Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||_mstalt="451230" height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introduction =
15
16 == 1.1 What is LHT65N LoRaWAN Temperature & Humidity Sensor ==
17
18
19 (((
20 The Dragino (% style="color:blue" %)**LHT65N Temperature & Humidity sensor**(%%) is a Long Range LoRaWAN Sensor. It includes a (% style="color:blue" %)**built-in Temperature & Humidity sensor**(%%) and has an external sensor connector to connect to an external (% style="color:blue" %)**Temperature Sensor.**
21 )))
22
23 (((
24 The LHT65N allows users to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
25 )))
26
27 (((
28 LHT65N has a (% style="color:blue" %)**built-in 2400mAh non-chargeable battery**(%%) which can be used for up to 10 years*.
29 )))
30
31 (((
32 LHT65N is full compatible with LoRaWAN v1.0.3 Class A protocol, it can work with a standard LoRaWAN gateway.
33 )))
34
35 (((
36 LHT65N supports (% style="color:blue" %)**Datalog Feature**(%%). It will record the data when there is no network coverage and users can retrieve the sensor value later to ensure no miss for every sensor reading.
37 )))
38
39 (((
40 *The actual battery life depends on how often to send data, please see the battery analyzer chapter.
41 )))
42
43
44 == 1.2 Features ==
45
46
47 * LoRaWAN v1.0.3 Class A protocol
48 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
49 * AT Commands to change parameters
50 * Remote configure parameters via LoRaWAN Downlink
51 * Firmware upgradeable via program port
52 * Built-in 2400mAh battery for up to 10 years of use.
53 * Built-in Temperature & Humidity sensor
54 * Optional External Sensors
55 * Tri-color LED to indicate working status
56 * Datalog feature (Max 3328 records)
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Built-in Temperature Sensor:**
62
63 * Resolution: 0.01 °C
64 * Accuracy Tolerance : Typ ±0.3 °C
65 * Long Term Drift: < 0.02 °C/yr
66 * Operating Range: -40 ~~ 85 °C
67
68 (% style="color:#037691" %)**Built-in Humidity Sensor:**
69
70 * Resolution: 0.04 %RH
71 * Accuracy Tolerance : Typ ±3 %RH
72 * Long Term Drift: < 0.25 RH/yr
73 * Operating Range: 0 ~~ 96 %RH
74
75 (% style="color:#037691" %)**External Temperature Sensor:**
76
77 * Resolution: 0.0625 °C
78 * ±0.5°C accuracy from -10°C to +85°C
79 * ±2°C accuracy from -55°C to +125°C
80 * Operating Range: -55 °C ~~ 125 °C
81
82 = 2. Connect LHT65N to IoT Server =
83
84 == 2.1 How does LHT65N work? ==
85
86
87 (((
88 LHT65N is configured as LoRaWAN OTAA Class A mode by default. Each LHT65N is shipped with a worldwide unique set of OTAA keys. To use LHT65N in a LoRaWAN network, first, we need to put the OTAA keys in LoRaWAN Network Server and then activate LHT65N.
89 )))
90
91 (((
92 If LHT65N is under the coverage of this LoRaWAN network. LHT65N can join the LoRaWAN network automatically. After successfully joining, LHT65N will start to measure environment temperature and humidity, and start to transmit sensor data to the LoRaWAN server. The default period for each uplink is 20 minutes.
93 )))
94
95
96 == 2.2 How to Activate LHT65N? ==
97
98
99 (((
100 The LHT65N has two working modes:
101 )))
102
103 * (((
104 (% style="color:blue" %)**Deep Sleep Mode**(%%): LHT65N doesn't have any LoRaWAN activation. This mode is used for storage and shipping to save battery life.
105 )))
106 * (((
107 (% style="color:blue" %)**Working Mode**(%%):  In this mode, LHT65N works as LoRaWAN Sensor mode to Join LoRaWAN network and send out the sensor data to the server. Between each sampling/tx/rx periodically, LHT65N will be in STOP mode (IDLE mode), in STOP mode, LHT65N has the same power consumption as Deep Sleep mode. 
108 )))
109
110 (((
111 The LHT65N is set in deep sleep mode by default; The ACT button on the front is to switch to different modes:
112 )))
113
114 [[image:image-20230717144740-2.png||_mstalt="430794" height="391" width="267"]]
115
116 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
117 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Test uplink status|(% style="background-color:#f2f2f2; width:225px" %)(((
119 If LHT65N is already Joined to rhe LoRaWAN network, LHT65N will send an uplink packet, if LHT65N has external sensor connected,(% style="color:blue" %)**Blue led** (%%)will blink once. If LHT65N has not external sensor, (% style="color:red" %)**Red led**(%%) will blink once.
120 )))
121 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
122 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, LHT65N will enter working mode and start to JOIN LoRaWAN network.
123 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after join in network.
124 )))
125 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means LHT65N is in Deep Sleep Mode.
126
127 == 2.3 Example to join LoRaWAN network ==
128
129
130 (% class="wikigeneratedid" %)
131 This section shows an example of how to join the TTN V3 LoRaWAN IoT server. Use with other LoRaWAN IoT servers is of a similar procedure.
132
133 (% class="wikigeneratedid" %)
134 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
135
136
137 (((
138 Assume the LPS8N is already set to connect to [[TTN V3 network>>url:https://eu1.cloud.thethings.network]], So it provides network coverage for LHT65N. Next we need to add the LHT65N device in TTN V3:
139 )))
140
141
142 === 2.3.1 Step 1: Create Device n TTN ===
143
144
145 (((
146 Create a device in TTN V3 with the OTAA keys from LHT65N.
147 )))
148
149 (((
150 Each LHT65N is shipped with a sticker with its device EUI, APP Key and APP EUI as below:
151 )))
152
153 [[image:image-20230426083319-1.png||_mstalt="431106" height="258" width="556"]]
154
155 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screenshot:
156
157 Add APP EUI in the application.
158
159 (% style="color:blue" %)**1. Create application**
160
161 [[image:image-20240304102625-1.png||_mstalt="427661" height="535" width="1015"]]
162
163
164 [[image:image-20220522232932-4.png||_mstalt="430157"]]
165
166 (% style="color:blue" %)**2. Register end device **
167
168 [[image:image-20220522232954-5.png||_mstalt="431847"]]
169
170
171
172 (% style="color:red" %)**Note: LHT65N use same payload as LHT65.**
173
174
175 [[image:image-20220522233026-6.png||_mstalt="429403"]]
176
177
178 Input APP EUI,  APP KEY and DEV EUI:
179
180
181 [[image:image-20220522233118-7.png||_mstalt="430430"]]
182
183
184 === 2.3.2 Step 2: Activate LHT65N by pressing the ACT button for more than 5 seconds. ===
185
186
187 (((
188 Use ACT button to activate LHT65N and it will auto-join to the TTN V3 network. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
189 )))
190
191 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
192
193
194 == 2.4 Uplink Payload (Fport~=2) ==
195
196
197 (((
198 The uplink payload includes totally 11 bytes. Uplink packets use FPORT=2 and (% style="color:#4f81bd" %)**every 20 minutes**(%%) send one uplink by default.
