Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||_mstalt="451230" height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino (% style="color:blue" %)**LHT65N Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.25 RH/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Temperature Sensor:**
76
77 * Resolution: 0.0625 °C
78 * ±0.5°C accuracy from -10°C to +85°C
79 * ±2°C accuracy from -55°C to +125°C
80 * Operating Range: -55 °C ~~ 125 °C
81
82 = 2. Connect LHT65N to IoT Server =
83
84 == 2.1 How does LHT65N work? ==
85
86
87 (((
88 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
89 )))
90
91 (((
92 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
93 )))
94
95
96 == 2.2 How to Activate LHT65N? ==
97
98
99 (((
100 The LHT65N has two working modes:
101 )))
102
103 * (((
104 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
105 )))
106 * (((
107 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
108 )))
109
110 (((
111 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
112 )))
113
114 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
115
116 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
117 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
119 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
120 )))
121 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
122 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
124 )))
125 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
126
127 == 2.3 Example to join LoRaWAN network ==
128
129
130 (% class="wikigeneratedid" %)
131 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
132
133 (% class="wikigeneratedid" %)
134 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
135
136
137 (((
138 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
139 )))
140
141
142 === 2.3.1 Step 1: Create Device n TTN ===
143
144
145 (((
146 Create a device in TTN V3 with the OTAA keys from LHT65N.
147 )))
148
149 (((
150 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
151 )))
152
153 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
154
155 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
156
157 Add APP EUI in the application.
158
159 (% style="color:blue" %)**1. Create application**
160
161 [[image:image-20240304102625-1.png||_mstalt="427661" height="535" width="1015"]]
162
163
164 [[image:image-20220522232932-4.png||_mstalt="430157"]]
165
166 (% style="color:blue" %)**2. Register end device **
167
168 [[image:image-20220522232954-5.png||_mstalt="431847"]]
169
170
171
172 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
173
174
175 [[image:image-20220522233026-6.png||_mstalt="429403"]]
176
177
178 Input APP EUI,  APP KEY and DEV EUI:
179
180
181 [[image:image-20220522233118-7.png||_mstalt="430430"]]
182
183
184 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
185
186
187 (((
188 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
189 )))
190
191 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
192
193
194 == 2.4 Uplink Payload (Fport~=2) ==
195
196
197 (((
198 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
199 )))
200
201 (((
202 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
203 )))
204
205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
206 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
207 **Size(bytes)**
208 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
209 **2**
210 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
213 **2**
214 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
215 **1**
216 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
217 **4**
218 )))
219 |(% style="width:97px" %)(((
220 Value
221 )))|(% style="width:39px" %)(((
222 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
223 )))|(% style="width:100px" %)(((
224 (((
225 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
226 )))
227 )))|(% style="width:77px" %)(((
228 (((
229 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
230 )))
231 )))|(% style="width:47px" %)(((
232 [[Ext>>||anchor="H2.4.5Ext23"]] #
233 )))|(% style="width:51px" %)(((
234 [[Ext value>>||anchor="H2.4.6Extvalue"]]
235 )))
236
237 * The First 6 bytes: has fix meanings for every LHT65N.
238
239 * The 7th byte (EXT #): defines the external sensor model.
240
241 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
242
243 === 2.4.1 Decoder in TTN V3 ===
244
245
246 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
247
248 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
249
250
251 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
252
253
254 === 2.4.2 BAT-Battery Info ===
255
256
257 These two bytes of BAT include the battery state and the actually voltage.
258
259 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
260 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
261 **Bit(bit)**
262 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
263 |(% style="width:66px" %)(((
264 Value
265 )))|(% style="width:250px" %)(((
266 BAT Status
267 00(b): Ultra Low ( BAT <= 2.50v)
268 01(b): Low (2.50v <=BAT <= 2.55v)
269 10(b): OK (2.55v <= BAT <=2.65v)
270 11(b): Good (BAT >= 2.65v)
