Version 261.11 by Xiaoling on 2023/07/17 17:45

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230717152014-10.png||height="575" width="339"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14 = 1. Introdução =
15
16 == 1.1 O que é LHT65N LoRaWAN Temperatura & Umidade Sensor ==
17
18
19 (((
20 O sensor de temperatura e umidade Dragino LHT65N é um sensor LoRaWAN de longo alcance. Inclui um sensor de temperatura e umidade embutido e tem um conector de sensor externo para conectar a um sensor de temperatura externo.
21
22
23 O LHT65N permite que os usuários enviem dados e alcancem distâncias extremamente longas. Fornece comunicação de espectro de propagação de ultra-longo alcance e alta imunidade à interferência, minimizando o consumo atual. Ele visa aplicações profissionais de rede de sensores sem fio, como sistemas de irrigação, medição inteligente, cidades inteligentes, automação de edifícios e assim por diante.
24
25
26 LHT65N tem uma bateria embutida de 2400mAh não recarregável que pode ser usada por até 10 anos*.
27
28
29 LHT65N é totalmente compatível com o protocolo LoRaWAN v1.0.3 Classe A, ele pode trabalhar com um gateway LoRaWAN padrão.
30
31
32 O LHT65N suporta a funcionalidade Datalog. Ele registrará os dados quando não houver cobertura de rede e os usuários podem recuperar o valor do sensor mais tarde para garantir que não haja perda para cada leitura do sensor.
33
34
35 ~* A vida real da bateria depende de quantas vezes enviar dados, consulte o capítulo do analisador da bateria.
36 )))
37
38
39 == 1.2 Características ==
40
41
42 * Protocolo LoRaWAN v1.0.3 Classe A
43 * Bandas de frequência: CN470/EU433/KR920/US915/EU868/AS923/AU915
44 * Comandos AT para alterar os parâmetros
45 * Parâmetros de configuração remota via LoRaWAN Downlink
46 * Firmware atualizável através da porta do programa
47 * Built-in 2400mAh bateria para até 10 anos de uso.
48 * Built-in sensor de temperatura e umidade
49 * Sensores externos opcionais
50 * LED de três cores para indicar o estado de funcionamento
51 * Recurso de registo de dados (máximo de 3328 registos)
52
53
54 == 1.3 Especificação ==
55
56
57 (% style="color:#037691" %)**Sensor de temperatura incorporado:**
58
59 * Resolução: 0,01 °C
60 * Tolerância de precisão: Tipo ± 0,3 °C
61 * Deriva a longo prazo: < 0,02 °C/ano
62 * Faixa de operação: -40 ~~ 85 °C
63
64 (% style="color:#037691" %)**Sensor de humidade incorporado:**
65
66 * Resolução: 0,04%UR
67 * Tolerância da precisão: Tipo ±3%RH
68 * Deriva a longo prazo: < 0,02 °C/ano
69 * Faixa de operação: 0 ~~ 96%RH
70
71 (% style="color:#037691" %)**Sensor de temperatura externo:**
72
73 * Resolução: 0,0625 °C
74 * ±0,5°C precisão de -10°C a +85°C
75 * ±2°C precisão de -55°C a +125°C
76 * Faixa de operação: -55 °C ~~ 125 °C
77
78
79 = 2. Conecte LHT65N ao servidor IoT =
80
81 == 2.1 Como funciona o LHT65N? ==
82
83
84 (((
85 O LHT65N é configurado como o modo LoRaWAN OTAA Classe A por padrão. Cada LHT65N é enviado com um conjunto único mundial de chaves OTAA. Para usar o LHT65N em uma rede LoRaWAN, primeiro, precisamos colocar as chaves OTAA no LoRaWAN Network Server e, em seguida, ativar o LHT65N.
86
87
88 Se o LHT65N estiver sob a cobertura desta rede LoRaWAN. LHT65N pode entrar na rede LoRaWAN automaticamente. Depois de ingressar com sucesso, o LHT65N começará a medir a temperatura e umidade do ambiente e começará a transmitir dados do sensor para o servidor LoRaWAN. O período padrão para cada uplink é de 20 minutos.
89 )))
90
91
92 == 2. 2 Como ativar o LHT65N? ==
93
94
95 (((
96 O LHT65N tem dois modos de trabalho:
97 )))
98
99 * (((
100 (% style="color:blue" %)**Modo de Suspensão Profunda:**(%%) LHT65N não tem nenhuma ativação LoRaWAN. Este modo é usado para armazenamento e transporte para economizar a vida útil da bateria.
101 )))
102 * (((
103 (% style="color:blue" %)**Modo de Trabalho:**(%%) Neste modo, o LHT65N funciona como o modo Sensor LoRaWAN para entrar na rede LoRaWAN e enviar os dados do sensor para o servidor. Entre cada amostragem/tx/rx periodicamente, LHT65N estará no modo STOP (modo IDLE), no modo STOP, LHT65N tem o mesmo consumo de energia que o modo Deep Sleep.
104 )))
105
106 (((
107 O LHT65N é definido no modo de sono profundo por padrão; O botão ACT na frente é para alternar para diferentes modos:
108 )))
109
110
111 [[image:image-20230717144740-2.png||height="391" width="267"]]
112
113 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
114 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Comportamento no ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Função**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Acção**
115 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT entre 1s < tempo < 3s|(% style="background-color:#f2f2f2; width:117px" %)Teste o estado da ligação ascendente|(% style="background-color:#f2f2f2; width:225px" %)Se o LHT65N já estiver unido à rede rhe LoRaWAN, o LHT65N enviará um pacote de uplink, se o LHT65N tiver sensor externo conectado, o led azul piscará uma vez. Se o LHT65N não tiver sensor externo, o led vermelho piscará uma vez.
116 |(% style="background-color:#f2f2f2; width:167px" %)Pressionando ACT por mais de 3s|(% style="background-color:#f2f2f2; width:117px" %)Dispositivo Activo|(% style="background-color:#f2f2f2; width:225px" %)O led verde piscará rapidamente 5 vezes, o LHT65N entrará no modo de trabalho e começará a juntar-se à rede LoRaWAN.
117 O led verde ligará solidamente por 5 segundos após a junção na rede.
118 |(% style="background-color:#f2f2f2; width:167px" %)Pressione rapidamente ACT 5 vezes.|(% style="background-color:#f2f2f2; width:117px" %)Desactivar o Dispositivo|(% style="background-color:#f2f2f2; width:225px" %)(((
119 O led vermelho ficará sólido durante 5 segundos. Significa que LHT65N está em modo de sono profundo.
120 )))
121
122 == 2.3 Exemplo para ingressar na rede LoRaWAN ==
123
124
125 (% class="wikigeneratedid" %)
126 Esta seção mostra um exemplo de como entrar no servidor IoT TTN V3 LoRaWAN. O uso com outros servidores IoT LoRaWAN é de um procedimento semelhante.