199 )))
200
201 (((
202 After each uplink, the (% style="color:blue" %)**BLUE LED**(%%) will blink once.
203 )))
204
205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
206 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
207 **Size(bytes)**
208 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)(((
209 **2**
210 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
211 **2**
212 )))|=(% style="width: 100px;background-color:#4F81BD;color:white" %)(((
213 **2**
214 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
215 **1**
216 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
217 **4**
218 )))
219 |(% style="width:97px" %)(((
220 Value
221 )))|(% style="width:39px" %)(((
222 [[BAT>>||anchor="H2.4.2BAT-BatteryInfo"]]
223 )))|(% style="width:100px" %)(((
224 (((
225 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
226 )))
227 )))|(% style="width:77px" %)(((
228 (((
229 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
230 )))
231 )))|(% style="width:47px" %)(((
232 [[Ext>>||anchor="H2.4.5Ext23"]] #
233 )))|(% style="width:51px" %)(((
234 [[Ext value>>||anchor="H2.4.6Extvalue"]]
235 )))
236
237 * The First 6 bytes: has fix meanings for every LHT65N.
238
239 * The 7th byte (EXT #): defines the external sensor model.
240
241 * The 8^^th^^ ~~ 11^^th^^ byte: the value for external sensor value. The definition is based on external sensor type. (If EXT=0, there won't be these four bytes.)
242
243 === 2.4.1 Decoder in TTN V3 ===
244
245
246 When the uplink payload arrives TTNv3, it shows HEX format and not friendly to read. We can add LHT65N decoder in TTNv3 for friendly reading.
247
248 Below is the position to put the decoder and LHT65N decoder can be download from here: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
249
250
251 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
252
253
254 === 2.4.2 BAT-Battery Info ===
255
256
257 These two bytes of BAT include the battery state and the actually voltage.
258
259 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
260 |=(% style="width: 69px; background-color:#4F81BD;color:white" %)(((
261 **Bit(bit)**
262 )))|=(% style="width: 253px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 155px;background-color:#4F81BD;color:white" %)[13:0]
263 |(% style="width:66px" %)(((
264 Value
265 )))|(% style="width:250px" %)(((
266 BAT Status
267 00(b): Ultra Low ( BAT <= 2.50v)
268 01(b): Low (2.50v <=BAT <= 2.55v)
269 10(b): OK (2.55v <= BAT <=2.65v)
270 11(b): Good (BAT >= 2.65v)
271 )))|(% style="width:152px" %)Actually BAT voltage
272
273 **(b)stands for binary**
274
275
276 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
277
278
279 Check the battery voltage for LHT65N.
280
281 * BAT status=(0Xcba4>>14)&0xFF=11 (BIN) ,very good
282
283 * Battery Voltage =0xCBA4&0x3FFF=0x0BA4=2980mV
284
285 === 2.4.3 Built-in Temperature ===
286
287
288 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
289
290 * Temperature:  0x0ABB/100=27.47℃
291
292 [[image:image-20220522235639-3.png||_mstalt="432120"]]
293
294 * Temperature:  (0xF5C6-65536)/100=-26.18℃
295
296 === 2.4.4 Built-in Humidity ===
297
298
299 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
300
301 * Humidity:    0x025C/10=60.4%
302
303 === 2.4.5 Ext # ===
304
305
306 Bytes for External Sensor:
307
308 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
309 |=(% style="width: 102px; background-color:#4F81BD;color:white" %)**EXT # **Value|=(% style="width: 323px;background-color:#4F81BD;color:white" %)External Sensor Type
310 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Temperature Sensor
311 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Temperature Sensor, Datalog Mod
312 |(% style="width:102px" %)0x06|(% style="width:319px" %)ADC Sensor(use with E2 Cable)
313 |(% style="width:102px" %)0x02|(% style="width:319px" %)TMP117 Sensor
314 |(% style="width:102px" %)0x11|(% style="width:319px" %)SHT31 Sensor
315 |(% style="width:102px" %)0x04|(% style="width:319px" %)Interrupt Mode
316 |(% style="width:102px" %)0x08|(% style="width:319px" %)Counting Mode
317 |(% style="width:102px" %)0x10|(% style="width:319px" %)E2 sensor (TMP117)with Unix Timestamp
318
319 === 2.4.6 Ext value ===
320
321 ==== 2.4.6.1 Ext~=1, E3 Temperature Sensor ====
322
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
325 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
326 **Size(bytes)**
327 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
328 **2**
329 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
330 2
331 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
332 **2**
333 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
334 1
335 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
336 2
337 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
338 2
339 )))
340 |(% style="width:110px" %)(((
341 Value
342 )))|(% style="width:71px" %)(((
343 BAT & BAT Status
344 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
345 Status & Ext
346 )))|(% style="width:64px" %)TempC_DS|(% style="width:64px" %)senseless
347
348 [[image:image-20220522235639-5.png||_mstalt="432848"]]
349
350
351 * DS18B20 temp=0x0ADD/100=27.81℃
352
353 The last 2 bytes of data are meaningless
354
355 [[image:image-20220522235639-6.png||_mstalt="433212"]]
356
357
358 * External temperature= (0xF54F-65536)/100=-27.37℃
359
360 F54F :  (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27.37℃
361
362 (0105 & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
363
364 The last 2 bytes of data are meaningless
365
366 If the external sensor is 0x01, and there is no external temperature connected. The temperature will be set to 7FFF which is 327.67℃
367
368
369 ==== 2.4.6.2 Ext~=9, E3 sensor with Unix Timestamp ====
370
371
372 (((
373 Timestamp mode is designed for LHT65N with E3 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
374 )))
375
376 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
377 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
378 **Size(bytes)**
379 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
380 **2**
381 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
382 **2**
383 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
384 **2**
385 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
386 **1**
387 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
388 **4**
389 )))
390 |(% style="width:110px" %)(((
391 Value
392 )))|(% style="width:71px" %)(((
393 External temperature
394 )))|(% style="width:99px" %)(((
395 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
396 )))|(% style="width:132px" %)(((
397 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
398 )))|(% style="width:54px" %)(((
399 Status & Ext
400 )))|(% style="width:64px" %)(((
401 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
402 )))
403
404 * **Battery status & Built-in Humidity**
405
406 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
407 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
408 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
409 BAT Status
410 00(b): Ultra Low ( BAT <= 2.50v)
411 01(b): Low  (2.50v <=BAT <= 2.55v)
412 10(b): OK   (2.55v <= BAT <=2.65v)
413 11(b): Good   (BAT >= 2.65v)
414 )))|(% style="width:132px" %)(((
415 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
416 )))
417
418 * **Status & Ext Byte**
419
420 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
421 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
422 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
423
424 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
425 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
426 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
427
428
429
430 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
431
432
433 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
434 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
435 **Size(bytes)**
436 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
437 **2**
438 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
439 2
440 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
441 **2**
442 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
443 1
444 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
445 2
446 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
447 2
448 )))
449 |(% style="width:110px" %)(((
450 Value
451 )))|(% style="width:71px" %)(((
452 BAT & BAT Status
453 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
454 Status & Ext
455 )))|(% style="width:64px" %)ADC_Value|(% style="width:64px" %)senseless
456
457 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
458
459 be used to power the external ADC sensor; user can control the power on time for this