271 )))|(% style="width:152px" %)Actually BAT voltage
272
273 **(b)stands for binary**
274
275
276 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
277
278
279 Check the battery voltage for LHT65N.
280
281 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
282
283 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
284
285 === 2.4.3 Built-in Temperature ===
286
287
288 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
289
290 * Temperature:  0x0ABB/100=27.47℃
291
292 [[image:image-20220522235639-3.png||_mstalt="432120"]]
293
294 * Temperature:  (0xF5C6-65536)/100=-26.18℃
295
296 === 2.4.4 Built-in Humidity ===
297
298
299 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
300
301 * Humidity:    0x025C/10=60.4%
302
303 === 2.4.5 Ext # ===
304
305
306 Bytes for External Sensor:
307
308 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
309 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
310 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
311 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
312 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
313 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
314 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
315 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
316 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
317 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
318
319 === 2.4.6 Ext value ===
320
321 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
322
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
328 **2**
329 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
330 2
331 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
332 **2**
333 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
334 1
335 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
336 2
337 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
338 2
339 )))
340 |(% style="width:110px" %)(((
341 Value
342 )))|(% style="width:71px" %)(((
343 BAT & BAT Status
344 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
345 Status & Ext
346 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
347
348 [[image:image-20220522235639-5.png||_mstalt="432848"]]
349
350
351 * DS18B20 temp=0x0ADD/100=27.81℃
352
353 The last 2 bytes of data are meaningless
354
355 [[image:image-20220522235639-6.png||_mstalt="433212"]]
356
357
358 * External temperature= (0xF54F-65536)/100=-27.37℃
359
360 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
361
362 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
363
364 The last 2 bytes of data are meaningless
365
366 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
367
368
369 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
370
371
372 (((
373 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
374 )))
375
376 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
377 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
378 **Size(bytes)**
379 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
380 **2**
381 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
382 **2**
383 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
384 **2**
385 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
386 **1**
387 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
388 **4**
389 )))
390 |(% style="width:110px" %)(((
391 Value
392 )))|(% style="width:71px" %)(((
393 External temperature
394 )))|(% style="width:99px" %)(((
395 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
396 )))|(% style="width:132px" %)(((
397 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
398 )))|(% style="width:54px" %)(((
399 Status & Ext
400 )))|(% style="width:64px" %)(((
401 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
402 )))
403
404 * **Battery status & Built-in Humidity**
405
406 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
407 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
408 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
409 BAT Status
410 00(b): Ultra Low ( BAT <= 2.50v)
411 01(b): Low  (2.50v <=BAT <= 2.55v)
412 10(b): OK   (2.55v <= BAT <=2.65v)
413 11(b): Good   (BAT >= 2.65v)
414 )))|(% style="width:132px" %)(((
415 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
416 )))
417
418 * **Status & Ext Byte**
419
420 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
421 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
422 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
423
424 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
425 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
426 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
427
428
429 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
430
431
432 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
433 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
434 **Size(bytes)**
435 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
436 **2**
437 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
438 2
439 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
440 **2**
441 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
442 1
443 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
444 2
445 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
446 2
447 )))
448 |(% style="width:110px" %)(((
449 Value
450 )))|(% style="width:71px" %)(((
451 BAT & BAT Status
452 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
453 Status & Ext
454 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
455
456 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
457
458 be used to power the external ADC sensor; user can control the power on time for this
459
460 (% style="color:blue" %)**sensor by setting:**
461
462 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
463
464 **For example:**
465
466 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
467
468
469 Or use **downlink command A2** to set the same.
470
471 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
472
473 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
474
475 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
476
477
478 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
479
480 [[image:image-20220628150714-4.png||_mstalt="431054"]]
481
482
483 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
484
485
486 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
487
488 [[image:image-20220628151005-5.png||_mstalt="429546"]]
489
490
491 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
492
493 [[image:image-20220628151056-6.png||_mstalt="431873"]]
494
495
496 3) Within range
497
498 [[image:image-20220628151143-7.png||_mstalt="431210"]]
499
500
501 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
502
503
504 [[image:image-20230717151328-8.png||_mstalt="433173" height="463" width="384"]]
505
506
507 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
508
509
510 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
511 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
512 **Size(bytes)**
513 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
514 **2**
515 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
516 2
517 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
518 **2**
519 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
520 1
521 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
522 2
523 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
524 2
525 )))
526 |(% style="width:110px" %)(((
527 Value
528 )))|(% style="width:71px" %)(((
529 BAT & BAT Status
530 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
531 Status & Ext
532 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
533
534 [[image:image-20220906102307-7.png||_mstalt="430443"]]
535
536 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
537
538 The external cable NE2 can be use for MOD4 and MOD8
539
540
541 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
542
543
544 [[image:image-20230717151245-7.png||_mstalt="432133" height="510" width="509"]]
545
546 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
547
548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
549 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
550 **Size(bytes)**
551 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
552 **2**
553 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
554 2
555 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
556 **2**
557 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
558 1
559 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
560 2
561 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
562 2
563 )))
564 |(% style="width:110px" %)(((
565 Value
566 )))|(% style="width:71px" %)(((
567 BAT & BAT Status
568 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
569 Status & Ext
570 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
571
572 [[image:SHT31.png||_mstalt="104715"]]