127
128
129 (% class="wikigeneratedid" %)
130 [[image:image-20220522232442-1.png||_mstalt="427830" height="387" width="648"]]
131
132 Suponha que o LPS8N já esteja configurado para se conectar à rede [[TTN V3>>https://eu1.cloud.thethings.network]], então ele fornece cobertura de rede para LHT65N. Em seguida, precisamos adicionar o dispositivo LHT65N em TTN V3:
133
134 (((
135
136 )))
137
138 === 2.3.1 Etapa 1: Crie dispositivo n ttn ===
139
140
141 (((
142 Crie um dispositivo no TTN V3 com as teclas OTAA do LHT65N.
143
144 Cada LHT65N é enviado com um adesivo com seu dispositivo eui, chave de aplicativo e aplicativo eui como abaixo:
145 )))
146
147 [[image:image-20230426083319-1.png||height="258" width="556"]]
148
149 O usuário pode inserir essas chaves no portal do servidor Lorawan. Abaixo está a captura de tela do TTN V3:
150
151 Adicione o aplicativo EUI no aplicativo.
152
153
154 [[image:image-20220522232916-3.png||_mstalt="430495"]]
155
156
157 [[image:image-20220522232932-4.png||_mstalt="430157"]]
158
159
160 [[image:image-20220522232954-5.png||_mstalt="431847"]]
161
162
163
164 (% style="color:red" %)**Nota: LHT65N Use a mesma carga útil que LHT65.**
165
166
167 [[image:image-20220522233026-6.png||_mstalt="429403"]]
168
169
170 INSIDE APP EUI, APP KEY e DEV EUI:
171
172
173 [[image:image-20220522233118-7.png||_mstalt="430430"]]
174
175
176 === 2.3.2 Passo 2: Ative o LHT65N pressionando o botão ACT por mais de 5 segundos. ===
177
178
179 (((
180 Use o botão ACT para ativar o LHT65N e ele se conectará automaticamente à rede TTN V3. Após o sucesso da junção, ele começará a carregar os dados do sensor para o TTN V3 e o usuário poderá ver no painel.
181 )))
182
183 [[image:image-20220522233300-8.png||_mstalt="428389" height="219" width="722"]]
184
185
186 == 2.4 Carga útil de uplink (Fport~=2) ==
187
188
189 (((
190 A carga de uplink inclui totalmente 11 bytes. Os pacotes de uplink usam FPORT=2 e a cada 20 minutos enviam um uplink por padrão.
191 )))
192
193 (((
194 Após cada uplink, o LED AZUL piscará uma vez.
195 )))
196
197 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:390px" %)
198 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)(((
199 **2**
200 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
201 **2**
202 )))|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)(((
203 **2**
204 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
205 **1**
206 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
207 **4**
208 )))
209 |(% style="width:97px" %)Valor|(% style="width:39px" %)(((
210 [[MTD>>||anchor="H2.4.2BAT-BatteryInfo"]]
211 )))|(% style="width:100px" %)(((
212 (((
213 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
214 )))
215 )))|(% style="width:77px" %)(((
216 (((
217 [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
218 )))
219 )))|(% style="width:47px" %)(((
220 [[Ext>>||anchor="H2.4.5Ext23"]] #
221 )))|(% style="width:51px" %)(((
222 [[Valor Ext>>||anchor="H2.4.6Extvalue"]]
223 )))
224
225 * Os primeiros 6 bytes: tem significados fixos para cada LHT65N.
226
227 * O 7º byte (EXT #): define o modelo do sensor externo.
228
229 * O 8º ~~ 11º byte: o valor para o valor do sensor externo. A definição é baseada no tipo de sensor externo. (Se EXT=0, não haverá esses quatro bytes.)
230
231
232 === 2.4.1 Decodificador em TTN V3 ===
233
234
235 Quando o payload do uplink chega TTNv3, ele mostra o formato HEX e não é fácil de ler. Podemos adicionar LHT65N decodificador em TTNv3 para leitura amigável.
236
237 Abaixo está a posição para colocar o decodificador e o decodificador LHT65N pode ser baixado aqui : [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
238
239
240 [[image:image-20220522234118-10.png||_mstalt="451464" height="353" width="729"]]
241
242
243 === 2.4.2 Informações da bateria BAT ===
244
245
246 Esses dois bytes de BAT incluem o estado da bateria e a tensão atual.
247
248 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:477px" %)
249 |=(% style="width: 69px; background-color:#D9E2F3;color:#0070C0" %)(((
250 **Bit(bit)**
251 )))|=(% style="width: 253px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)[13:0]
252 |(% style="width:66px" %)Valor|(% style="width:250px" %)Estado MTD
253 00 b): Ultra baixo ( MTD <= 2,50v)
254 01 b): Baixo (2,50v <=MTD <= 2,55v)
255 10 b): OK (2,55v <= MTD <=2,65v)
256 11 b): Bom (MTD >= 2,65v)|(% style="width:152px" %)Na realidade, tensão MTD
257
258 **(b) significa binário**
259
260
261 [[image:image-20220522235639-1.png||_mstalt="431392" height="139" width="727"]]
262
263 Verifique a tensão da bateria para LHT65N.
264
265 * Status BAT=(0Xcba4>>14)&0xFF=11 (BIN), muito bom
266 * Tensão da bateria = 0xCBA4 & 0x3FFF = 0x0BA4 = 2980mV
267
268
269
270 === 2.4.3 Temperatura interna ===
271
272
273 [[image:image-20220522235639-2.png||_mstalt="431756" height="138" width="722"]]
274
275 * Temperatura: 0x0ABB/100=27,47ÿ
276
277 [[image:image-20220522235639-3.png||_mstalt="432120"]]
278
279 * Temperatura: (0xF5C6-65536)/100=-26,18ÿ
280
281
282 (% style="display:none" %)
283
284 === 2.4.4 Umidade interna ===
285
286
287 [[image:image-20220522235639-4.png||_mstalt="432484" height="138" width="722"]]
288
289 * Umidade: 0x025C/10=60,4%
290
291
292 (% style="display:none" %)
293
294 === 2.4.5 Ext # ===
295
296
297 Bytes para Sensor Externo:
298
299 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:425px" %)
300 |=(% style="width: 102px; background-color:#D9E2F3;color:#0070C0" %)**EXT # Valor**|=(% style="width: 323px;background-color:#D9E2F3;color:#0070C0" %)Tipo de sensor externo
301 |(% style="width:102px" %)0x01|(% style="width:319px" %)Sensor E3, Sensor de Temperatura
302 |(% style="width:102px" %)0x09|(% style="width:319px" %)Sensor E3, Sensor de Temperatura, Mod de Registro de Dados
303
304 === 2.4.6 Valor externo ===
305
306 ==== 2.4.6.1 Ext~=1, Sensor de Temperatura E3 ====
307
308
309 [[image:image-20220522235639-5.png||_mstalt="432848"]]
310
311
312 * DS18B20 temp=0x0ADD/100=27,81ÿ
313
314 Os últimos 2 bytes de dados não têm sentido.
315
316
317
318 [[image:image-20220522235639-6.png||_mstalt="433212"]]
319
320 * Temperatura externa= (0xF54F-65536)/100=-27.37℃
321
322 F54F: (F54F & 8000 == 1) , temp = (F54F - 65536)/100 = 27,37℃
323
324 (0105 & 8000: Julgue se o bit mais alto é 1, quando o bit mais alto é 1, é negativo)
325
326 Os últimos 2 bytes de dados não têm sentido
327
328 Se o sensor externo for 0x01 e não houver temperatura externa conectada. A temperatura será ajustada para 7FFF que é 327.67℃
329
330
331 ==== 2.4.6.2 Ext~=9, sensor E3 com Unix Timestamp ====
332
333
334 (((
335 O modo Timestamp é projetado para LHT65N com sonda E3, ele enviará a carga útil de uplink com timestamp Unix. Com a limitação de 11 bytes (distância máxima da banda AU915/US915/AS923), o modo de carimbo de hora será falta de campo de tensão BAT, em vez disso, ele mostra o status da bateria. A carga útil é a seguinte:
336 )))
337
338 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
339 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)Tamanho( bytes)|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
340 **2**
341 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
342 **2**
343 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
344 **2**
345 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
346 **1**
347 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
348 **4**
349 )))
350 |(% style="width:110px" %)Valor|(% style="width:71px" %)Temperatura externa|(% style="width:99px" %)(((
351 [[Temperatura incorporada>>||anchor="H2.4.3Built-inTemperature"]]
352 )))|(% style="width:132px" %)(((
353 Estado MTD & [[Umidade incorporada>>||anchor="H2.4.4Built-inHumidity"]]
354 )))|(% style="width:54px" %)Estado & Ext|(% style="width:64px" %)(((
355 [[Carimbo Horário do Unix>>||anchor="H2.6.2UnixTimeStamp"]]
356 )))
357
358 * **Status da bateria e umidade interna**
359
360 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
361 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
362 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
363 BAT Status
364 00(b): Ultra Low ( BAT <= 2.50v)
365 01(b): Low  (2.50v <=BAT <= 2.55v)
366 10(b): OK   (2.55v <= BAT <=2.65v)
367 11(b): Good   (BAT >= 2.65v)
368 )))|(% style="width:132px" %)(((
369 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
370 )))
371
372 * **Status & Ext Byte**
373
374 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
375 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
376 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
377
378 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
379 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok,0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
380 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
381
382
383 ==== 2.4.6.3 Ext~=6, ADC Sensor(use with E2 Cable) ====
384
385
386 In this mode, user can connect external ADC sensor to check ADC value. The 3V3_OUT can
387
388 be used to power the external ADC sensor; user can control the power on time for this
389
390 (% style="color:blue" %)**sensor by setting:**
391
392 **AT+EXT=6,timeout**  (% style="color:red" %)**Time to power this sensor, from 0 ~~ 65535ms**