460
461 (% style="color:blue" %)**sensor by setting:**
462
463 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
464
465 **For example:**
466
467 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
468
469
470 Or use **downlink command A2** to set the same.
471
472 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
473
474 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
475
476 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
477
478
479 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
480
481 [[image:image-20220628150714-4.png||_mstalt="431054"]]
482
483
484 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
485
486
487 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
488
489 [[image:image-20220628151005-5.png||_mstalt="429546"]]
490
491
492 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
493
494 [[image:image-20220628151056-6.png||_mstalt="431873"]]
495
496
497 3) Within range
498
499 [[image:image-20220628151143-7.png||_mstalt="431210"]]
500
501
502 ==== 2.4.6.4 Ext~=2 TMP117 Sensor(Since Firmware v1.3) ====
503
504
505 [[image:image-20230717151328-8.png||_mstalt="433173" height="463" width="384"]]
506
507
508 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
509
510
511 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
512 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
513 **Size(bytes)**
514 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
515 **2**
516 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
517 2
518 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
519 **2**
520 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
521 1
522 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
523 2
524 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
525 2
526 )))
527 |(% style="width:110px" %)(((
528 Value
529 )))|(% style="width:71px" %)(((
530 BAT & BAT Status
531 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
532 Status & Ext
533 )))|(% style="width:64px" %)TempC_Temp117|(% style="width:64px" %)senseless
534
535 [[image:image-20220906102307-7.png||_mstalt="430443"]]
536
537 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**
538
539 The external cable NE2 can be use for MOD4 and MOD8
540
541
542 ==== 2.4.6.5 Ext~=11 SHT31 Sensor (Since Firmware v1.4.1) ====
543
544
545 [[image:image-20230717151245-7.png||_mstalt="432133" height="510" width="509"]]
546
547 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
548
549 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
550 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
551 **Size(bytes)**
552 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
553 **2**
554 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
555 2
556 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
557 **2**
558 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
559 1
560 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
561 2
562 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
563 2
564 )))
565 |(% style="width:110px" %)(((
566 Value
567 )))|(% style="width:71px" %)(((
568 BAT & BAT Status
569 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
570 Status & Ext
571 )))|(% style="width:64px" %)Ext_TempC_SHT|(% style="width:64px" %)Ext_Hum_SHT
572
573 [[image:SHT31.png||_mstalt="104715"]]
574
575
576 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
577
578
579 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
580
581
582 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
583
584 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
585
586 In Open State, the power consumption is the same as if there is no probe
587
588 In Close state, the power consumption will be 3uA higher than normal.
589
590 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
591
592
593 Ext=4,Interrupt Sensor:
594
595 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
596 |(% style="width:101px" %)(((
597 **AT+EXT=4,1**
598 )))|(% style="width:395px" %)(((
599 **Sent uplink packet in both rising and falling interrupt**
600 )))
601 |(% style="width:101px" %)(((
602 **AT+EXT=4,2**
603 )))|(% style="width:395px" %)(((
604 **Sent uplink packet only in falling interrupt**
605 )))
606 |(% style="width:101px" %)(((
607 **AT+EXT=4,3**
608 )))|(% style="width:395px" %)(((
609 **Sent uplink packet only in rising interrupt**
610 )))
611
612 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
613 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
614 **Size(bytes)**
615 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
616 **2**
617 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
618 2
619 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
620 **2**
621 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
622 1
623 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
624 1
625 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
626 1
627 )))|=(% style="width: 55px;background-color:#4F81BD;color:white" %)(((
628 3
629 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
630 3
631 )))
632 |(% style="width:110px" %)(((
633 Value
634 )))|(% style="width:71px" %)(((
635 BAT & BAT Status
636 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
637 Status & Ext
638 )))|(% style="width:64px" %)Exti_pin_level|(% style="width:64px" %)Exti_status|(% style="width:64px" %)Exit_count|(% style="width:64px" %)Exit_duration
639
640 Trigger by falling edge:
641
642 [[image:image-20220906101145-2.png||_mstalt="428324"]]
643
644
645 Trigger by raising edge:
646
647 [[image:image-20220906101145-3.png||_mstalt="428688"]]
648
649
650 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
651
652
653 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
654
655
656 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
657
658 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
659
660
661 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
662
663 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
664
665
666 Ext=8, Counting Sensor ( 4 bytes):
667
668 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
669 |(% style="width:131px" %)(((
670 **AT+EXT=8,0**
671 )))|(% style="width:195px" %)(((
672 **Count at falling interrupt**
673 )))
674 |(% style="width:131px" %)(((
675 **AT+EXT=8,1**
676 )))|(% style="width:195px" %)(((
677 **Count at rising interrupt**
678 )))
679 |(% style="width:131px" %)(((
680 **AT+SETCNT=60**
681 )))|(% style="width:195px" %)(((
682 **Sent current count to 60**
683 )))
684
685 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:420px" %)
686 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
687 **Size(bytes)**
688 )))|=(% style="width: 80px;background-color:#4F81BD;color:white" %)(((
689 **2**
690 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
691 2
692 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
693 **2**
694 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
695 1
696 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
697 4
698 )))
699 |(% style="width:110px" %)(((
700 Value
701 )))|(% style="width:71px" %)(((
702 BAT & BAT Status
703 )))|(% style="width:99px" %)TempC_SHT|(% style="width:132px" %)Hum_SHT|(% style="width:54px" %)(((
704 Status & Ext
705 )))|(% style="width:64px" %)Exit_count
706
707 [[image:image-20220906101320-6.png||_mstalt="428064"]]
708
709
710 (% style="color:blue" %)**A2 downlink Command:**
711
712 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
713
714 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
715
716 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
717
718 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
719
720 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
721
722
723 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
724
725
726 (((
727 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
728 )))
729
730 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
731 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
732 **Size(bytes)**
733 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
734 **2**
735 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
736 **2**
737 )))|=(% style="width: 120px;background-color:#4F81BD;color:white" %)(((
738 **2**
739 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
740 **1**
741 )))|=(% style="width: 70px;background-color:#4F81BD;color:white" %)(((
742 **4**
743 )))
744 |(% style="width:110px" %)(((
745 Value
746 )))|(% style="width:71px" %)(((
747 External temperature
748 )))|(% style="width:99px" %)(((
749 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
750 )))|(% style="width:132px" %)(((
751 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
752 )))|(% style="width:54px" %)(((
753 Status & Ext
754 )))|(% style="width:64px" %)(((
755 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
756 )))
757
758 * **Battery status & Built-in Humidity**
759
760 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
761 |=(% style="width: 69px;background-color:#4F81BD;color:white" %)Bit(bit)|=(% style="width: 258px;background-color:#4F81BD;color:white" %)[15:14]|=(% style="width: 134px;background-color:#4F81BD;color:white" %)[11:0]
762 |(% style="width:67px" %)Value|(% style="width:256px" %)(((
763 BAT Status
764 00(b): Ultra Low ( BAT <= 2.50v)
765 01(b): Low  (2.50v <=BAT <= 2.55v)
766 10(b): OK   (2.55v <= BAT <=2.65v)
767 11(b): Good   (BAT >= 2.65v)
768 )))|(% style="width:132px" %)(((
769 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
770 )))
771
772 * **Status & Ext Byte**
773
774 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
775 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
776 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
777
778 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
779 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
780 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
781
782
783
784 == 2.5 Show data on Datacake ==
785
786
787 (((
788 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
789 )))
790
791
792 (((
793 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
794 )))
795
796 (((
797 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
798 )))
799
800
801 (((
802 Add Datacake:
803 )))
804
805 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
806
807
808 Select default key as Access Key:
809
810
811 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
812
813
814 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
815
816 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
817
818
819 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
820
821
822 == 2.6 Datalog Feature ==
823
824
825 (((
826 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
827 )))
828
829
830 === 2.6.1 Ways to get datalog via LoRaWAN ===
831
832
833 There are two methods:
834
835 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
836
837
838 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
839
840
841 (% style="color:red" %)**Note for method 2:**
842
843 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
844 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
845
846 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
847
848 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
849
850
851 === 2.6.2 Unix TimeStamp ===
852
853
854 LHT65N uses Unix TimeStamp format based on
855
856
857 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
858
859
860 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
861
862 Below is the converter example
863
864 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
865
866
867 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
868
869
870 === 2.6.3 Set Device Time ===
871
872
873 (((
874 (% style="color:blue" %)**There are two ways to set device's time:**
875 )))
876
877 (((
878 **1.  Through LoRaWAN MAC Command (Default settings)**
879 )))