573
574
575 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
576
577
578 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
579
580
581 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
582
583 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
584
585 In Open State, the power consumption is the same as if there is no probe
586
587 In Close state, the power consumption will be 3uA higher than normal.
588
589 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
590
591
592 Ext=4,Interrupt Sensor:
593
594 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
595 |(% style="width:101px" %)(((
596 **AT+EXT=4,1**
597 )))|(% style="width:395px" %)(((
598 **Sent uplink packet in both rising and falling interrupt**
599 )))
600 |(% style="width:101px" %)(((
601 **AT+EXT=4,2**
602 )))|(% style="width:395px" %)(((
603 **Sent uplink packet only in falling interrupt**
604 )))
605 |(% style="width:101px" %)(((
606 **AT+EXT=4,3**
607 )))|(% style="width:395px" %)(((
608 **Sent uplink packet only in rising interrupt**
609 )))
610
611 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
612 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
613 **Size(bytes)**
614 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
615 **2**
616 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
617 2
618 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
619 **2**
620 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
621 1
622 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
623 1
624 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
625 1
626 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
627 3
628 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
629 3
630 )))
631 |(% style="width:110px" %)(((
632 Value
633 )))|(% style="width:71px" %)(((
634 BAT & BAT Status
635 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
636 Status & Ext
637 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)Exit_count|(% style="width:64px" %)Exit_duration
638
639 Trigger by falling edge:
640
641 [[image:image-20220906101145-2.png||_mstalt="428324"]]
642
643
644 Trigger by raising edge:
645
646 [[image:image-20220906101145-3.png||_mstalt="428688"]]
647
648
649 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
650
651
652 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
653
654
655 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
656
657 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
658
659
660 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
661
662 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
663
664
665 Ext=8, Counting Sensor ( 4 bytes):
666
667 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
668 |(% style="width:131px" %)(((
669 **AT+EXT=8,0**
670 )))|(% style="width:195px" %)(((
671 **Count at falling interrupt**
672 )))
673 |(% style="width:131px" %)(((
674 **AT+EXT=8,1**
675 )))|(% style="width:195px" %)(((
676 **Count at rising interrupt**
677 )))
678 |(% style="width:131px" %)(((
679 **AT+SETCNT=60**
680 )))|(% style="width:195px" %)(((
681 **Sent current count to 60**
682 )))
683
684 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:420px" %)
685 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
686 **Size(bytes)**
687 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
688 **2**
689 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
690 2
691 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
692 **2**
693 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
694 1
695 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
696 4
697 )))
698 |(% style="width:110px" %)(((
699 Value
700 )))|(% style="width:71px" %)(((
701 BAT & BAT Status
702 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
703 Status & Ext
704 )))|(% style="width:64px" %)Exit_count
705
706 [[image:image-20220906101320-6.png||_mstalt="428064"]]
707
708
709 (% style="color:blue" %)**A2 downlink Command:**
710
711 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
712
713 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
714
715 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
716
717 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
718
719 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
720
721
722 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
723
724
725 (((
726 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
727 )))
728
729 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
730 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
731 **Size(bytes)**
732 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
733 **2**
734 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
735 **2**
736 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
737 **2**
738 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
739 **1**
740 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
741 **4**
742 )))
743 |(% style="width:110px" %)(((
744 Value
745 )))|(% style="width:71px" %)(((
746 External temperature
747 )))|(% style="width:99px" %)(((
748 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
749 )))|(% style="width:132px" %)(((
750 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
751 )))|(% style="width:54px" %)(((
752 Status & Ext
753 )))|(% style="width:64px" %)(((
754 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
755 )))
756
757 * **Battery status & Built-in Humidity**
758
759 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
760 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
761 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
762 BAT Status
763 00(b): Ultra Low ( BAT <= 2.50v)
764 01(b): Low  (2.50v <=BAT <= 2.55v)
765 10(b): OK   (2.55v <= BAT <=2.65v)
766 11(b): Good   (BAT >= 2.65v)
767 )))|(% style="width:132px" %)(((
768 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
769 )))
770
771 * **Status & Ext Byte**
772
773 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
774 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
775 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
776
777 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
778 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
779 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
780
781
782 == 2.5 Show data on Datacake ==
783
784
785 (((
786 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
787 )))
788
789
790 (((
791 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
792 )))
793
794 (((
795 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
796 )))
797
798
799 (((
800 Add Datacake:
801 )))
802
803 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
804
805
806 Select default key as Access Key:
807
808
809 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
810
811
812 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
813
814 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
815
816
817 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
818
819
820 == 2.6 Datalog Feature ==
821
822
823 (((
824 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
825 )))
826
827
828 === 2.6.1 Ways to get datalog via LoRaWAN ===
829
830
831 There are two methods:
832
833 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
834
835
836 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
837
838
839 (% style="color:red" %)**Note for method 2:**
840
841 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
842 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
843
844 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
845
846 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
847
848
849 === 2.6.2 Unix TimeStamp ===
850
851
852 LHT65N uses Unix TimeStamp format based on
853
854
855 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
856
857
858 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
859
860 Below is the converter example
861
862 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
863
864
865 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
866
867
868 === 2.6.3 Set Device Time ===
869
870
871 (((
872 (% style="color:blue" %)**There are two ways to set device's time:**
873 )))
874
875 (((
876 **1.  Through LoRaWAN MAC Command (Default settings)**
877 )))
878
879 (((
880 User need to set SYNCMOD=1 to enable sync time via MAC command.
881 )))
882
883 (((
884 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
885 )))
886
887 (((
888 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
889 )))
890
891
892 (((
893 **2. Manually Set Time**
894 )))
895
896 (((
897 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
898 )))
899
900
901 === 2.6.4 Poll sensor value ===
902
903
904 User can poll sensor value based on timestamps from the server. Below is the downlink command.
905
906 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
907 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
908 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
909
910 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
911
912 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
913
914 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
915
916 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
917
918
919 === 2.6.5 Datalog Uplink payload ===
920
921
922 The Datalog poll reply uplink will use below payload format.
923
924 **Retrieval data payload:**
925
926 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
927 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
928 **Size(bytes)**
929 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
930 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
931
932 **Poll message flag & Ext:**
933
934 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
935 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
936 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
937
938 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
939
940 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
941
942 * Poll Message Flag is set to 1.