393
394 **For example:**
395
396 AT+EXT=6,1000 will power this sensor for 1000ms before sampling the ADC value.
397
398
399 Or use **downlink command A2** to set the same.
400
401 The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
402
403 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
404
405 [[image:image-20220628150112-1.png||_mstalt="427414" height="241" width="285"]]
406
407
408 When ADC_IN1 pin is connected to GND or suspended, ADC value is 0
409
410 [[image:image-20220628150714-4.png||_mstalt="431054"]]
411
412
413 When the voltage collected by ADC_IN1 is less than the minimum range, the minimum range will be used as the output; Similarly, when the collected voltage is greater than the maximum range, the maximum range will be used as the output.
414
415
416 1) The minimum range is about 0.1V. Each chip has internal calibration, so this value is close to 0.1V
417
418 [[image:image-20220628151005-5.png||_mstalt="429546"]]
419
420
421 2) The maximum range is about 1.1V. Each chip has internal calibration, so this value is close to 1.1v
422
423 [[image:image-20220628151056-6.png||_mstalt="431873"]]
424
425
426 3) Within range
427
428 [[image:image-20220628151143-7.png||_mstalt="431210"]]
429
430
431
432 ==== 2.4.6.4 Ext~=2 TMP117 Sensor((% style="display:none" %) (%%)Since Firmware v1.3)(% style="display:none" %) (%%) ====
433
434 [[image:image-20230717151328-8.png]]
435
436 (% style="display:none" %) (%%)
437
438
439
440 (% style="color:blue" %)**Ext=2,Temperature Sensor(TMP117):**
441
442 [[image:image-20220906102307-7.png||_mstalt="430443"]]
443
444
445 (% style="color:blue" %)**Interrupt Mode and Counting Mode:**(% style="color:blue; display:none" %)** **
446
447 The external cable NE2 can be use for MOD4 and MOD8
448
449
450
451 ==== 2.4.6.5 Ext~=11 SHT31 Sensor ((% style="display:none" %) (%%)Since Firmware v1.4.1) ====
452
453
454
455 [[image:image-20230717151245-7.png]]
456
457 (% style="color:blue" %)**Ext=11,Temperature & Humidity Sensor(SHT31):**
458
459 [[image:SHT31.png]]
460
461
462
463 ==== 2.4.6.6 Ext~=4 Interrupt Mode(Since Firmware v1.3) ====
464
465
466 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will send an uplink when there is a trigger.**
467
468
469 (% style="color:blue" %)**Interrupt Mode can be used to connect to external interrupt sensors such as:**
470
471 (% style="color:#037691" %)**Case 1: Door Sensor.** (%%)3.3v Out for such sensor is just to detect Open/Close.
472
473 In Open State, the power consumption is the same as if there is no probe
474
475 In Close state, the power consumption will be 3uA higher than normal.
476
477 [[image:image-20220906100852-1.png||_mstalt="429156" height="205" width="377"]]
478
479
480 Ext=4,Interrupt Sensor:
481
482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:504px" %)
483 |(% style="width:101px" %)(((
484 **AT+EXT=4,1**
485 )))|(% style="width:395px" %)(((
486 **Sent uplink packet in both rising and falling interrupt**
487 )))
488 |(% style="width:101px" %)(((
489 **AT+EXT=4,2**
490 )))|(% style="width:395px" %)(((
491 **Sent uplink packet only in falling interrupt**
492 )))
493 |(% style="width:101px" %)(((
494 **AT+EXT=4,3**
495 )))|(% style="width:395px" %)(((
496 **Sent uplink packet only in rising interrupt**
497 )))
498
499 Trigger by falling edge:
500
501 [[image:image-20220906101145-2.png||_mstalt="428324"]]
502
503
504 Trigger by raising edge:
505
506 [[image:image-20220906101145-3.png||_mstalt="428688"]]
507
508
509
510 ==== 2.4.6.7 Ext~=8 Counting Mode(Since Firmware v1.3) ====
511
512
513 (% style="color:red" %)**Note: In this mode, 3.3v output will be always ON. LHT65N will count for every interrupt and uplink periodically.**
514
515
516 (% style="color:blue" %)**Case 1**(%%):  Low power consumption Flow Sensor, such flow sensor has pulse output and the power consumption in uA level and can be powered by LHT65N.
517
518 [[image:image-20220906101320-4.png||_mstalt="427336" height="366" width="698"]]
519
520
521 (% style="color:blue" %)**Case 2**(%%):  Normal Flow Sensor: Such flow sensor has higher power consumption and is not suitable to be powered by LHT65N. It is powered by external power and output <3.3v pulse
522
523 [[image:image-20220906101320-5.png||_mstalt="427700" height="353" width="696"]]
524
525
526 Ext=8, Counting Sensor ( 4 bytes):
527
528 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:330px" %)
529 |(% style="width:131px" %)(((
530 **AT+EXT=8,0**
531 )))|(% style="width:195px" %)(((
532 **Count at falling interrupt**
533 )))
534 |(% style="width:131px" %)(((
535 **AT+EXT=8,1**
536 )))|(% style="width:195px" %)(((
537 **Count at rising interrupt**
538 )))
539 |(% style="width:131px" %)(((
540 **AT+SETCNT=60**
541 )))|(% style="width:195px" %)(((
542 **Sent current count to 60**
543 )))
544
545 [[image:image-20220906101320-6.png||_mstalt="428064"]]
546
547
548 (% style="color:blue" %)**A2 downlink Command:**
549
550 A2 02:  Same as AT+EXT=2 (AT+EXT= second byte)
551
552 A2 06 01 F4:  Same as AT+EXT=6,500 (AT+EXT= second byte, third and fourth bytes)
553
554 A2 04 02:  Same as AT+EXT=4,2 (AT+EXT= second byte, third byte)
555
556 A2 08 01 00:  Same as AT+EXT=8,0 (AT+EXT= second byte, fourth byte)
557
558 A2 08 02 00 00 00 3C:  Same as AT+ SETCNT=60  (AT+ SETCNT = 4th byte and 5th byte and 6th byte and 7th byte)
559
560
561 ==== 2.4.6.8 Ext~=10, E2 sensor (TMP117)with Unix Timestamp(Since firmware V1.3.2) ====
562
563
564 (((
565 Timestamp mode is designed for LHT65N with E2 probe, it will send the uplink payload with Unix timestamp. With the limitation of 11 bytes (max distance of AU915/US915/AS923 band), the time stamp mode will be lack of BAT voltage field, instead, it shows the battery status. The payload is as below:
566 )))
567
568 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
569 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
570 **Size(bytes)**
571 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
572 **2**
573 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
574 **2**
575 )))|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)(((
576 **2**
577 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
578 **1**
579 )))|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)(((
580 **4**
581 )))
582 |(% style="width:110px" %)(((
583 **Value**
584 )))|(% style="width:71px" %)(((
585 External temperature
586 )))|(% style="width:99px" %)(((
587 [[Built-In Temperature>>||anchor="H2.4.3Built-inTemperature"]]
588 )))|(% style="width:132px" %)(((
589 BAT Status & [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
590 )))|(% style="width:54px" %)(((
591 Status & Ext
592 )))|(% style="width:64px" %)(((
593 [[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
594 )))
595
596 * **Battery status & Built-in Humidity**
597
598 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:461px" %)
599 |=(% style="width: 69px;background-color:#D9E2F3;color:#0070C0" %)Bit(bit)|=(% style="width: 258px;background-color:#D9E2F3;color:#0070C0" %)[15:14]|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)[11:0]
600 |(% style="width:67px" %)**Value**|(% style="width:256px" %)(((
601 BAT Status
602 00(b): Ultra Low ( BAT <= 2.50v)
603 01(b): Low  (2.50v <=BAT <= 2.55v)
604 10(b): OK   (2.55v <= BAT <=2.65v)
605 11(b): Good   (BAT >= 2.65v)
606 )))|(% style="width:132px" %)(((
607 [[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]
608 )))
609
610 * **Status & Ext Byte**
611
612 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
613 |(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Bits**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**7**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**5**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**[3:0]**
614 |(% style="width:96px" %)**Status&Ext**|(% style="width:124px" %)None-ACK Flag|(% style="width:146px" %)Poll Message FLAG|(% style="width:109px" %)Sync time OK|(% style="width:143px" %)Unix Time Request|(% style="width:106px" %)Ext: 0b(1001)
615
616 * (% style="color:blue" %)**Poll Message Flag**:(%%)  1: This message is a poll message reply, 0: means this is a normal uplink.