880
881 (((
882 User need to set SYNCMOD=1 to enable sync time via MAC command.
883 )))
884
885 (((
886 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
887 )))
888
889 (((
890 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
891 )))
892
893
894 (((
895 **2. Manually Set Time**
896 )))
897
898 (((
899 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
900 )))
901
902
903 === 2.6.4 Poll sensor value ===
904
905
906 User can poll sensor value based on timestamps from the server. Below is the downlink command.
907
908 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:428px" %)
909 |(% style="background-color:#4f81bd; color:white; width:59px" %)**1byte**|(% style="background-color:#4f81bd; color:white; width:128px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:124px" %)**4bytes**|(% style="background-color:#4f81bd; color:white; width:117px" %)**1byte**
910 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
911
912 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
913
914 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
915
916 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
917
918 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
919
920
921 === 2.6.5 Datalog Uplink payload ===
922
923
924 The Datalog poll reply uplink will use below payload format.
925
926 **Retrieval data payload:**
927
928 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
929 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
930 **Size(bytes)**
931 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**4**
932 |(% style="width:97px" %)Value|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
933
934 **Poll message flag & Ext:**
935
936 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
937 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Bits**|(% style="background-color:#4f81bd; color:white; width:90px" %)**7**|(% style="background-color:#4f81bd; color:white; width:100px" %)**6**|(% style="background-color:#4f81bd; color:white; width:90px" %)**5**|(% style="background-color:#4f81bd; color:white; width:100px" %)**4**|(% style="background-color:#4f81bd; color:white; width:60px" %)**[3:0]**
938 |(% style="width:96px" %)Status&Ext|(% style="width:124px" %)No ACK Message|(% style="width:146px" %)Poll Message Flag|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
939
940 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
941
942 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
943
944 * Poll Message Flag is set to 1.
945
946 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
947
948 For example, in US915 band, the max payload for different DR is:
949
950 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
951
952 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
953
954 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
955
956 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
957
958 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
959
960
961 **Example:**
962
963 If LHT65N has below data inside Flash:
964
965 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
966 |=(% style="width: 88px; background-color:#4F81BD;color:white" %)Flash Add|=(% style="width: 132px; background-color:#4F81BD;color:white" %)**Unix Time**|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**Ext**|=(% style="width: 105px; background-color:#4F81BD;color:white" %)**BAT voltage**|=(% style="width: 145px; background-color:#4F81BD;color:white" %)**Value**
967 |(% style="width:89px" %)80196E0|(% style="width:133px" %)21/1/19 04:27:03|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=22.00 sht hum=32.6 ds temp=327.67
968 |(% style="width:89px" %)80196F0|(% style="width:133px" %)21/1/19 04:28:57|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.90 sht hum=33.1 ds temp=327.67
969 |(% style="width:89px" %)8019600|(% style="width:133px" %)21/1/19 04:30:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.81 sht hum=33.4 ds temp=327.67
970 |(% style="width:89px" %)8019610|(% style="width:133px" %)21/1/19 04:40:30|(% style="width:42px" %)1|(% style="width:103px" %)3145|(% style="width:131px" %)sht temp=21.65 sht hum=33.7 ds temp=327.67
971 |(% style="width:89px" %)8019620|(% style="width:133px" %)21/1/19 04:50:30|(% style="width:42px" %)1|(% style="width:103px" %)3147|(% style="width:131px" %)sht temp=21.55 sht hum=34.1 ds temp=327.67
972 |(% style="width:89px" %)8019630|(% style="width:133px" %)21/1/19 04:00:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.50 sht hum=34.1 ds temp=327.67
973 |(% style="width:89px" %)8019640|(% style="width:133px" %)21/1/19 04:10:30|(% style="width:42px" %)1|(% style="width:103px" %)3149|(% style="width:131px" %)sht temp=21.43 sht hum=34.6 ds temp=327.67
974 |(% style="width:89px" %)8019650|(% style="width:133px" %)21/1/19 04:20:30|(% style="width:42px" %)1|(% style="width:103px" %)3151|(% style="width:131px" %)sht temp=21.35 sht hum=34.9 ds temp=327.67
975
976 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
977
978 Where : Start time: 60065F97 = time 21/1/19 04:27:03
979
980 Stop time: 60066DA7= time 21/1/19 05:27:03
981
982
983 **LHT65N will uplink this payload.**
984
985 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
986
987
988 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
989
990 Where the first 11 bytes is for the first entry:
991
992 7FFF089801464160065F97
993
994 Ext sensor data=0x7FFF/100=327.67
995
996 Temp=0x088E/100=22.00
997
998 Hum=0x014B/10=32.6
999
1000 poll message flag & Ext=0x41,means reply data,Ext=1
1001
1002 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
1003
1004
1005 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
1006
1007
1008 (((
1009 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
1010 )))
1011
1012 (((
1013 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
1014
1015
1016 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
1017
1018 (((
1019 (% class="box infomessage" %)
1020 (((
1021 **AT+LEDALARM=1** :       Enable LED visual Alarm.  (% style="color:#4f81bd" %)**Downlink Command: 3601**
1022 )))
1023 )))
1024
1025 **DS18B20 and TMP117 Threshold Alarm(The mod1 use for external sensors (DS18B20 and TMP117 )**
1026
1027 **~ AT+WMOD=1,60,-10,20**
1028
1029
1030 Explain:
1031
1032 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 1,Threshold Alarm(Out of range alarm)**
1033 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1034 * (% style="color:#037691" %)**parameter3 & parameter4: **(%%)Temperature alarm range is **-10** to 20°C
1035
1036 (% style="color:#4f81bd" %)**Downlink Command:**
1037
1038 **Example: **A5013CFC180014
1039
1040 MOD=01
1041
1042 CITEMP=3C(S) =60(S)
1043
1044 TEMPlow=FC18 = -10(℃)
1045
1046 TEMPhigh=0014=20(℃)
1047
1048
1049 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)(The mod2 use for external sensors (DS18B20 and TMP117)**
1050
1051 **AT+WMOD=2,60,5** 
1052
1053 Explain:
1054
1055 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 2,Fluctuation alarm**
1056 * (% style="color:#037691" %)**parameter2:**(%%) Sampling Interval is **60**s.