943
944 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
945
946 For example, in US915 band, the max payload for different DR is:
947
948 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
949
950 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
951
952 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
953
954 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
955
956 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
957
958
959 **Example:**
960
961 If LHT65N has below data inside Flash:
962
963 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
964 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
965 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
966 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
967 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
968 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
969 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
970 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
971 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
972 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
973
974 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
975
976 Where : Start time: 60065F97 = time 21/1/19 04:27:03
977
978 Stop time: 60066DA7= time 21/1/19 05:27:03
979
980
981 **LHT65N will uplink this payload.**
982
983 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
984
985
986 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
987
988 Where the first 11 bytes is for the first entry:
989
990 7FFF089801464160065F97
991
992 Ext sensor data=0x7FFF/100=327.67
993
994 Temp=0x088E/100=22.00
995
996 Hum=0x014B/10=32.6
997
998 poll message flag & Ext=0x41,means reply data,Ext=1
999
1000 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1001
1002
1003 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1004
1005
1006 (((
1007 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1008 )))
1009
1010 (((
1011 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1012
1013
1014 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1015
1016 (((
1017 (% class="box infomessage" %)
1018 (((
1019 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1020 )))
1021 )))
1022
1023 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1024
1025 **~ AT+WMOD=1,60,-10,20**
1026
1027
1028 Explain:
1029
1030 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1031 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1032 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C
1033
1034 (% style="color:#4f81bd" %)**Downlink Command:**
1035
1036 **Example: **A5013CFC180014
1037
1038 MOD=01
1039
1040 CITEMP=3C(S) =60(S)
1041
1042 TEMPlow=FC18 = -10(℃)
1043
1044 TEMPhigh=0014=20(℃)
1045
1046
1047 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1048
1049 **AT+WMOD=2,60,5** 
1050
1051 Explain:
1052
1053 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1054 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1055 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1056
1057 (% style="color:#4f81bd" %)**Downlink Command**
1058
1059 **Example: **A5023C05
1060
1061 MOD=02
1062
1063 CITEMP=3C(S)=60(S)
1064
1065 temperature fluctuation=05(℃)
1066
1067
1068 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1069
1070 **AT+WMOD=3,1,60,20,-16,32,1**   
1071
1072 Explain:
1073
1074 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1075 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1076 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1077 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1078 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1079 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1080
1081 (% style="color:#4f81bd" %)**Downlink Command:**
1082
1083 **Example: **A50301003C14FFF0002001
1084
1085 MOD=03
1086
1087 TEMP=DS18B20
1088
1089 CITEMP=003C(S)=60(S)
1090
1091 Total number of acquisitions=14
1092
1093 TEMPlow=FFF0=-16(℃)
1094
1095 TEMPhigh=0020=20(℃)
1096
1097 ARTEMP=01
1098
1099
1100 **Uplink payload( Fport=3)**
1101
1102 **Example: CBEA**01**0992**//0A41//**09C4**
1103
1104 BatV=CBEA
1105
1106 TEMP=DS18B20
1107
1108 Temp1=0992  ~/~/ 24.50℃
1109
1110 Temp2=0A41  ~/~/ 26.25℃
1111
1112 Temp3=09C4  ~/~/ 25.00℃
1113
1114 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1115
1116 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1117 )))
1118
1119
1120 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1121
1122
1123 (% class="box infomessage" %)
1124 (((
1125 (((
1126 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1127 )))
1128
1129 (((
1130 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1131 )))
1132
1133 (((
1134 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1135 )))
1136
1137 (((
1138 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1139 )))
1140
1141 (((
1142 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1143 )))
1144 )))
1145
1146 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1147
1148 Total bytes: 8 bytes
1149
1150 **Example:**AA0100010001003C
1151
1152 WMOD=01
1153
1154 CITEMP=0001
1155
1156 TEMPlow=0001
1157
1158 TEMPhigh=003C
1159
1160
1161 == 2.8 LED Indicator ==
1162
1163
1164 The LHT65 has a triple color LED which for easy showing different stage .
1165
1166 While user press ACT button, the LED will work as per LED status with ACT button.
1167
1168 In a normal working state:
1169
1170 * For each uplink, the BLUE LED or RED LED will blink once.