617 * (% style="color:blue" %)**Sync time OK**: (%%) 1: Set time ok, 0: N/A. After time SYNC request is sent, LHT65N will set this bit to 0 until got the time stamp from the application server.
618 * (% style="color:blue" %)**Unix Time Request**:(%%)  1: Request server downlink Unix time, 0 : N/A. In this mode, LHT65N will set this bit to 1 every 10 days to request a time SYNC. (AT+SYNCMOD to set this)
619
620
621 == 2.5 Show data on Datacake ==
622
623
624 (((
625 Datacake IoT platform provides a human-friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
626 )))
627
628
629 (((
630 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
631 )))
632
633 (((
634 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
635 )))
636
637
638 (((
639 Add Datacake:
640 )))
641
642
643 [[image:image-20220523000825-7.png||_mstalt="429884" height="262" width="583"]]
644
645
646
647 Select default key as Access Key:
648
649
650 [[image:image-20220523000825-8.png||_mstalt="430248" height="453" width="406"]]
651
652
653 In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add LHT65 device.
654
655
656 [[image:image-20220523000825-9.png||_mstalt="430612" height="366" width="392"]]
657
658
659 [[image:image-20220523000825-10.png||_mstalt="450619" height="413" width="728"]]
660
661
662 == 2.6 Datalog Feature ==
663
664
665 (((
666 Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, LHT65N will store the reading for future retrieving purposes. There are two ways for IoT servers to get datalog from LHT65N.
667 )))
668
669
670 === 2.6.1 Ways to get datalog via LoRaWAN ===
671
672
673 There are two methods:
674
675 (% style="color:blue" %)**Method 1:** (%%)IoT Server sends a downlink LoRaWAN command to [[poll the value>>||anchor="H2.6.4Pollsensorvalue"]] for specified time range.
676
677
678 (% style="color:blue" %)**Method 2: **(%%)Set [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]], LHT65N will wait for ACK for every uplink, when there is no LoRaWAN network, LHT65N will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
679
680
681 (% style="color:red" %)**Note for method 2:**
682
683 * a) LHT65N will do an ACK check for data records sending to make sure every data arrive server.
684 * b) LHT65N will send data in **CONFIRMED Mode** when PNACKMD=1, but LHT65N won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if LHT65N gets a ACK, LHT65N will consider there is a network connection and resend all NONE-ACK Message.
685
686 Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
687
688
689 [[image:image-20220703111700-2.png||_mstalt="426244" height="381" width="1119"]]
690
691
692 === 2.6.2 Unix TimeStamp ===
693
694
695 LHT65N uses Unix TimeStamp format based on
696
697
698 [[image:image-20220523001219-11.png||_mstalt="450450" height="97" width="627"]]
699
700
701
702 User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
703
704 Below is the converter example
705
706 [[image:image-20220523001219-12.png||_mstalt="450827" height="298" width="720"]]
707
708
709 So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
710
711
712 === 2.6.3 Set Device Time ===
713
714
715 (((
716 (% style="color:blue" %)**There are two ways to set device's time:**
717 )))
718
719 (((
720 **1.  Through LoRaWAN MAC Command (Default settings)**
721 )))
722
723 (((
724 User need to set SYNCMOD=1 to enable sync time via MAC command.
725 )))
726
727 (((
728 Once LHT65N Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to LHT65N. If LHT65N fails to get the time from the server, LHT65N will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
729 )))
730
731 (((
732 (% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
733 )))
734
735
736 (((
737 **2. Manually Set Time**
738 )))
739
740 (((
741 User needs to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
742 )))
743
744
745 === 2.6.4 Poll sensor value ===
746
747
748 User can poll sensor value based on timestamps from the server. Below is the downlink command.
749
750 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:428px" %)
751 |(% style="background-color:#d9e2f3; color:#0070c0; width:58px" %)**1byte**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:123px" %)**4bytes**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**1byte**
752 |(% style="width:58px" %)31|(% style="width:128px" %)Timestamp start|(% style="width:123px" %)Timestamp end|(% style="width:116px" %)Uplink Interval
753
754 Timestamp start and Timestamp end use Unix TimeStamp format as mentioned above. Devices will reply with all data log during this time period, use the uplink interval.
755
756 For example, downlink command (% _mstmutation="1" %)**31 5FC5F350 5FC6 0160 05**(%%)
757
758 Is to check 2020/12/1 07:40:00 to 2020/12/1 08:40:00's data
759
760 Uplink Internal =5s, means LHT65N will send one packet every 5s. range 5~~255s.
761
762
763 === 2.6.5 Datalog Uplink payload ===
764
765
766 The Datalog poll reply uplink will use below payload format.
767
768 **Retrieval data payload:**
769
770 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:480px" %)
771 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)(((
772 **Size(bytes)**
773 )))|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**4**
774 |(% style="width:97px" %)**Value**|(% style="width:123px" %)[[External sensor data>>||anchor="H2.4.6Extvalue"]]|(% style="width:108px" %)[[Built In Temperature>>||anchor="H2.4.3Built-inTemperature"]]|(% style="width:133px" %)[[Built-in Humidity>>||anchor="H2.4.4Built-inHumidity"]]|(% style="width:159px" %)Poll message flag & Ext|(% style="width:80px" %)[[Unix Time Stamp>>||anchor="H2.6.2UnixTimeStamp"]]
775
776 **Poll message flag & Ext:**
777
778 [[image:image-20221006192726-1.png||_mstalt="430508" height="112" width="754"]]
779
780 (% style="color:blue" %)**No ACK Message**(%%):  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for [[PNACKMD=1>>||anchor="H4.13AutoSendNone-ACKmessages"]] feature)
781
782 (% style="color:blue" %)**Poll Message Flag**(%%): 1: This message is a poll message reply.
783
784 * Poll Message Flag is set to 1.