1057 * (% style="color:#037691" %)**parameter3: **(%%)The temperature fluctuation is +-5 °C
1058
1059 (% style="color:#4f81bd" %)**Downlink Command**
1060
1061 **Example: **A5023C05
1062
1063 MOD=02
1064
1065 CITEMP=3C(S)=60(S)
1066
1067 temperature fluctuation=05(℃)
1068
1069
1070 **Sampling multiple times and uplink together(The mod3 can be used for internal and external sensors)(Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
1071
1072 **AT+WMOD=3,1,60,20,-16,32,1**   
1073
1074 Explain:
1075
1076 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3,Sampling multiple times and uplink together**
1077 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1078 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.(This parameter has no effect on internal sensors)
1079 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1080 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1081 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1082
1083 (% style="color:#4f81bd" %)**Downlink Command:**
1084
1085 **Example: **A50301003C14FFF0002001
1086
1087 MOD=03
1088
1089 TEMP=DS18B20
1090
1091 CITEMP=003C(S)=60(S)
1092
1093 Total number of acquisitions=14
1094
1095 TEMPlow=FFF0=-16(℃)
1096
1097 TEMPhigh=0020=20(℃)
1098
1099 ARTEMP=01
1100
1101
1102 **Uplink payload( Fport=3)**
1103
1104 **Example: CBEA**01**0992**//0A41//**09C4**
1105
1106 BatV=CBEA
1107
1108 TEMP=DS18B20
1109
1110 Temp1=0992  ~/~/ 24.50℃
1111
1112 Temp2=0A41  ~/~/ 26.25℃
1113
1114 Temp3=09C4  ~/~/ 25.00℃
1115
1116 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
1117
1118 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
1119 )))
1120
1121
1122 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
1123
1124
1125 (% class="box infomessage" %)
1126 (((
1127 (((
1128 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
1129 )))
1130
1131 (((
1132 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
1133 )))
1134
1135 (((
1136 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
1137 )))
1138
1139 (((
1140 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1141 )))
1142
1143 (((
1144 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1145 )))
1146 )))
1147
1148 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1149
1150 Total bytes: 8 bytes
1151
1152 **Example:**AA0100010001003C
1153
1154 WMOD=01
1155
1156 CITEMP=0001
1157
1158 TEMPlow=0001
1159
1160 TEMPhigh=003C
1161
1162
1163 == 2.8 LED Indicator ==
1164
1165
1166 The LHT65 has a triple color LED which for easy showing different stage .
1167
1168 While user press ACT button, the LED will work as per LED status with ACT button.
1169
1170 In a normal working state:
1171
1172 * For each uplink, the BLUE LED or RED LED will blink once.
1173 BLUE LED when external sensor is connected.
1174 * RED LED when external sensor is not connected
1175 * For each success downlink, the PURPLE LED will blink once
1176
1177
1178
1179 == 2.9 installation ==
1180
1181
1182 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1183
1184
1185 = 3. Sensors and Accessories =
1186
1187 == 3.1 E2 Extension Cable ==
1188
1189
1190 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1191
1192
1193 **1m long breakout cable for LHT65N. Features:**
1194
1195 * (((
1196 Use for AT Command, works for both LHT52/LHT65N
1197 )))
1198 * (((
1199 Update firmware for LHT65N, works for both LHT52/LHT65N
1200 )))
1201 * (((
1202 Supports ADC mode to monitor external ADC
1203 )))
1204 * (((
1205 Supports Interrupt mode
1206 )))
1207 * (((
1208 Exposed All pins from the LHT65N Type-C connector.
1209
1210
1211
1212 )))
1213
1214 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1215
1216
1217 == 3.2 E3 Temperature Probe ==
1218
1219
1220 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1221
1222
1223 Temperature sensor with 2 meters cable long
1224
1225 * Resolution: 0.0625 °C
1226 * ±0.5°C accuracy from -10°C to +85°C
1227 * ±2°C accuracy from -55°C to +125°C
1228 * Operating Range: -40 ~~ 125 °C
1229 * Working voltage 2.35v ~~ 5v
1230
1231
1232
1233 == 3.3 E31F Temperature Probe ==
1234
1235
1236 [[image:65N-E31F-1.jpg||_mstalt="172627" height="169" width="170"]] [[image:image-20230717151424-9.png||_mstalt="432497" height="221" width="204"]](% style="display:none" %)
1237
1238
1239 Temperature sensor with 1 meters cable long
1240
1241
1242 **Built-in Temperature Sensor:**
1243
1244 * Resolution: 0.01 °C
1245 * Accuracy Tolerance : Typ ±0.3 °C
1246 * Long Term Drift: < 0.02 °C/yr
1247 * Operating Range: -40 ~~ 80 °C
1248
1249 **Built-in Humidity Sensor:**
1250
1251 * Resolution: 0.04 % RH
1252 * Accuracy Tolerance : Typ ±3 % RH
1253 * Long Term Drift: < 0.02 °C/yr
1254 * Operating Range: 0 ~~ 96 % RH
1255
1256 **External Temperature Sensor :**
1257
1258 * Resolution: 0.01 °C
1259 * Accuracy Tolerance : Typical ±0.3 °C
1260 * Long Term Drift: < 0.02 °C/yr
1261 * Operating Range: -40 ~~ 125 °C
1262
1263 **External Humidity Sensor :**
1264
1265 * Resolution: 0.04 % RH
1266 * Accuracy Tolerance : Typ ±3 % RH
1267 * Long Term Drift: < 0.02 °C/yr
1268 * Operating Range: 0 ~~ 96 % RH
1269
1270
1271
1272 == 3.4 NE117 Temperature Probe (Model: LHT65N-NE117) ==
1273
1274
1275 External Temperature Sensor – NE117:
1276 Equip with TMP117A temperature sensor. TMP117 IC is NIST traceability Sensor by TI.
1277
1278 * Silica gel cable
1279 * ±0.1 °C (maximum) from –20 °C to 50 °C
1280 * ±0.2 °C (maximum) from –40 °C to 100 °C
1281 * ±0.3 °C (maximum) from –55 °C to 150 °C
1282
1283 [[image:image-20240422093011-1.png||height="349" width="350"]]
1284
1285
1286 == 3.5 Dry Contact Probe (Model: LHT65N-DC) ==
1287
1288
1289 * Design for Pulse Counting(Ext=8), Alarm (Ext=4),Open/Close Detect (Ext=4)
1290 * 3 wires: VCC/GND/INT
1291 * Cable Lenght: 1 meter
1292
1293 [[image:image-20240422093343-2.png||height="288" width="282"]]
1294
1295 LHT65-DC can be used to connect various types of external sensor. below.
1296
1297 User can refer this link for the instructions: [[LHT65-DC Connection Instruction>>LHT65-DC Connection Instruction]].
1298
1299 [[image:image-20240422100149-5.png||height="163" width="510"]]
1300
1301 [[image:image-20240422100217-6.png||height="141" width="507"]]
1302
1303
1304 == 3.6 Door Sensor (Model: LHT65N-DS) ==
1305
1306
1307 * Aluminum Alloy Door Sensor
1308 * Detect Distance: ~~3cm
1309 * Cable Lenght: 1 meter
1310
1311 Notice: When order LHT65N-DS, the device is by default set to: a) AT+EXT=4,1 ; b) Default Uplink Interval TDC is 12 hour.
1312
1313
1314 [[image:image-20240422094326-3.png||height="341" width="365"]]
1315
1316
1317 == 3.6 NIS Certificate Probe (Model: LHT65N-NIS) ==
1318
1319
1320 External Probe:
1321
1322 * Unique NIST Certi cate for each probe
1323 * External NIST Traceable probe with unique ID
1324
1325 Notice: AT+PID=1 is by default enable, so LHT65N will also uplink the probe ID to platform.
1326
1327 [[image:image-20240422094702-4.png||height="349" width="351"]]
1328
1329
1330 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1331
1332
1333 (((
1334 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1335 )))
1336
1337 * (((
1338 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1339 )))
1340
1341 * (((
1342 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1343 )))
1344
1345 (((
1346 There are two kinds of commands to configure LHT65N, they are:
1347 )))
1348
1349 * (((
1350 (% style="color:#4f81bd" %)**General Commands**.