1171 BLUE LED when external sensor is connected.
1172 * RED LED when external sensor is not connected
1173 * For each success downlink, the PURPLE LED will blink once
1174
1175
1176 == 2.9 installation ==
1177
1178
1179 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1180
1181
1182 = 3. Sensors and Accessories =
1183
1184 == 3.1 E2 Extension Cable ==
1185
1186
1187 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1188
1189
1190 **1m long breakout cable for LHT65N. Features:**
1191
1192 * (((
1193 Use for AT Command, works for both LHT52/LHT65N
1194 )))
1195 * (((
1196 Update firmware for LHT65N, works for both LHT52/LHT65N
1197 )))
1198 * (((
1199 Supports ADC mode to monitor external ADC
1200 )))
1201 * (((
1202 Supports Interrupt mode
1203 )))
1204 * (((
1205 Exposed All pins from the LHT65N Type-C connector.
1206
1207
1208
1209 )))
1210
1211 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1212
1213
1214 == 3.2 E3 Temperature Probe ==
1215
1216
1217 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1218
1219
1220 Temperature sensor with 2 meters cable long
1221
1222 * Resolution: 0.0625 °C
1223 * ±0.5°C accuracy from -10°C to +85°C
1224 * ±2°C accuracy from -55°C to +125°C
1225 * Operating Range: -40 ~~ 125 °C
1226 * Working voltage 2.35v ~~ 5v
1227
1228
1229 == 3.3 E31F Temperature Probe ==
1230
1231
1232 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1233
1234
1235 Temperature sensor with 1 meters cable long
1236
1237
1238 **Built-in Temperature Sensor:**
1239
1240 * Resolution: 0.01 °C
1241 * Accuracy Tolerance : Typ ±0.3 °C
1242 * Long Term Drift: < 0.02 °C/yr
1243 * Operating Range: -40 ~~ 80 °C
1244
1245 **Built-in Humidity Sensor:**
1246
1247 * Resolution: 0.04 % RH
1248 * Accuracy Tolerance : Typ ±3 % RH
1249 * Long Term Drift: < 0.02 °C/yr
1250 * Operating Range: 0 ~~ 96 % RH
1251
1252 **External Temperature Sensor :**
1253
1254 * Resolution: 0.01 °C
1255 * Accuracy Tolerance : Typical ±0.3 °C
1256 * Long Term Drift: < 0.02 °C/yr
1257 * Operating Range: -40 ~~ 125 °C
1258
1259 **External Humidity Sensor :**
1260
1261 * Resolution: 0.04 % RH
1262 * Accuracy Tolerance : Typ ±3 % RH
1263 * Long Term Drift: < 0.02 °C/yr
1264 * Operating Range: 0 ~~ 96 % RH
1265
1266
1267 == 3.4 NE117 Temperature Probe (Model: LHT65N-NE117) ==
1268
1269
1270 External Temperature Sensor – NE117:
1271 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1272
1273 * Silica gel cable
1274 * ±0.1 °C (maximum) from –20 °C to 50 °C
1275 * ±0.2 °C (maximum) from –40 °C to 100 °C
1276 * ±0.3 °C (maximum) from –55 °C to 150 °C
1277
1278 [[image:image-20240422093011-1.png||height="349" width="350"]]
1279
1280
1281 == 3.5 Dry Contact Probe (Model: LHT65N-DC) ==
1282
1283
1284 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1285 * 3 wires: VCC/GND/INT
1286 * Cable Lenght: 1 meter
1287
1288 [[image:image-20240705140520-1.png||height="439" width="380"]](% style="display:none" %)
1289
1290 LHT65-DC can be used to connect various types of external sensor. below.
1291
1292 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1293
1294 [[image:image-20240422100149-5.png||height="163" width="510"]]
1295
1296 [[image:image-20240422100217-6.png||height="141" width="507"]]
1297
1298
1299 == 3.6 Door Sensor (Model: LHT65N-DS) ==
1300
1301
1302 * Aluminum Alloy Door Sensor
1303 * Detect Distance: ~~3cm
1304 * Cable Lenght: 1 meter
1305
1306 Notice: When order LHT65N-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.
1307
1308
1309 [[image:image-20240422094326-3.png||height="341" width="365"]]
1310
1311
1312 == 3.6 NIS Certificate Probe (Model: LHT65N-NIS) ==
1313
1314
1315 External Probe:
1316
1317 * Unique NIST Certi cate for each probe
1318 * External NIST Traceable probe with unique ID
1319
1320 Notice: AT+PID=1 is by default enable, so LHT65N will also uplink the probe ID to platform.
1321
1322 [[image:image-20240422094702-4.png||height="349" width="351"]]
1323
1324
1325 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1326
1327
1328 (((
1329 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1330 )))
1331
1332 * (((
1333 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1334 )))
1335
1336 * (((
1337 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1338 )))
1339
1340 (((
1341 There are two kinds of commands to configure LHT65N, they are:
1342 )))
1343
1344 * (((
1345 (% style="color:#4f81bd" %)**General Commands**.
1346 )))
1347
1348 (((
1349 These commands are to configure:
1350 )))
1351
1352 1. (((
1353 General system settings like: uplink interval.
1354 )))
1355 1. (((
1356 LoRaWAN protocol & radio-related commands.
1357 )))
1358
1359 (((
1360 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1361 )))
1362
1363 * (((
1364 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1365 )))
1366
1367 (((
1368 These commands are only valid for LHT65N, as below:
1369 )))
1370
1371
1372 == 4.1 Set Transmit Interval Time ==
1373
1374
1375 Feature: Change LoRaWAN End Node Transmit Interval.
1376
1377
1378 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1379
1380 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1381 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1382 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1383 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1384