785
786 * Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
787
788 For example, in US915 band, the max payload for different DR is:
789
790 (% style="color:blue" %)**a) DR0:** (%%)max is 11 bytes so one entry of data
791
792 (% style="color:blue" %)**b) DR1:**(%%) max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
793
794 (% style="color:blue" %)**c) DR2:**(%%) total payload includes 11 entries of data
795
796 (% style="color:blue" %)**d) DR3: **(%%)total payload includes 22 entries of data.
797
798 If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
799
800
801 **Example:**
802
803 If LHT65N has below data inside Flash:
804
805 [[image:image-20230426171833-4.png]]
806
807
808 If user sends below downlink command: (% style="background-color:yellow" %)3160065F9760066DA705
809
810 Where : Start time: 60065F97 = time 21/1/19 04:27:03
811
812 Stop time: 60066DA7= time 21/1/19 05:27:03
813
814
815 **LHT65N will uplink this payload.**
816
817 [[image:image-20220523001219-13.png||_mstalt="451204" height="421" style="text-align:left" width="727"]]
818
819
820 __**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
821
822 Where the first 11 bytes is for the first entry:
823
824 7FFF089801464160065F97
825
826 Ext sensor data=0x7FFF/100=327.67
827
828 Temp=0x088E/100=22.00
829
830 Hum=0x014B/10=32.6
831
832 poll message flag & Ext=0x41,means reply data,Ext=1
833
834 Unix time is 0x60066009=1611030423s=21/1/19 04:27:03
835
836
837 == 2.7 Alarm Mode & Feature "Multi sampling, one uplink" ==
838
839
840 (((
841 when the device is in alarm mode, it checks the built-in sensor temperature for a short time. if the temperature exceeds the preconfigured range, it sends an uplink immediately.
842 )))
843
844 (((
845 (% style="color:red" %)**Note: alarm mode adds a little power consumption, and we recommend extending the normal read time when this feature is enabled.**
846
847
848 === 2.7.1 ALARM MODE ( Since v1.3.1 firmware) ===
849
850
851 **Internal GXHT30 temperature alarm(Acquisition time: fixed at one minute)**
852
853 (((
854 (% class="box infomessage" %)
855 (((
856 **AT+WMOD=3**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
857
858 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
859
860 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
861
862 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
863
864 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
865
866 **AT+LEDALARM=1** :       Enable LED visual Alarm.
867 )))
868 )))
869
870 (% style="color:#4f81bd" %)**Downlink Command:**
871
872 AT+WMOD=1:  A501  , AT+WMOD=0 :  A600
873
874 AT+CITEMP=1 : A60001
875
876 AT+ARTEMP=1,60  :  A70001003C
877
878 AT+ARTEMP=-16,60 :  A7FFF0003C
879
880 AT+LEDALARM=1  :  3601
881
882
883 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
884
885 Total bytes: 8 bytes
886
887 **Example: **AA0100010001003C
888
889 WMOD=01
890
891 CITEMP=0001
892
893 TEMPlow=0001
894
895 TEMPhigh=003C
896
897
898 **DS18B20 and TMP117 Threshold Alarm**
899
900 **~ AT+WMOD=1,60,-10,20**
901
902 (% style="color:#4f81bd" %)**Downlink Command:**
903
904 **Example: **A5013CFC180014
905
906 MOD=01
907
908 CITEMP=3C(S)
909
910 TEMPlow=FC18
911
912 TEMPhigh=0014
913
914
915 **Fluctuation alarm for DS18B20 and TMP117(Acquisition time: minimum 1s)**
916
917 **AT+WMOD=2,60,5** 
918
919 (% style="color:#4f81bd" %)**Downlink Command:**
920
921 **Example: **A5023C05
922
923 MOD=02
924
925 CITEMP=3C(S)
926
927 temperature fluctuation=05
928
929
930 **Sampling multiple times and uplink together**
931
932 **AT+WMOD=3,1,60,20,-16,32,1**   
933
934 Explain:
935
936 * (% style="color:#037691" %)**parameter1: **(%%)Set Working Mode to **Mode 3**
937 * (% style="color:#037691" %)**parameter2:**(%%) Set the temperature sampling mode to** 1**(1:DS18B20;2:TMP117;3:** **Internal GXHT30).
938 * (% style="color:#037691" %)**parameter3: **(%%)Sampling Interval is **60**s.
939 * (% style="color:#037691" %)**parameter4: **(%%)When there is **20** sampling dats, Device will send these data via one uplink. (max value is 60, means max 60 sampling in one uplink)
940 * (% style="color:#037691" %)**parameter5 & parameter6: **(%%)Temperature alarm range is **-16** to **32**°C,
941 * (% style="color:#037691" %)**parameter7:**(%%) 1 to enable temperature alarm, **0** to disable the temperature alarm. If alarm is enabled, a data will be sent immediately  if temperate exceeds the Alarm range.
942
943 (% style="color:#4f81bd" %)**Downlink Command:**
944
945 **Example: **A50301003C14FFF0002001
946
947 MOD=03
948
949 TEMP=DS18B20
950
951 CITEMP=003C(S)
952
953 Total number of acquisitions=14
954
955 TEMPlow=FFF0
956
957 TEMPhigh=0020
958
959 ARTEMP=01
960
961
962 **Uplink payload( Fport=3)**
963
964 **Example: CBEA**01**0992**//0A41//**09C4**
965
966 BatV=CBEA
967
968 TEMP=DS18B20
969
970 Temp1=0992  ~/~/ 24.50℃
971
972 Temp2=0A41  ~/~/ 26.25℃
973
974 Temp3=09C4  ~/~/ 25.00℃
975
976 (% style="color:red" %)**Note: This uplink will automatically select the appropriate DR according to the data length**
977
978 (% style="color:red" %)** In this mode, the temperature resolution of ds18b20 is 0.25℃ to save power consumption**
979 )))
980
981
982 === 2.7.2 ALARM MODE ( Before v1.3.1 firmware) ===
983
984
985 (% class="box infomessage" %)
986 (((
987 (((
988 **AT+WMOD=1**:  Enable/disable alarm mode. (0: Disabled, 1: Enabled Temperature Alarm for onboard temperature sensor)
989 )))
990
991 (((
992 **AT+CITEMP=1**:  The interval between checking the alarm temperature. (In minutes)
993 )))
994
995 (((
996 **AT+ARTEMP**:  Gets or sets the alarm range of the internal temperature sensor
997 )))
998
999 (((
1000 (% _mstmutation="1" %)**AT+ARTEMP=? **(%%):  Gets the alarm range of the internal temperature sensor(% style="display:none" %)
1001 )))
1002
1003 (((
1004 **AT+ARTEMP=45,105**:  Set the internal temperature sensor alarm range from 45 to 105.
1005 )))
1006 )))
1007
1008 (% style="color:#4f81bd" %)**Downlink Command: AAXXXXXXXXXXXXXX**
1009
1010 Total bytes: 8 bytes
1011
1012 **Example:**AA0100010001003C
1013
1014 WMOD=01
1015
1016 CITEMP=0001
1017
1018 TEMPlow=0001
1019
1020 TEMPhigh=003C
1021
1022
1023 == 2.8 LED Indicator ==
1024
1025
1026 The LHT65 has a triple color LED which for easy showing different stage .
1027
1028 While user press ACT button, the LED will work as per LED status with ACT button.
1029
1030 In a normal working state:
1031
1032 * For each uplink, the BLUE LED or RED LED will blink once.
