebHome]].
1289
1290 [[image:image-20240422100149-5.png||height="163" width="510"]]
1291
1292 [[image:image-20240422100217-6.png||height="141" width="507"]]
1293
1294
1295 == 3.6 Door Sensor (Model: LHT65N-DS) ==
1296
1297
1298 * Aluminum Alloy Door Sensor
1299 * Detect Distance: ~~3cm
1300 * Cable Lenght: 1 meter
1301
1302 **Notice: When order LHT65N-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.**
1303
1304 [[image:image-20240705144054-2.png||height="423" width="343"]]
1305
1306
1307 == 3.6 NIS Certificate Probe (Model: LHT65N-NIS) ==
1308
1309
1310 External Probe:
1311
1312 * Unique NIST Certi cate for each probe
1313 * External NIST Traceable probe with unique ID
1314
1315 **Notice: AT+PID=1 is by default enable, so LHT65N will also uplink the probe ID to platform.**
1316
1317 [[image:image-20240705145640-3.png]]
1318
1319
1320 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1321
1322
1323 (((
1324 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1325 )))
1326
1327 * (((
1328 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1329 )))
1330
1331 * (((
1332 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1333 )))
1334
1335 (((
1336 There are two kinds of commands to configure LHT65N, they are:
1337 )))
1338
1339 * (((
1340 (% style="color:#4f81bd" %)**General Commands**.
1341 )))
1342
1343 (((
1344 These commands are to configure:
1345 )))
1346
1347 1. (((
1348 General system settings like: uplink interval.
1349 )))
1350 1. (((
1351 LoRaWAN protocol & radio-related commands.
1352 )))
1353
1354 (((
1355 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1356 )))
1357
1358 * (((
1359 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1360 )))
1361
1362 (((
1363 These commands are only valid for LHT65N, as below:
1364 )))
1365
1366
1367 == 4.1 Set Transmit Interval Time ==
1368
1369
1370 Feature: Change LoRaWAN End Node Transmit Interval.
1371
1372
1373 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1374
1375 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1376 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1377 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1378 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1379
1380 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1381
1382 Format: Command Code (0x01) followed by 3 bytes time value.
1383
1384 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1385
1386 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1387
1388 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1389
1390 == 4.2 Set External Sensor Mode ==
1391
1392
1393 Feature: Change External Sensor Mode.
1394
1395 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1396
1397 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:468px" %)
1398 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**
1399 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1400 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1401 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1402
1403 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1404
1405 Total bytes: 2 ~~ 5 bytes
1406
1407 **Example:**
1408
1409 * 0xA201: Set external sensor type to E1
1410
1411 * 0xA209: Same as AT+EXT=9
1412
1413 * 0xA20702003c: Same as AT+SETCNT=60
1414
1415 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1416
1417
1418 **Feature**: If PID is enabled, LHT65N will send the DS18B20 temperature probe ID on:
1419
1420 * First Packet after OTAA Join
1421 * Every 24 hours since the first packet.
1422
1423 PID is default set to disable (0)
1424
1425 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1426
1427 (% style="color:#4f81bd" %)**AT Command:**
1428
1429 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1430 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1431 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1432
1433 (% style="color:#4f81bd" %)**Downlink Command:**
1434
1435 * **0xA800**  **~-~->** AT+PID=0
1436 * **0xA801**     **~-~->** AT+PID=1
1437
1438 == 4.4 Set Password ==
1439
1440
1441 Feature: Set device password, max 9 digits
1442
1443 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1444
1445 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1446 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1447 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1448 123456
1449
1450 OK
1451 )))
1452 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1453
1454 (% style="color:#4f81bd" %)**Downlink Command:**
1455
1456 No downlink command for this feature.
1457
1458
1459 == 4.5 Quit AT Command ==
1460
1461
1462 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1463
1464 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1465
1466 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1467 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1468 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1469
1470 (% style="color:#4f81bd" %)**Downlink Command:**
1471
1472 No downlink command for this feature.
1473
1474
1475 == 4.6 Set to sleep mode ==
1476
1477
1478 Feature: Set device to sleep mode
1479
1480 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1481 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1482
1483 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1484
1485 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1486 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1487 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1488 Clear all stored sensor data…
1489
1490 OK
1491 )))
1492
1493 (% style="color:#4f81bd" %)**Downlink Command:**
1494
1495 * There is no downlink command to set to Sleep mode.