1351 )))
1352
1353 (((
1354 These commands are to configure:
1355 )))
1356
1357 1. (((
1358 General system settings like: uplink interval.
1359 )))
1360 1. (((
1361 LoRaWAN protocol & radio-related commands.
1362 )))
1363
1364 (((
1365 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1366 )))
1367
1368 * (((
1369 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1370 )))
1371
1372 (((
1373 These commands are only valid for LHT65N, as below:
1374 )))
1375
1376
1377 == 4.1 Set Transmit Interval Time ==
1378
1379
1380 Feature: Change LoRaWAN End Node Transmit Interval.
1381
1382
1383 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1384
1385 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
1386 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
1387 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1388 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1389
1390 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1391
1392 Format: Command Code (0x01) followed by 3 bytes time value.
1393
1394 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1395
1396 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1397
1398 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1399
1400
1401
1402 == 4.2 Set External Sensor Mode ==
1403
1404
1405 Feature: Change External Sensor Mode.
1406
1407 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1408
1409 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:468px" %)
1410 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:153px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:160px" %)**Response**
1411 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1412 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1413 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1414
1415 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1416
1417 Total bytes: 2 ~~ 5 bytes
1418
1419 **Example:**
1420
1421 * 0xA201: Set external sensor type to E1
1422
1423 * 0xA209: Same as AT+EXT=9
1424
1425 * 0xA20702003c: Same as AT+SETCNT=60
1426
1427
1428
1429 == 4.3 Enable/Disable uplink DS18B20 Temperature probe ID ==
1430
1431
1432 **Feature**: If PID is enabled, LHT65N will send the DS18B20 temperature probe ID on:
1433
1434 * First Packet after OTAA Join
1435 * Every 24 hours since the first packet.
1436
1437 PID is default set to disable (0)
1438
1439 (% style="color:red" %)**Notice: This feature only valid when EXT=1 or EXt=9**
1440
1441 (% style="color:#4f81bd" %)**AT Command:**
1442
1443 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:381px" %)
1444 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:138px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:88px" %)**Response**
1445 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1446
1447 (% style="color:#4f81bd" %)**Downlink Command:**
1448
1449 * **0xA800**  **~-~->** AT+PID=0
1450 * **0xA801**     **~-~->** AT+PID=1
1451
1452
1453
1454 == 4.4 Set Password ==
1455
1456
1457 Feature: Set device password, max 9 digits
1458
1459 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1460
1461 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:372px" %)
1462 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:128px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:89px" %)**Response**
1463 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1464 123456
1465
1466 OK
1467 )))
1468 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1469
1470 (% style="color:#4f81bd" %)**Downlink Command:**
1471
1472 No downlink command for this feature.
1473
1474
1475 == 4.5 Quit AT Command ==
1476
1477
1478 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1479
1480 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1481
1482 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
1483 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:191px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:87px" %)**Response**
1484 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1485
1486 (% style="color:#4f81bd" %)**Downlink Command:**
1487
1488 No downlink command for this feature.
1489
1490
1491 == 4.6 Set to sleep mode ==
1492
1493
1494 Feature: Set device to sleep mode
1495
1496 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1497 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1498
1499 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1500
1501 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:513px" %)
1502 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:140px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:218px" %)**Response**
1503 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1504 Clear all stored sensor data…
1505
1506 OK
1507 )))
1508
1509 (% style="color:#4f81bd" %)**Downlink Command:**
1510
1511 * There is no downlink command to set to Sleep mode.
1512
1513
1514
1515 == 4.7 Set system time ==
1516
1517
1518 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1519
1520 (% style="color:#4f81bd" %)**AT Command:**
1521
1522 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:506px" %)
1523 |(% style="background-color:#4f81bd; color:white; width:188px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:318px" %)**Function**
1524 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1525 OK
1526
1527 Set System time to 2021-01-20 00:59:12
1528 )))
1529
1530 (% style="color:#4f81bd" %)**Downlink Command:**
1531
1532 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1533
1534
1535 == 4.8 Set Time Sync Mode ==
1536
1537
1538 (((
1539 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1540 )))
1541
1542 (((
1543 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1544 )))
1545
1546 (% style="color:#4f81bd" %)**AT Command:**
1547
1548 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:475px" %)
1549 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:317px" %)**Function**
1550 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1551
1552 (% style="color:#4f81bd" %)**Downlink Command:**
1553
1554 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1555 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1556
1557
1558 == 4.9 Set Time Sync Interval ==
1559
1560
1561 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1562
1563 (% style="color:#4f81bd" %)**AT Command:**
1564
1565 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:472px" %)
1566 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:314px" %)**Function**
1567 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1568
1569 (% style="color:#4f81bd" %)**Downlink Command:**
1570
1571 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1572
1573
1574 == 4.10 Get data ==
1575
1576
1577 Feature: Get the current sensor data.
1578
1579 (% style="color:#4f81bd" %)**AT Command:**
1580
1581 * **AT+GETSENSORVALUE=0**      ~/~/ The serial port gets the reading of the current sensor
1582 * **AT+GETSENSORVALUE=1**      ~/~/ The serial port gets the current sensor reading and uploads it.
1583
1584
1585
1586 == 4.11 Print data entries base on page ==
1587
1588
1589 Feature: Print the sector data from start page to stop page (max is 416 pages).
1590
1591 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1592
1593 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1594 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1595 |(% style="width:156px" %)(((
1596 AT+PDTA=1,3
1597 Print page 1 to 3
1598 )))|(% style="width:311px" %)(((
1599 8019500 19/6/26 16:48 1 2992 sht temp=28.21 sht hum=71.5 ds temp=27.31
1600 8019510 19/6/26 16:53 1 2994 sht temp=27.64 sht hum=69.3 ds temp=26.93
1601 8019520 19/6/26 16:58 1 2996 sht temp=28.39 sht hum=72.0 ds temp=27.06
1602 8019530 19/6/26 17:03 1 2996 sht temp=27.97 sht hum=70.4 ds temp=27.12
1603 8019540 19/6/26 17:08 1 2996 sht temp=27.80 sht hum=72.9 ds temp=27.06
1604 8019550 19/6/26 17:13 1 2998 sht temp=27.30 sht hum=72.4 ds temp=26.68
1605 8019560 19/6/26 17:22 1 2992 sht temp=26.27 sht hum=62.3 ds temp=26.56
1606 8019570
1607 8019580
1608 8019590
1609 80195A0
1610 80195B0
1611 80195C0
1612 80195D0
1613 80195E0
1614 80195F0
1615
1616 OK
1617 )))
1618
1619 (% style="color:#4f81bd" %)**Downlink Command:**
1620
1621 No downlink commands for feature
1622
1623
1624 == 4.12 Print last few data entries ==
1625
1626
1627 Feature: Print the last few data entries
1628
1629 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1630
1631 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1632 |(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1633 |(% style="width:156px" %)(((
1634 AT+PLDTA=5
1635 Print last 5 entries
1636 )))|(% style="width:311px" %)(((
1637 Stop Tx and RTP events when read sensor data
1638 1 19/6/26 13:59 1 3005 sht temp=27.09 sht hum=79.5 ds temp=26.75
1639 2 19/6/26 14:04 1 3007 sht temp=26.65 sht hum=74.8 ds temp=26.43
1640 3 19/6/26 14:09 1 3007 sht temp=26.91 sht hum=77.9 ds temp=26.56
1641 4 19/6/26 14:15 1 3007 sht temp=26.93 sht hum=76.7 ds temp=26.75
1642 5 19/6/26 14:20 1 3007 sht temp=26.78 sht hum=76.6 ds temp=26.43
1643 Start Tx and RTP events
1644 OK
1645 )))