1033 BLUE LED when external sensor is connected.
1034 * RED LED when external sensor is not connected
1035 * For each success downlink, the PURPLE LED will blink once
1036
1037
1038 == 2.9 installation ==
1039
1040
1041 [[image:image-20220516231650-1.png||_mstalt="428597" height="436" width="428"]]
1042
1043
1044 = 3. Sensors and Accessories =
1045
1046 == 3.1 E2 Extension Cable ==
1047
1048
1049 [[image:image-20220619092222-1.png||_mstalt="429533" height="182" width="188"]][[image:image-20220619092313-2.png||_mstalt="430222" height="182" width="173"]]
1050
1051
1052 **1m long breakout cable for LHT65N. Features:**
1053
1054 * (((
1055 Use for AT Command, works for both LHT52/LHT65N
1056 )))
1057 * (((
1058 Update firmware for LHT65N, works for both LHT52/LHT65N
1059 )))
1060 * (((
1061 Supports ADC mode to monitor external ADC
1062 )))
1063 * (((
1064 Supports Interrupt mode
1065 )))
1066 * (((
1067 Exposed All pins from the LHT65N Type-C connector.
1068
1069
1070
1071 )))
1072
1073 [[image:image-20220619092421-3.png||_mstalt="430547" height="371" width="529"]]
1074
1075
1076 == 3.2 E3 Temperature Probe ==
1077
1078
1079 [[image:image-20220515080154-4.png||_mstalt="434681" alt="photo-20220515080154-4.png" height="182" width="161"]] [[image:image-20220515080330-5.png||_mstalt="428792" height="201" width="195"]]
1080
1081
1082 Temperature sensor with 2 meters cable long
1083
1084 * Resolution: 0.0625 °C
1085 * ±0.5°C accuracy from -10°C to +85°C
1086 * ±2°C accuracy from -55°C to +125°C
1087 * Operating Range: -40 ~~ 125 °C
1088 * Working voltage 2.35v ~~ 5v
1089
1090 == 3.3 E31F Temperature Probe ==
1091
1092
1093 [[image:65N-E31F-1.jpg||height="169" width="170"]] [[image:image-20230717151424-9.png||height="221" width="204"]](% style="display:none" %)
1094
1095
1096 Temperature sensor with 1 meters cable long
1097
1098
1099 **Built-in Temperature Sensor:**
1100
1101 * Resolution: 0.01 °C
1102 * Accuracy Tolerance : Typ ±0.3 °C
1103 * Long Term Drift: < 0.02 °C/yr
1104 * Operating Range: -40 ~~ 80 °C
1105
1106 **Built-in Humidity Sensor:**
1107
1108 * Resolution: 0.04 % RH
1109 * Accuracy Tolerance : Typ ±3 % RH
1110 * Long Term Drift: < 0.02 °C/yr
1111 * Operating Range: 0 ~~ 96 % RH
1112
1113 **External Temperature Sensor :**
1114
1115 * Resolution: 0.01 °C
1116 * Accuracy Tolerance : Typical ±0.3 °C
1117 * Long Term Drift: < 0.02 °C/yr
1118 * Operating Range: -40 ~~ 125 °C
1119
1120 **External Humidity Sensor :**
1121
1122 * Resolution: 0.04 % RH
1123 * Accuracy Tolerance : Typ ±3 % RH
1124 * Long Term Drift: < 0.02 °C/yr
1125 * Operating Range: 0 ~~ 96 % RH
1126
1127
1128 = 4. Configure LHT65N via AT command or LoRaWAN downlink =
1129
1130
1131 (((
1132 Use can configure LHT65N via AT Command or LoRaWAN Downlink.
1133 )))
1134
1135 * (((
1136 AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
1137 )))
1138
1139 * (((
1140 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
1141 )))
1142
1143 (((
1144 There are two kinds of commands to configure LHT65N, they are:
1145 )))
1146
1147 * (((
1148 (% style="color:#4f81bd" %)**General Commands**.
1149 )))
1150
1151 (((
1152 These commands are to configure:
1153 )))
1154
1155 1. (((
1156 General system settings like: uplink interval.
1157 )))
1158 1. (((
1159 LoRaWAN protocol & radio-related commands.
1160 )))
1161
1162 (((
1163 They are the same for all Dragino Devices which supports DLWS-005 LoRaWAN Stack(Note~*~*). These commands can be found on the wiki: [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1164 )))
1165
1166 * (((
1167 (% style="color:#4f81bd" %)**Commands special design for LHT65N**
1168 )))
1169
1170 (((
1171 These commands are only valid for LHT65N, as below:
1172 )))
1173
1174
1175 == 4.1 Set Transmit Interval Time ==
1176
1177
1178 Feature: Change LoRaWAN End Node Transmit Interval.
1179
1180
1181 (% style="color:#4f81bd" %)**AT Command: AT+TDC**
1182
1183 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
1184 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
1185 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)30000 OK the interval is 30000ms = 30s
1186 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)OK Set transmit interval to 60000ms = 60 seconds
1187
1188 (% style="color:#4f81bd" %)**Downlink Command: 0x01**
1189
1190 Format: Command Code (0x01) followed by 3 bytes time value.
1191
1192 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1193
1194 * **Example 1**: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
1195
1196 * **Example 2**: Downlink Payload: 0100003C  ~/~/ Set Transmit Interval (TDC) = 60 seconds
1197
1198
1199 == 4.2 Set External Sensor Mode ==
1200
1201
1202 Feature: Change External Sensor Mode.
1203
1204 (% style="color:#4f81bd" %)**AT Command: AT+EXT**
1205
1206 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:468px" %)
1207 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:153px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Response**
1208 |(% style="width:155px" %)AT+EXT=?|(% style="width:151px" %)Get current external sensor mode|(% style="width:158px" %)1 OK External Sensor mode =1
1209 |(% style="width:155px" %)AT+EXT=1|(% colspan="2" rowspan="1" style="width:309px" %)Set external sensor mode to 1
1210 |(% style="width:155px" %)AT+EXT=9|(% colspan="2" rowspan="1" style="width:309px" %)Set to external DS18B20 with timestamp
1211
1212 (% style="color:#4f81bd" %)**Downlink Command: 0xA2**
1213
1214 Total bytes: 2 ~~ 5 bytes
1215
1216 **Example:**
1217
1218 * 0xA201: Set external sensor type to E1
1219
1220 * 0xA209: Same as AT+EXT=9
1221
1222 * 0xA20702003c: Same as AT+SETCNT=60
1223
1224
1225 == 4.3 Enable/Disable uplink Temperature probe ID ==
1226
1227
1228 (((
1229 Feature: If PID is enabled, device will send the temperature probe ID on:
1230 )))
1231
1232 * (((
1233 First Packet after OTAA Join
1234 )))
1235 * (((
1236 Every 24 hours since the first packet.
1237 )))
1238
1239 (((
1240 PID is default set to disable (0)
1241
1242
1243 )))
1244
1245 (% style="color:#4f81bd" %)**AT Command:**
1246
1247 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:381px" %)
1248 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:138px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:88px" %)**Response**
1249 |(% style="width:155px" %)AT+PID=1|(% style="width:136px" %)Enable PID uplink|(% style="width:86px" %)OK
1250
1251 (% style="color:#4f81bd" %)**Downlink Command:**
1252
1253 * **0xA800**  **~-~->** AT+PID=0
1254 * **0xA801**     **~-~->** AT+PID=1
1255
1256
1257 == 4.4 Set Password ==
1258
1259
1260 Feature: Set device password, max 9 digits
1261
1262 (% style="color:#4f81bd" %)**AT Command: AT+PWORD**
1263
1264 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:372px" %)
1265 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:128px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**Response**
1266 |(% style="width:155px" %)AT+PWORD=?|(% style="width:124px" %)Show password|(% style="width:86px" %)(((
1267 123456
1268
1269 OK
1270 )))
1271 |(% style="width:155px" %)AT+PWORD=999999|(% style="width:124px" %)Set password|(% style="width:86px" %)OK
1272
1273 (% style="color:#4f81bd" %)**Downlink Command:**
1274
1275 No downlink command for this feature.
1276
1277
1278 == 4.5 Quit AT Command ==
1279
1280
1281 Feature: Quit AT Command mode, so user needs to input password again before use AT Commands.
1282
1283 (% style="color:#4f81bd" %)**AT Command: AT+DISAT**
1284
1285 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
1286 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:191px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:86px" %)**Response**
1287 |(% style="width:155px" %)AT+DISAT|(% style="width:191px" %)Quit AT Commands mode|(% style="width:86px" %)OK
1288
1289 (% style="color:#4f81bd" %)**Downlink Command:**
1290
1291 No downlink command for this feature.
1292
1293
1294 == 4.6 Set to sleep mode ==
1295
1296
1297 Feature: Set device to sleep mode
1298
1299 * **AT+Sleep=0**  : Normal working mode, device will sleep and use lower power when there is no LoRa message
1300 * **AT+Sleep=1** :  Device is in deep sleep mode, no LoRa activation happen, used for storage or shipping.