1496
1497 == 4.7 Set system time ==
1498
1499
1500 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1501
1502 (% style="color:#4f81bd" %)**AT Command:**
1503
1504 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1505 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1506 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1507 OK
1508
1509 Set System time to 2021-01-20 00:59:12
1510 )))
1511
1512 (% style="color:#4f81bd" %)**Downlink Command:**
1513
1514 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1515
1516
1517 == 4.8 Set Time Sync Mode ==
1518
1519
1520 (((
1521 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1522 )))
1523
1524 (((
1525 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1526 )))
1527
1528 (% style="color:#4f81bd" %)**AT Command:**
1529
1530 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1531 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1532 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1533
1534 (% style="color:#4f81bd" %)**Downlink Command:**
1535
1536 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1537 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1538
1539
1540 == 4.9 Set Time Sync Interval ==
1541
1542
1543 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1544
1545 (% style="color:#4f81bd" %)**AT Command:**
1546
1547 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1548 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1549 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1550
1551 (% style="color:#4f81bd" %)**Downlink Command:**
1552
1553 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1554
1555
1556 == 4.10 Get data ==
1557
1558
1559 Feature: Get the current sensor data.
1560
1561 (% style="color:#4f81bd" %)**AT Command:**
1562
1563 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1564 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1565
1566 == 4.11 Print data entries base on page ==
1567
1568
1569 Feature: Print the sector data from start page to stop page (max is 416 pages).
1570
1571 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1572
1573 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1574 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1575 |(% style="width:156px" %)(((
1576 AT+PDTA=1,3
1577 Print page 1 to 3
1578 )))|(% style="width:311px" %)(((
1579 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1580 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1581 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1582 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1583 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1584 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1585 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1586 8019570
1587 8019580
1588 8019590
1589 80195A0
1590 80195B0
1591 80195C0
1592 80195D0
1593 80195E0
1594 80195F0
1595
1596 OK
1597 )))
1598
1599 (% style="color:#4f81bd" %)**Downlink Command:**
1600
1601 No downlink commands for feature
1602
1603
1604 == 4.12 Print last few data entries ==
1605
1606
1607 Feature: Print the last few data entries
1608
1609 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1610
1611 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1612 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1613 |(% style="width:156px" %)(((
1614 AT+PLDTA=5
1615 Print last 5 entries
1616 )))|(% style="width:311px" %)(((
1617 Stop Tx and RTP events when read sensor data
1618 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1619 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1620 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1621 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1622 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1623 Start Tx and RTP events
1624 OK
1625 )))
1626
1627 (% style="color:#4f81bd" %)**Downlink Command:**
1628
1629 No downlink commands for feature
1630
1631
1632 == 4.13 Clear Flash Record ==
1633
1634
1635 Feature: Clear flash storage for data log feature.
1636
1637 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1638
1639 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1640 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1641 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1642 Clear all stored sensor data…
1643
1644 OK
1645 )))
1646
1647 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1648
1649 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1650
1651 == 4.14 Auto Send None-ACK messages ==
1652
1653
1654 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1655
1656 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1657
1658 The default factory setting is 0
1659
1660 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1661 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1662 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1663
1664 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1665
1666 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1667
1668 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1669
1670
1671 Feature: Set internal and external temperature sensor alarms.
1672
1673 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1674 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1675 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1676
1677 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1678
1679 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1680
1681 0): Cancel
1682
1683 1): Threshold alarm
1684
1685 2): Fluctuation alarm
1686
1687 3): Sampling multiple times and uplink together
1688
1689
1690 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1691
1692 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1693
1694
1695 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1696
1697 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1698
1699 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1700
1701
1702 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1703
1704 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1705
1706 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1707
1708
1709 **3): If Alarm Mode is set to 3:**
1710
1711 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1712 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1713 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1714 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1715 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1716 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1717
1718 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1719
1720 0xA5 00 ~-~- AT+WMOD=0.