1646
1647 (% style="color:#4f81bd" %)**Downlink Command:**
1648
1649 No downlink commands for feature
1650
1651
1652 == 4.13 Clear Flash Record ==
1653
1654
1655 Feature: Clear flash storage for data log feature.
1656
1657 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1658
1659 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1660 |(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1661 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1662 Clear all stored sensor data…
1663
1664 OK
1665 )))
1666
1667 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1668
1669 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1670
1671
1672
1673 == 4.14 Auto Send None-ACK messages ==
1674
1675
1676 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1677
1678 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1679
1680 The default factory setting is 0
1681
1682 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1683 |=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 121px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1684 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1685
1686 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1687
1688 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1689
1690
1691
1692 == 4.15 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1693
1694
1695 Feature: Set internal and external temperature sensor alarms.
1696
1697 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1698 |=(% style="width: 250px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**Response**
1699 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1700
1701 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1702
1703 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1704
1705 0): Cancel
1706
1707 1): Threshold alarm
1708
1709 2): Fluctuation alarm
1710
1711 3): Sampling multiple times and uplink together
1712
1713
1714 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1715
1716 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1717
1718
1719 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1720
1721 **1):  If Alarm Mode is set to 1:** Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1722
1723 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1724
1725
1726 **2):  If Alarm Mode is set to 2:** Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1727
1728 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1729
1730 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1731
1732
1733 **3): If Alarm Mode is set to 3:**
1734
1735 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
1736 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
1737 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
1738 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
1739 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
1740 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
1741
1742 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1743
1744 0xA5 00 ~-~- AT+WMOD=0.
1745
1746 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1747
1748 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1749
1750 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1751
1752 0xA5 03 01 00 3C 14 FF F0 00 20 01~-~-AT+WMOD=3,1,60,20,-16,32,1
1753
1754 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1755
1756
1757 == 4.16 Get Firmware Version Info(Since V1.4.0) ==
1758
1759
1760 Feature: use downlink to get firmware version.
1761
1762 (% style="color:#4f81bd" %)**Downlink Command: 0x2601**
1763
1764 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:360px" %)
1765 |=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink Control Type**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**FPort**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Type Code**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink payload size(bytes)**
1766 |(% style="width:90px" %)Get Firmware Version Info|(% style="width:90px" %)Any|(% style="width:90px" %)26|(% style="width:90px" %)2
1767
1768 Device will reply with firmware version info, device info. frequency band info. detail please check device user manual.
1769
1770 Total 7 bytes Example(**FPort=5**): [[image:image-20240605120110-2.png]]
1771
1772 (% style="color:#037691" %)**Sensor model**
1773
1774 0x0b: LHT65N
1775
1776
1777 (% style="color:#037691" %)**Firmware version**
1778
1779 firm_ver=(bytes[1]&0x0f)+'.'+(bytes[2]>>4&0x0f)+'.'+(bytes[2]&0xOf);
1780
1781 Example: 0x0140=V1.4.0
1782
1783
1784 (% style="color:#037691" %)** Frequency Band:**
1785
1786 * 0x01: EU868
1787 * 0x02: US915
1788 * 0x03: IN865
1789 * 0x04: AU915
1790 * 0x05: KZ865
1791 * 0x06: RU864
1792 * 0x07: AS923
1793 * 0x08: AS923-1
1794 * 0x09: AS923-2
1795 * 0xa0: AS923-3
1796
1797 (% style="color:#037691" %)**Subband**
1798
1799 value 0x00 ~~ 0x08
1800
1801 Example: 0xFF ~-~--> " NULL"
1802
1803
1804 (% style="color:#037691" %)**Battery**
1805
1806 Ex1:  0x0C4E(H) = 3150(D) = 3150mV =3.15V
1807
1808 Ex2:  0x0CF8(H) = 3320(D) = 3320mV =3.32V
1809
1810
1811 = 5. Battery & How to replace =
1812
1813 == 5.1 Battery Type ==
1814
1815
1816 (((
1817 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1818 )))
1819
1820 (((
1821 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1822
1823 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1824 )))
1825
1826 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1827
1828
1829 == 5.2 Replace Battery ==
1830
1831
1832 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1833
1834 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1835
1836
1837 == 5.3 Battery Life Analyze ==
1838
1839
1840 (((
1841 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1842 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1843 )))
1844
1845
1846 (((
1847 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1848 )))
1849
1850
1851 = 6. FAQ =
1852
1853 == 6.1 How to connect to LHT65N UART interface? ==
1854
1855
1856 The LHT65N has the UART interface in its Type-C. The UART Interface can be used for
1857
1858 * Send AT Commands, and get output from LHT65N
1859 * Upgrade firmwre of LHT65N.
1860
1861 The hardware connection is: **PC <~-~-> USB to TTL Adapter <~-~-> Jump wires <~-~-> Type-C Adapter <~-~-> LHT65N**
1862
1863
1864 **Option of USB TTL adapter:**
1865
1866 * CP2101 USB TTL Adapter
1867 * CH340 USB TTL Adapter
1868 * FT232 USB TTL Adapter
1869
1870 **Option of Type-C Adapter:**
1871
1872 [[image:image-20240122103221-3.png||_mstalt="425594" height="694" width="1039"]]
1873
1874
1875 **Connection:**
1876
1877 * (% style="background-color:yellow" %)**USB to TTL GND <~-~-> LHT65N GND**
1878 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> LHT65N TXD**
1879 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> LHT65N RXD**
1880
1881 (((
1882
1883
1884 Connection Example:
1885
1886 [[image:1655802313617-381.png||_mstalt="293917"]]
1887
1888
1889 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="466" width="643"]]
1890
1891
1892 == 6.2 How to use AT Commands? ==
1893
1894
1895 First, Connect PC and LHT65N via USB TTL adapter as **FAQ 6.1**
1896
1897 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1898 )))
1899
1900
1901 Input password and ATZ to activate LHT65N,As shown below:
1902
1903 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1904
1905
1906 AT Command List is as below:
1907
1908 AT+<CMD>? :  Help on <CMD>
1909
1910 AT+<CMD> :  Run <CMD>
1911
1912 AT+<CMD>=<value> :  Set the value
1913
1914 AT+<CMD>=? :  Get the value
1915
1916 AT+DEBUG:  Set more info output
1917
1918 ATZ:  Trig a reset of the MCU
1919
1920 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1921
1922 AT+DEUI:  Get or Set the Device EUI
1923
1924 AT+DADDR:  Get or Set the Device Address
1925
1926 AT+APPKEY:  Get or Set the Application Key
1927
1928 AT+NWKSKEY:  Get or Set the Network Session Key
1929
1930 AT+APPSKEY:  Get or Set the Application Session Key
1931
1932 AT+APPEUI:  Get or Set the Application EUI
1933
1934 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1935
1936 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1937
1938 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1939
1940 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1941
1942 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1943
1944 AT+RX2FQ:  Get or Set the Rx2 window frequency
1945
1946 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1947
1948 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1949
1950 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1951