1385 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1386
1387 Format: Command Code (0x01) followed by 3 bytes time value.
1388
1389 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1390
1391 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1392
1393 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1394
1395
1396 == 4.2 Set External Sensor Mode ==
1397
1398
1399 Feature: Change External Sensor Mode.
1400
1401 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1402
1403 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:468px" %)
1404 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**
1405 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1406 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1407 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1408
1409 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1410
1411 Total bytes: 2 ~~ 5 bytes
1412
1413 **Example:**
1414
1415 * 0xA201: Set external sensor type to E1
1416
1417 * 0xA209: Same as AT+EXT=9
1418
1419 * 0xA20702003c: Same as AT+SETCNT=60
1420
1421
1422 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1423
1424
1425 **Feature**: If PID is enabled, LHT65N will send the DS18B20 temperature probe ID on:
1426
1427 * First Packet after OTAA Join
1428 * Every 24 hours since the first packet.
1429
1430 PID is default set to disable (0)
1431
1432 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1433
1434 (% style="color:#4f81bd" %)**AT Command:**
1435
1436 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1437 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1438 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1439
1440 (% style="color:#4f81bd" %)**Downlink Command:**
1441
1442 * **0xA800**  **~-~->** AT+PID=0
1443 * **0xA801**     **~-~->** AT+PID=1
1444
1445
1446 == 4.4 Set Password ==
1447
1448
1449 Feature: Set device password, max 9 digits
1450
1451 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1452
1453 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1454 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1455 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1456 123456
1457
1458 OK
1459 )))
1460 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1461
1462 (% style="color:#4f81bd" %)**Downlink Command:**
1463
1464 No downlink command for this feature.
1465
1466
1467 == 4.5 Quit AT Command ==
1468
1469
1470 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1471
1472 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1473
1474 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1475 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1476 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1477
1478 (% style="color:#4f81bd" %)**Downlink Command:**
1479
1480 No downlink command for this feature.
1481
1482
1483 == 4.6 Set to sleep mode ==
1484
1485
1486 Feature: Set device to sleep mode
1487
1488 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1489 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1490
1491 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1492
1493 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1494 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1495 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1496 Clear all stored sensor data…
1497
1498 OK
1499 )))
1500
1501 (% style="color:#4f81bd" %)**Downlink Command:**
1502
1503 * There is no downlink command to set to Sleep mode.
1504
1505
1506 == 4.7 Set system time ==
1507
1508
1509 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1510
1511 (% style="color:#4f81bd" %)**AT Command:**
1512
1513 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1514 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1515 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1516 OK
1517
1518 Set System time to 2021-01-20 00:59:12
1519 )))
1520
1521 (% style="color:#4f81bd" %)**Downlink Command:**
1522
1523 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1524
1525
1526 == 4.8 Set Time Sync Mode ==
1527
1528
1529 (((
1530 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1531 )))
1532
1533 (((
1534 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1535 )))
1536
1537 (% style="color:#4f81bd" %)**AT Command:**
1538
1539 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1540 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1541 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1542
1543 (% style="color:#4f81bd" %)**Downlink Command:**
1544
1545 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1546 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1547
1548
1549 == 4.9 Set Time Sync Interval ==
1550
1551
1552 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1553
1554 (% style="color:#4f81bd" %)**AT Command:**
1555
1556 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1557 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1558 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1559
1560 (% style="color:#4f81bd" %)**Downlink Command:**
1561
1562 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1563
1564
1565 == 4.10 Get data ==
1566
1567
1568 Feature: Get the current sensor data.
1569
1570 (% style="color:#4f81bd" %)**AT Command:**
1571
1572 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1573 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1574
1575
1576 == 4.11 Print data entries base on page ==
1577
1578
1579 Feature: Print the sector data from start page to stop page (max is 416 pages).
1580
1581 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1582
1583 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1584 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1585 |(% style="width:156px" %)(((
1586 AT+PDTA=1,3
1587 Print page 1 to 3
1588 )))|(% style="width:311px" %)(((
1589 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1590 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1591 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1592 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1593 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1594 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1595 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1596 8019570
1597 8019580
1598 8019590
1599 80195A0
1600 80195B0
1601 80195C0
1602 80195D0
1603 80195E0
1604 80195F0
1605
1606 OK
1607 )))
1608
1609 (% style="color:#4f81bd" %)**Downlink Command:**
1610
1611 No downlink commands for feature
1612
1613
1614 == 4.12 Print last few data entries ==
1615
1616
1617 Feature: Print the last few data entries
1618
1619 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1620
1621 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1622 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1623 |(% style="width:156px" %)(((
1624 AT+PLDTA=5
1625 Print last 5 entries
1626 )))|(% style="width:311px" %)(((
1627 Stop Tx and RTP events when read sensor data
1628 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1629 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1630 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1631 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1632 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1633 Start Tx and RTP events
1634 OK
1635 )))