1721
1722 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1723
1724 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1725
1726 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1727
1728 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1729
1730 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1731
1732
1733 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1734
1735
1736 Feature: use downlink to get firmware version.
1737
1738 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1739
1740 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:360px" %)
1741 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1742 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1743
1744 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1745
1746 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1747
1748 (% style="color:#037691" %)**Sensor model**
1749
1750 0x0b: LHT65N
1751
1752
1753 (% style="color:#037691" %)**Firmware version**
1754
1755 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1756
1757 Example: 0x0140=V1.4.0
1758
1759
1760 (% style="color:#037691" %)** Frequency Band:**
1761
1762 * 0x01: EU868
1763 * 0x02: US915
1764 * 0x03: IN865
1765 * 0x04: AU915
1766 * 0x05: KZ865
1767 * 0x06: RU864
1768 * 0x07: AS923
1769 * 0x08: AS923-1
1770 * 0x09: AS923-2
1771 * 0xa0: AS923-3
1772
1773 (% style="color:#037691" %)**Subband**
1774
1775 value 0x00 ~~ 0x08
1776
1777 Example: 0xFF ~-~--> " NULL"
1778
1779
1780 (% style="color:#037691" %)**Battery**
1781
1782 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1783
1784 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1785
1786
1787 = 5. Battery & How to replace =
1788
1789 == 5.1 Battery Type ==
1790
1791
1792 (((
1793 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1794 )))
1795
1796 (((
1797 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1798
1799 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1800 )))
1801
1802 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1803
1804
1805 == 5.2 Replace Battery ==
1806
1807
1808 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1809
1810 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1811
1812
1813 == 5.3 Battery Life Analyze ==
1814
1815
1816 (((
1817 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1818 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1819 )))
1820
1821
1822 (((
1823 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1824 )))
1825
1826
1827 = 6. FAQ =
1828
1829 == 6.1 How to connect to LHT65N UART interface? ==
1830
1831
1832 The LHT65N has the UART interface in its Type-C. The UART Interface can be used for
1833
1834 * Send AT Commands, and get output from LHT65N
1835 * Upgrade firmwre of LHT65N.
1836
1837 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N**
1838
1839
1840 **Option of USB TTL adapter:**
1841
1842 * CP2101 USB TTL Adapter
1843 * CH340 USB TTL Adapter
1844 * FT232 USB TTL Adapter
1845
1846 **Option of Type-C Adapter:**
1847
1848 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1849
1850
1851 **Connection:**
1852
1853 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N GND**
1854 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N TXD**
1855 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N RXD**
1856
1857 (((
1858
1859
1860 Connection Example:
1861
1862 [[image:1655802313617-381.png||_mstalt="293917"]]
1863
1864
1865 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1866
1867
1868 == 6.2 How to use AT Commands? ==
1869
1870
1871 First, Connect PC and LHT65N via USB TTL adapter as **FAQ 6.1**
1872
1873 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1874 )))
1875
1876
1877 Input password and ATZ to activate LHT65N,As shown below:
1878
1879 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1880
1881
1882 AT Command List is as below:
1883
1884 AT+<CMD>? :  Help on <CMD>
1885
1886 AT+<CMD> :  Run <CMD>
1887
1888 AT+<CMD>=<value> :  Set the value
1889
1890 AT+<CMD>=? :  Get the value
1891
1892 AT+DEBUG:  Set more info output
1893
1894 ATZ:  Trig a reset of the MCU
1895
1896 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1897
1898 AT+DEUI:  Get or Set the Device EUI
1899
1900 AT+DADDR:  Get or Set the Device Address
1901
1902 AT+APPKEY:  Get or Set the Application Key
1903
1904 AT+NWKSKEY:  Get or Set the Network Session Key
1905
1906 AT+APPSKEY:  Get or Set the Application Session Key
1907
1908 AT+APPEUI:  Get or Set the Application EUI
1909
1910 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1911
1912 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1913
1914 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1915
1916 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1917
1918 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1919
1920 AT+RX2FQ:  Get or Set the Rx2 window frequency
1921
1922 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1923
1924 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1925
1926 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1927
1928 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1929
1930 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1931
1932 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1933
1934 AT+NWKID:  Get or Set the Network ID
1935
1936 AT+FCU:  Get or Set the Frame Counter Uplink
1937
1938 AT+FCD:  Get or Set the Frame Counter Downlink
1939
1940 AT+CLASS:  Get or Set the Device Class
1941
1942 AT+JOIN:  Join network
1943
1944 AT+NJS:  Get the join status
1945
1946 AT+SENDB:  Send hexadecimal data along with the application port
1947
1948 AT+SEND:  Send text data along with the application port
1949
1950 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1951
1952 AT+RECV:  Print last received data in raw format
1953
1954 AT+VER:  Get current image version and Frequency Band
1955
1956 AT+CFM:  Get or Set the confirmation mode (0-1)
1957
1958 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1959
1960 AT+SNR:  Get the SNR of the last received packet
1961
1962 AT+RSSI:  Get the RSSI of the last received packet