1301
1302 (% style="color:#4f81bd" %)**AT Command: AT+SLEEP**
1303
1304 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:513px" %)
1305 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:218px" %)**Response**
1306 |(% style="width:155px" %)AT+SLEEP|(% style="width:139px" %)Set to sleep mode|(% style="width:213px" %)(((
1307 Clear all stored sensor data…
1308
1309 OK
1310 )))
1311
1312 (% style="color:#4f81bd" %)**Downlink Command:**
1313
1314 * There is no downlink command to set to Sleep mode.
1315
1316
1317 == 4.7 Set system time ==
1318
1319
1320 Feature: Set system time, unix format. [[See here for format detail.>>||anchor="H2.6.2UnixTimeStamp"]]
1321
1322 (% style="color:#4f81bd" %)**AT Command:**
1323
1324 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:506px" %)
1325 |(% style="background-color:#d9e2f3; color:#0070c0; width:188px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:318px" %)**Function**
1326 |(% style="width:154px" %)AT+TIMESTAMP=1611104352|(% style="width:285px" %)(((
1327 OK
1328
1329 Set System time to 2021-01-20 00:59:12
1330 )))
1331
1332 (% style="color:#4f81bd" %)**Downlink Command:**
1333
1334 0x306007806000  ~/~/  Set timestamp to 0x(6007806000),Same as AT+TIMESTAMP=1611104352
1335
1336
1337 == 4.8 Set Time Sync Mode ==
1338
1339
1340 (((
1341 Feature: Enable/Disable Sync system time via LoRaWAN MAC Command (DeviceTimeReq), LoRaWAN server must support v1.0.3 protocol to reply this command.
1342 )))
1343
1344 (((
1345 SYNCMOD is set to 1 by default. If user want to set a different time from LoRaWAN server, user need to set this to 0.
1346 )))
1347
1348 (% style="color:#4f81bd" %)**AT Command:**
1349
1350 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:475px" %)
1351 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:315px" %)**Function**
1352 |(% style="width:156px" %)AT+SYNCMOD=1|(% style="width:315px" %)Enable Sync system time via LoRaWAN MAC Command (DeviceTimeReq)
1353
1354 (% style="color:#4f81bd" %)**Downlink Command:**
1355
1356 0x28 01  ~/~/  Same As AT+SYNCMOD=1
1357 0x28 00  ~/~/  Same As AT+SYNCMOD=0
1358
1359
1360 == 4.9 Set Time Sync Interval ==
1361
1362
1363 Feature: Define System time sync interval. SYNCTDC default value: 10 days.
1364
1365 (% style="color:#4f81bd" %)**AT Command:**
1366
1367 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:472px" %)
1368 |(% style="background-color:#d9e2f3; color:#0070c0; width:158px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:314px" %)**Function**
1369 |(% style="width:156px" %)AT+SYNCTDC=0x0A |(% style="width:311px" %)Set SYNCTDC to 10 (0x0A), so the sync time is 10 days.
1370
1371 (% style="color:#4f81bd" %)**Downlink Command:**
1372
1373 **0x29 0A**  ~/~/ Same as AT+SYNCTDC=0x0A
1374
1375
1376 == 4.10 Print data entries base on page. ==
1377
1378
1379 Feature: Print the sector data from start page to stop page (max is 416 pages).
1380
1381 (% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1382
1383 [[image:image-20230426164330-2.png]]
1384
1385 (% style="color:#4f81bd" %)**Downlink Command:**
1386
1387 No downlink commands for feature
1388
1389
1390 == 4.11 Print last few data entries. ==
1391
1392
1393 Feature: Print the last few data entries
1394
1395 (% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1396
1397 [[image:image-20230426164932-3.png]]
1398
1399 (% style="color:#4f81bd" %)**Downlink Command:**
1400
1401 No downlink commands for feature
1402
1403
1404 == 4.12 Clear Flash Record ==
1405
1406
1407 Feature: Clear flash storage for data log feature.
1408
1409 (% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1410
1411 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:503px" %)
1412 |(% style="background-color:#d9e2f3; color:#0070c0; width:157px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:137px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:209px" %)**Response**
1413 |(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1414 Clear all stored sensor data…
1415
1416 OK
1417 )))
1418
1419 (% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1420
1421 * Example: 0xA301  ~/~/  Same as AT+CLRDTA
1422
1423
1424 == 4.13 Auto Send None-ACK messages ==
1425
1426
1427 Feature: LHT65N will wait for ACK for each uplink, If LHT65N doesn't get ACK from the IoT server, it will consider the message doesn't arrive server and store it. LHT65N keeps sending messages in normal periodically. Once LHT65N gets ACK from a server, it will consider the network is ok and start to send the not-arrive message.
1428
1429 (% style="color:#4f81bd" %)**AT Command: AT+PNACKMD**
1430
1431 The default factory setting is 0
1432
1433 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:367px" %)
1434 |=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 87px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1435 |(% style="width:158px" %)AT+PNACKMD=1|(% style="width:118px" %)Poll None-ACK message|(% style="width:87px" %)OK
1436
1437 (% style="color:#4f81bd" %)**Downlink Command: 0x34**
1438
1439 * Example: 0x3401  ~/~/  Same as AT+PNACKMD=1
1440
1441
1442 == 4.14 Modified WMOD command for external sensor TMP117 or DS18B20 temperature alarm(Since firmware 1.3.0) ==
1443
1444
1445 Feature: Set internal and external temperature sensor alarms.
1446
1447 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
1448 |=(% style="width: 250px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1449 |(% style="width:268px" %)AT+WMOD=parameter1,parameter2,parameter3,parameter4|(% style="width:255px" %)Set internal and external temperature sensor alarms|(% style="width:181px" %)OK
1450
1451 (% style="color:#037691" %)**AT+WMOD=parameter1,parameter2,parameter3,parameter4**
1452
1453 (% style="color:#037691" %)**Parameter 1**(%%):  Alarm mode:
1454
1455 0): Cancel
1456
1457 1): Threshold alarm
1458
1459 2): Fluctuation alarm
1460
1461
1462 (% style="color:#037691" %)** Parameter 2**(%%):  Sampling time. Unit: seconds, up to 255 seconds.
1463
1464 (% style="color:red" %)**Note: When the collection time is less than 60 seconds and always exceeds the set alarm threshold, the sending interval will not be the collection time, but will be sent every 60 seconds.**
1465
1466
1467 (% style="color:#037691" %) **Parameter 3 and parameter 4:**
1468
1469 1):  If Alarm Mode is set to 1: Parameter 3 and parameter 4 are valid, as before, they represent low temperature and high temperature.
1470
1471 Such as AT+WMOD=1,60,45,105, it means high and low temperature alarm.
1472
1473
1474 2):  If Alarm Mode is set to 2: Parameter 3 is valid, which represents the difference between the currently collected temperature and the last uploaded temperature.
1475
1476 Such as AT+WMOD=2,10,2,it means that it is a fluctuation alarm.
1477
1478 If the difference between the current collected temperature and the last Uplin is ±2 degrees, the alarm will be issued.