1636
1637 (% style="color:#4f81bd" %)**Downlink Command:**
1638
1639 No downlink commands for feature
1640
1641
1642 == 4.13 Clear Flash Record ==
1643
1644
1645 Feature: Clear flash storage for data log feature.
1646
1647 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1648
1649 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1650 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1651 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1652 Clear all stored sensor data…
1653
1654 OK
1655 )))
1656
1657 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1658
1659 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1660
1661
1662 == 4.14 Auto Send None-ACK messages ==
1663
1664
1665 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1666
1667 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1668
1669 The default factory setting is 0
1670
1671 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1672 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1673 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1674
1675 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1676
1677 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1678
1679
1680 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1681
1682
1683 Feature: Set internal and external temperature sensor alarms.
1684
1685 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1686 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1687 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1688
1689 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1690
1691 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1692
1693 0): Cancel
1694
1695 1): Threshold alarm
1696
1697 2): Fluctuation alarm
1698
1699 3): Sampling multiple times and uplink together
1700
1701
1702 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1703
1704 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1705
1706
1707 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1708
1709 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1710
1711 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1712
1713
1714 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1715
1716 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1717
1718 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1719
1720
1721 **3): If Alarm Mode is set to 3:**
1722
1723 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1724 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1725 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1726 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1727 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1728 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1729
1730 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1731
1732 0xA5 00 ~-~- AT+WMOD=0.
1733
1734 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1735
1736 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1737
1738 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1739
1740 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1741
1742 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1743
1744
1745 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1746
1747
1748 Feature: use downlink to get firmware version.
1749
1750 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1751
1752 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:360px" %)
1753 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1754 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1755
1756 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1757
1758 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1759
1760 (% style="color:#037691" %)**Sensor model**
1761
1762 0x0b: LHT65N
1763
1764
1765 (% style="color:#037691" %)**Firmware version**
1766
1767 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1768
1769 Example: 0x0140=V1.4.0
1770
1771
1772 (% style="color:#037691" %)** Frequency Band:**
1773
1774 * 0x01: EU868
1775 * 0x02: US915
1776 * 0x03: IN865
1777 * 0x04: AU915
1778 * 0x05: KZ865
1779 * 0x06: RU864
1780 * 0x07: AS923
1781 * 0x08: AS923-1
1782 * 0x09: AS923-2
1783 * 0xa0: AS923-3
1784
1785 (% style="color:#037691" %)**Subband**
1786
1787 value 0x00 ~~ 0x08
1788
1789 Example: 0xFF ~-~--> " NULL"
1790
1791
1792 (% style="color:#037691" %)**Battery**
1793
1794 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1795
1796 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1797
1798
1799 = 5. Battery & How to replace =
1800
1801 == 5.1 Battery Type ==
1802
1803
1804 (((
1805 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1806 )))
1807
1808 (((
1809 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1810
1811 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1812 )))
1813
1814 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1815
1816
1817 == 5.2 Replace Battery ==
1818
1819
1820 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1821
1822 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1823
1824
1825 == 5.3 Battery Life Analyze ==
1826
1827
1828 (((
1829 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1830 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1831 )))
1832
1833
1834 (((
1835 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1836 )))
1837
1838
1839 = 6. FAQ =
1840
1841 == 6.1 How to connect to LHT65N UART interface? ==
1842
1843
1844 The LHT65N has the UART interface in its Type-C. The UART Interface can be used for
1845
1846 * Send AT Commands, and get output from LHT65N
1847 * Upgrade firmwre of LHT65N.
1848
1849 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N**
1850
1851
1852 **Option of USB TTL adapter:**
1853
1854 * CP2101 USB TTL Adapter
1855 * CH340 USB TTL Adapter
1856 * FT232 USB TTL Adapter
1857
1858 **Option of Type-C Adapter:**
1859
1860 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1861
1862
1863 **Connection:**
1864
1865 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N GND**
1866 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N TXD**
1867 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N RXD**
1868
1869 (((
1870
1871
1872 Connection Example:
1873
1874 [[image:1655802313617-381.png||_mstalt="293917"]]
1875
1876
1877 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1878
1879
1880 == 6.2 How to use AT Commands? ==
1881
1882
1883 First, Connect PC and LHT65N via USB TTL adapter as **FAQ 6.1**
1884
1885 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1886 )))
1887
1888
1889 Input password and ATZ to activate LHT65N,As shown below:
1890
1891 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1892
1893
1894 AT Command List is as below:
1895
1896 AT+<CMD>? :  Help on <CMD>
1897
1898 AT+<CMD> :  Run <CMD>
1899
1900 AT+<CMD>=<value> :  Set the value
1901
1902 AT+<CMD>=? :  Get the value
1903
1904 AT+DEBUG:  Set more info output
1905
1906 ATZ:  Trig a reset of the MCU
1907
1908 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1909
1910 AT+DEUI:  Get or Set the Device EUI
1911
1912 AT+DADDR:  Get or Set the Device Address
1913
1914 AT+APPKEY:  Get or Set the Application Key
1915
1916 AT+NWKSKEY:  Get or Set the Network Session Key
1917
1918 AT+APPSKEY:  Get or Set the Application Session Key
1919
1920 AT+APPEUI:  Get or Set the Application EUI
1921
1922 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1923
1924 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1925
1926 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1927