1963
1964 AT+TDC:  Get or set the application data transmission interval in ms
1965
1966 AT+PORT:  Get or set the application port
1967
1968 AT+DISAT:  Disable AT commands
1969
1970 AT+PWORD: Set password, max 9 digits
1971
1972 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1973
1974 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1975
1976 AT+PDTA:  Print the sector data from start page to stop page
1977
1978 AT+PLDTA:  Print the last few sets of data
1979
1980 AT+CLRDTA:  Clear the storage, record position back to 1st
1981
1982 AT+SLEEP:  Set sleep mode
1983
1984 AT+EXT:  Get or Set external sensor model
1985
1986 AT+BAT:  Get the current battery voltage in mV
1987
1988 AT+CFG:  Print all configurations
1989
1990 AT+WMOD:  Get or Set Work Mode
1991
1992 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1993
1994 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1995
1996 AT+SETCNT:  Set the count at present
1997
1998 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1999
2000 AT+RPL:  Get or set response level
2001
2002 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2003
2004 AT+LEAPSEC:  Get or Set Leap Second
2005
2006 AT+SYNCMOD:  Get or Set time synchronization method
2007
2008 AT+SYNCTDC:  Get or set time synchronization interval in day
2009
2010 AT+PID:  Get or set the PID
2011
2012
2013 == 6.3 How to use Downlink commands? ==
2014
2015
2016 **Downlink commands:**
2017
2018
2019 (% style="color:blue" %)**TTN:**
2020
2021 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2022
2023
2024
2025 (% style="color:blue" %)**Helium: **
2026
2027 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2028
2029
2030
2031 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2032
2033
2034 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2035
2036
2037 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2038
2039
2040
2041 (% style="color:blue" %)**AWS-IOT :**
2042
2043 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2044
2045
2046 == 6.4 How to change the uplink interval? ==
2047
2048
2049 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2050
2051
2052 == 6.5 How to upgrade firmware? ==
2053
2054
2055 LHT65N has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2056
2057 Except  for the early batch of LHT65N, all LHT65N shipped since middle of 2023 already have bootloader by default, so user only need to use the firmware without bootloader to update, this is the most easy way.
2058
2059
2060 === 6.5.1 Update firmware (Assume device already have bootloader) ===
2061
2062
2063 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2064
2065 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2066
2067
2068 === 6.5.2 Update firmware (Assume device doesn't have bootloader) ===
2069
2070
2071 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above 6.5.1 method to update.
2072
2073 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2074
2075 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2076
2077
2078
2079 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2080
2081 Connect PC and LHT65N via USB TTL adapter .
2082
2083 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2084
2085 **Connection method:**
2086
2087 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2088
2089 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2090
2091 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2092
2093 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2094
2095 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2096
2097
2098 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2099
2100 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2101
2102
2103 Reset node: Short-circuit the port3(RST) of the E2 cable to GND.
2104
2105 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2106
2107
2108 When this interface appears, it indicates that the download has been completed.
2109
2110 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2111
2112
2113 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND), and the node exits burning mode.
2114
2115
2116 == 6.6 Why can't I see the datalog information ==
2117
2118
2119 ~1. The time is not aligned, and the correct query command is not used.
2120
2121 2. Decoder error, did not parse the datalog data, the data was filtered.
2122
2123
2124 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2125
2126
2127 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2128
2129 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2130
2131
2132 After there is UART Connectio, run below commands:
2133
2134 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2135
2136 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2137
2138 Example output:
2139
2140 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2141
2142
2143 = 7. Order Info =
2144
2145
2146 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2147
2148 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2149
2150 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2151 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2152 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2153 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2154 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2155 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2156 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2157 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2158
2159 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2160
2161 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2162
2163 = 8. Packing Info =
2164
2165
2166 **Package Includes**:
2167
2168 * LHT65N Temperature & Humidity Sensor x 1
2169 * Optional external sensor
2170
2171 = 9. Reference material =
2172
2173
2174 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2175
2176 = 10. FCC Warning =
2177
2178
2179 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2180
2181 (1) This device may not cause harmful interference;
2182
2183 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0