1952 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1953
1954 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1955
1956 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1957
1958 AT+NWKID:  Get or Set the Network ID
1959
1960 AT+FCU:  Get or Set the Frame Counter Uplink
1961
1962 AT+FCD:  Get or Set the Frame Counter Downlink
1963
1964 AT+CLASS:  Get or Set the Device Class
1965
1966 AT+JOIN:  Join network
1967
1968 AT+NJS:  Get the join status
1969
1970 AT+SENDB:  Send hexadecimal data along with the application port
1971
1972 AT+SEND:  Send text data along with the application port
1973
1974 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1975
1976 AT+RECV:  Print last received data in raw format
1977
1978 AT+VER:  Get current image version and Frequency Band
1979
1980 AT+CFM:  Get or Set the confirmation mode (0-1)
1981
1982 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1983
1984 AT+SNR:  Get the SNR of the last received packet
1985
1986 AT+RSSI:  Get the RSSI of the last received packet
1987
1988 AT+TDC:  Get or set the application data transmission interval in ms
1989
1990 AT+PORT:  Get or set the application port
1991
1992 AT+DISAT:  Disable AT commands
1993
1994 AT+PWORD: Set password, max 9 digits
1995
1996 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1997
1998 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1999
2000 AT+PDTA:  Print the sector data from start page to stop page
2001
2002 AT+PLDTA:  Print the last few sets of data
2003
2004 AT+CLRDTA:  Clear the storage, record position back to 1st
2005
2006 AT+SLEEP:  Set sleep mode
2007
2008 AT+EXT:  Get or Set external sensor model
2009
2010 AT+BAT:  Get the current battery voltage in mV
2011
2012 AT+CFG:  Print all configurations
2013
2014 AT+WMOD:  Get or Set Work Mode
2015
2016 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
2017
2018 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
2019
2020 AT+SETCNT:  Set the count at present
2021
2022 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
2023
2024 AT+RPL:  Get or set response level
2025
2026 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
2027
2028 AT+LEAPSEC:  Get or Set Leap Second
2029
2030 AT+SYNCMOD:  Get or Set time synchronization method
2031
2032 AT+SYNCTDC:  Get or set time synchronization interval in day
2033
2034 AT+PID:  Get or set the PID
2035
2036
2037 == 6.3 How to use Downlink commands? ==
2038
2039
2040 **Downlink commands:**
2041
2042
2043 (% style="color:blue" %)**TTN:**
2044
2045 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
2046
2047
2048
2049 (% style="color:blue" %)**Helium: **
2050
2051 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
2052
2053
2054
2055 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
2056
2057
2058 [[image:image-20220615094850-6.png||_mstalt="433082"]]
2059
2060
2061 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
2062
2063
2064
2065 (% style="color:blue" %)**AWS-IOT :**
2066
2067 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
2068
2069
2070 == 6.4 How to change the uplink interval? ==
2071
2072
2073 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
2074
2075
2076 == 6.5 How to upgrade firmware? ==
2077
2078
2079 LHT65N has two types of firmware: **Firmware with bootloader** and **Firmware without bootloader**.** [[Firmware Download Link>>https://www.dropbox.com/sh/gvoto921a75q6rx/AADaaspjTtikr9X82Ma2S5w4a?dl=0]]**:
2080
2081 Except  for the early batch of LHT65N, all LHT65N shipped since middle of 2023 already have bootloader by default, so user only need to use the firmware without bootloader to update, this is the most easy way.
2082
2083
2084 === 6.5.1 Update firmware (Assume device already have bootloader) ===
2085
2086
2087 (% style="color:blue" %)**Step1 : Connect UART as per FAQ 6.1**
2088
2089 (% style="color:blue" %)**Step2 : Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. Make sure to use the firmware without bootloader.**
2090
2091
2092 === 6.5.2 Update firmware (Assume device doesn't have bootloader) ===
2093
2094
2095 In this update method, make sure to use the firmware with bootloader , [[**Download Link**>>https://www.dropbox.com/scl/fo/9069p25416et9pp7droqx/h?rlkey=ns82ak91p7jrrjfsulhsjodg4&dl=0]]**  . **After update , device will have bootloader so can use above 6.5.1 method to update.
2096
2097 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
2098
2099 [[image:image-20220615170542-5.png||_mstalt="430638"]]
2100
2101
2102
2103 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): Hardware Connection
2104
2105 Connect PC and LHT65N via USB TTL adapter .
2106
2107 (% style="color:red" %)**Note: Burn mode: Port4 (BOOT_CTL) of E2 cable connects 3V3 of USB-TTL.**
2108
2109 **Connection method:**
2110
2111 (% style="background-color:yellow" %)**USB-TTL GND <~-~-> Port 1 of E2 cable**
2112
2113 (% style="background-color:yellow" %)**USB-TTL 3V3 <~-~-> Port 4 of E2 cable**
2114
2115 (% style="background-color:yellow" %)**USB-TTL TXD <~-~-> Port 9 of E2 cable**
2116
2117 (% style="background-color:yellow" %)**USB-TTL RXD <~-~-> Port 5 of E2 cable**
2118
2119 [[image:image-20240122105429-4.png||_mstalt="429884" height="326" width="452"]](% style="display:none" %) [[image:image-20240122115332-5.jpeg||_mstalt="470002" height="324" width="401"]][[image:image-20240122134009-1.jpeg||_mstalt="469274" height="332" width="411"]]
2120
2121
2122 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
2123
2124 [[image:image-20220615171334-6.png||_mstalt="431028"]]
2125
2126
2127 Reset node: Short-circuit the port3(RST) of the E2 cable to GND.
2128
2129 Then click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
2130
2131
2132 When this interface appears, it indicates that the download has been completed.
2133
2134 [[image:image-20220620160723-8.png||_mstalt="430703"]]
2135
2136
2137 Finally, Disconnect Port4 of E2 cable, reset the node again (Port3 shorted GND), and the node exits burning mode.
2138
2139
2140 == 6.6 Why can't I see the datalog information ==
2141
2142
2143 ~1. The time is not aligned, and the correct query command is not used.
2144
2145 2. Decoder error, did not parse the datalog data, the data was filtered.
2146
2147
2148 == 6.7 How can i read sensor data without LoRaWAN? For Calibration Purpose ==
2149
2150
2151 Some clients need to calibrate the sensor value in calibration Lab. In such case, Reading the data without LoRaWAN network is more convinient. To achieve this, use can use a USB Type-C Breakout board to expose the UART pins while still have the probe connected. See below. Detail Pin out please refer the FAQ of [[how to connect UART>>||anchor="H6.1HowtoconnecttoLHT65NUARTinterface3F"]]
2152
2153 [[image:image-20240122092100-1.jpeg||_mstalt="467389" height="346" width="476"]]
2154
2155
2156 After there is UART Connectio, run below commands:
2157
2158 1.** AT+NJM=0**   ~/~/ Set Device to ABP mode , so can works without join to LoRaWAN server.
2159
2160 2.** AT+GETSENSORVALUE=0**  ~/~/The serial port gets the reading of the current sensor.
2161
2162 Example output:
2163
2164 [[image:image-20240128093852-1.png||_mstalt="431912" height="235" width="552"]]
2165
2166
2167 = 7. Order Info =
2168
2169
2170 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
2171
2172 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
2173
2174 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
2175 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
2176 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
2177 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
2178 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
2179 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
2180 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
2181 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
2182
2183 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
2184
2185 * (% style="color:red" %)**E3**(%%): External Temperature Probe
2186
2187 = 8. Packing Info =
2188
2189
2190 **Package Includes**:
2191
2192 * LHT65N Temperature & Humidity Sensor x 1
2193 * Optional external sensor
2194
2195 = 9. Reference material =
2196
2197
2198 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
2199
2200 = 10. FCC Warning =
2201
2202
2203 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
2204
2205 (1) This device may not cause harmful interference;
2206
2207 (2) this device must accept any interference received, including interference that may cause undesired operation.
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0