1928 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1929
1930 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1931
1932 AT+RX2FQ:  Get or Set the Rx2 window frequency
1933
1934 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1935
1936 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1937
1938 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1939
1940 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1941
1942 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1943
1944 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1945
1946 AT+NWKID:  Get or Set the Network ID
1947
1948 AT+FCU:  Get or Set the Frame Counter Uplink
1949
1950 AT+FCD:  Get or Set the Frame Counter Downlink
1951
1952 AT+CLASS:  Get or Set the Device Class
1953
1954 AT+JOIN:  Join network
1955
1956 AT+NJS:  Get the join status
1957
1958 AT+SENDB:  Send hexadecimal data along with the application port
1959
1960 AT+SEND:  Send text data along with the application port
1961
1962 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1963
1964 AT+RECV:  Print last received data in raw format
1965
1966 AT+VER:  Get current image version and Frequency Band
1967
1968 AT+CFM:  Get or Set the confirmation mode (0-1)
1969
1970 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1971
1972 AT+SNR:  Get the SNR of the last received packet
1973
1974 AT+RSSI:  Get the RSSI of the last received packet
1975
1976 AT+TDC:  Get or set the application data transmission interval in ms
1977
1978 AT+PORT:  Get or set the application port
1979
1980 AT+DISAT:  Disable AT commands
1981
1982 AT+PWORD: Set password, max 9 digits
1983
1984 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1985
1986 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1987
1988 AT+PDTA:  Print the sector data from start page to stop page
1989
1990 AT+PLDTA:  Print the last few sets of data
1991
1992 AT+CLRDTA:  Clear the storage, record position back to 1st
1993
1994 AT+SLEEP:  Set sleep mode
1995
1996 AT+EXT:  Get or Set external sensor model
1997
1998 AT+BAT:  Get the current battery voltage in mV
1999
2000 AT+CFG:  Print all configurations
2001
2002 AT+WMOD:  Get or Set Work Mode
2003
2004 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2005
2006 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2007
2008 AT+SETCNT:  Set the count at present
2009
2010 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2011
2012 AT+RPL:  Get or set response level
2013
2014 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2015
2016 AT+LEAPSEC:  Get or Set Leap Second
2017
2018 AT+SYNCMOD:  Get or Set time synchronization method
2019
2020 AT+SYNCTDC:  Get or set time synchronization interval in day
2021
2022 AT+PID:  Get or set the PID
2023
2024
2025 == 6.3 How to use Downlink commands? ==
2026
2027
2028 **Downlink commands:**
2029
2030
2031 (% style="color:blue" %)**TTN:**
2032
2033 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2034
2035
2036
2037 (% style="color:blue" %)**Helium: **
2038
2039 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2040
2041
2042
2043 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2044
2045
2046 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2047
2048
2049 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2050
2051
2052
2053 (% style="color:blue" %)**AWS-IOT :**
2054
2055 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2056
2057
2058 == 6.4 How to change the uplink interval? ==
2059
2060
2061 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2062
2063
2064 == 6.5 How to upgrade firmware? ==
2065
2066
2067 LHT65N has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2068
2069 Except  for the early batch of LHT65N, all LHT65N shipped since middle of 2023 already have bootloader by default, so user only need to use the firmware without bootloader to update, this is the most easy way.
2070
2071
2072 === 6.5.1 Update firmware (Assume device already have bootloader) ===
2073
2074
2075 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2076
2077 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2078
2079
2080 === 6.5.2 Update firmware (Assume device doesn't have bootloader) ===
2081
2082
2083 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above 6.5.1 method to update.
2084
2085 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2086
2087 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2088
2089
2090
2091 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2092
2093 Connect PC and LHT65N via USB TTL adapter .
2094
2095 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2096
2097 **Connection method:**
2098
2099 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2100
2101 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2102
2103 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2104
2105 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2106
2107 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2108
2109
2110 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2111
2112 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2113
2114
2115 Reset node: Short-circuit the port3(RST) of the E2 cable to GND.
2116
2117 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2118
2119
2120 When this interface appears, it indicates that the download has been completed.
2121
2122 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2123
2124
2125 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND), and the node exits burning mode.
2126
2127
2128 == 6.6 Why can't I see the datalog information ==
2129
2130
2131 ~1. The time is not aligned, and the correct query command is not used.
2132
2133 2. Decoder error, did not parse the datalog data, the data was filtered.
2134
2135
2136 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2137
2138
2139 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2140
2141 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2142
2143
2144 After there is UART Connectio, run below commands:
2145
2146 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2147
2148 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2149
2150 Example output:
2151
2152 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2153
2154
2155 = 7. Order Info =
2156
2157
2158 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2159
2160 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2161
2162 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2163 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2164 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2165 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2166 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2167 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2168 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2169 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2170
2171 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2172
2173 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2174
2175 = 8. Packing Info =
2176
2177
2178 **Package Includes**:
2179
2180 * LHT65N Temperature & Humidity Sensor x 1
2181 * Optional external sensor
2182
2183 = 9. Reference material =
2184
2185
2186 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2187
2188 = 10. FCC Warning =
2189
2190
2191 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2192
2193 (1) This device may not cause harmful interference;
2194
2195 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0