1479
1480
1481 (% style="color:#4f81bd" %)**Downlink Command: 0xA5**
1482
1483 0xA5 00 ~-~- AT+WMOD=0.
1484
1485 0xA5 01 0A 11 94 29 04 ~-~- AT+WMOD=1,10,45,105  (AT+WMOD = second byte, third byte, fourth and fifth bytes divided by 100, sixth and seventh bytes divided by 100 )
1486
1487 0XA5 01 0A F9 C0 29 04 ~-~-AT+WMOD=1,10,-16,105(Need to convert -16 to -1600 for calculation,-1600(DEC)=FFFFFFFFFFFFF9C0(HEX)  FFFFFFFFFFFFF9C0(HEX) +10000(HEX)=F9C0(HEX))
1488
1489 0xA5 02 0A 02 ~-~- AT+WMOD=2,10,2  (AT+WMOD = second byte, third byte, fourth byte)
1490
1491 0xA5 FF ~-~- After the device receives it, upload the current alarm configuration (FPORT=8). Such as 01 0A 11 94 29 04 or 02 0A 02.
1492
1493
1494 = 5. Battery & How to replace =
1495
1496 == 5.1 Battery Type ==
1497
1498
1499 (((
1500 LHT65N is equipped with a 2400mAH Li-MnO2 (CR17505) battery . The battery is an un-rechargeable battery with low discharge rate targeting for up to 8~~10 years use. This type of battery is commonly used in IoT devices for long-term running, such as water meters.
1501 )))
1502
1503 (((
1504 The discharge curve is not linear so can't simply use percentage to show the battery level. Below is the battery performance.
1505
1506
1507 [[image:image-20220515075034-1.png||_mstalt="428961" height="208" width="644"]]
1508 )))
1509
1510 The minimum Working Voltage for the LHT65N is ~~ 2.5v. When battery is lower than 2.6v, it is time to change the battery.
1511
1512
1513 == 5.2 Replace Battery ==
1514
1515
1516 LHT65N has two screws on the back, Unscrew them, and changing the battery inside is ok. The battery is a general CR17450 battery. Any brand should be ok.
1517
1518 [[image:image-20220515075440-2.png||_mstalt="429546" height="338" width="272"]][[image:image-20220515075625-3.png||_mstalt="431574" height="193" width="257"]]
1519
1520
1521 == 5.3 Battery Life Analyze ==
1522
1523
1524 (((
1525 Dragino battery-powered products are all run in Low Power mode. User can check the guideline from this link to calculate the estimated battery life:
1526 [[https:~~/~~/www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/Battery_Analyze/DRAGINO_Battery_Life_Guide.pdf]]
1527 )))
1528
1529
1530 (((
1531 A full detail test report for LHT65N on different frequency can be found at : [[https:~~/~~/www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0>>https://www.dropbox.com/sh/r2i3zlhsyrpavla/AAB1sZw3mdT0K7XjpHCITt13a?dl=0]]
1532 )))
1533
1534
1535 = 6. FAQ =
1536
1537 == 6.1 How to use AT Command? ==
1538
1539
1540 LHT65N supports AT Command set.User can use a USB to TTL adapter plus the Program Cable to connect to LHT65 for using AT command, as below.
1541
1542 [[image:image-20220530085651-1.png||_mstalt="429949"]]
1543
1544
1545 **Connection:**
1546
1547 * (% style="background-color:yellow" %)**USB to TTL GND <~-~->GND**
1548 * (% style="background-color:yellow" %)**USB to TTL RXD <~-~-> D+**
1549 * (% style="background-color:yellow" %)**USB to TTL TXD <~-~-> A11**
1550
1551 (((
1552 (% _mstmutation="1" style="color:red" %)**(Note: This pin only corresponds to the lead-out board sold by dragino company. For the lead-out board purchased by yourself, please refer to the pin description in Chapter 6.6)**
1553
1554 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**) (%%)to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1555 )))
1556
1557
1558 Input password and ATZ to activate LHT65N,As shown below:
1559
1560 [[image:image-20220530095701-4.png||_mstalt="430014"]]
1561
1562
1563 AT Command List is as below:
1564
1565 AT+<CMD>? :  Help on <CMD>
1566
1567 AT+<CMD> :  Run <CMD>
1568
1569 AT+<CMD>=<value> :  Set the value
1570
1571 AT+<CMD>=? :  Get the value
1572
1573 AT+DEBUG:  Set more info output
1574
1575 ATZ:  Trig a reset of the MCU
1576
1577 AT+FDR:  Reset Parameters to Factory Default, Keys Reserve
1578
1579 AT+DEUI:  Get or Set the Device EUI
1580
1581 AT+DADDR:  Get or Set the Device Address
1582
1583 AT+APPKEY:  Get or Set the Application Key
1584
1585 AT+NWKSKEY:  Get or Set the Network Session Key
1586
1587 AT+APPSKEY:  Get or Set the Application Session Key
1588
1589 AT+APPEUI:  Get or Set the Application EUI
1590
1591 AT+ADR:  Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1592
1593 AT+TXP:  Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1594
1595 AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)
1596
1597 AT+DCS:  Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1598
1599 AT+PNM:  Get or Set the public network mode. (0: off, 1: on)
1600
1601 AT+RX2FQ:  Get or Set the Rx2 window frequency
1602
1603 AT+RX2DR:  Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1604
1605 AT+RX1DL:  Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1606
1607 AT+RX2DL:  Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1608
1609 AT+JN1DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1610
1611 AT+JN2DL:  Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1612
1613 AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1614
1615 AT+NWKID:  Get or Set the Network ID
1616
1617 AT+FCU:  Get or Set the Frame Counter Uplink
1618
1619 AT+FCD:  Get or Set the Frame Counter Downlink
1620
1621 AT+CLASS:  Get or Set the Device Class
1622
1623 AT+JOIN:  Join network
1624
1625 AT+NJS:  Get the join status
1626
1627 AT+SENDB:  Send hexadecimal data along with the application port
1628
1629 AT+SEND:  Send text data along with the application port
1630
1631 AT+RECVB:  Print last received data in binary format (with hexadecimal values)
1632
1633 AT+RECV:  Print last received data in raw format
1634
1635 AT+VER:  Get current image version and Frequency Band
1636
1637 AT+CFM:  Get or Set the confirmation mode (0-1)
1638
1639 AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1640
1641 AT+SNR:  Get the SNR of the last received packet
1642
1643 AT+RSSI:  Get the RSSI of the last received packet
1644
1645 AT+TDC:  Get or set the application data transmission interval in ms
1646
1647 AT+PORT:  Get or set the application port
1648
1649 AT+DISAT:  Disable AT commands
1650
1651 AT+PWORD: Set password, max 9 digits
1652
1653 AT+CHS:  Get or Set Frequency (Unit: Hz) for Single Channel Mode
1654
1655 AT+CHE:  Get or Set eight channels mode,Only for US915,AU915,CN470
1656
1657 AT+PDTA:  Print the sector data from start page to stop page
1658
1659 AT+PLDTA:  Print the last few sets of data
1660
1661 AT+CLRDTA:  Clear the storage, record position back to 1st
1662
1663 AT+SLEEP:  Set sleep mode
1664
1665 AT+EXT:  Get or Set external sensor model
1666
1667 AT+BAT:  Get the current battery voltage in mV
1668
1669 AT+CFG:  Print all configurations
1670
1671 AT+WMOD:  Get or Set Work Mode
1672
1673 AT+ARTEMP:  Get or set the internal Temperature sensor alarm range
1674
1675 AT+CITEMP:  Get or set the internal Temperature sensor collection interval in min
1676
1677 AT+SETCNT:  Set the count at present
1678
1679 AT+RJTDC:  Get or set the ReJoin data transmission interval in min
1680
1681 AT+RPL:  Get or set response level
1682
1683 AT+TIMESTAMP:  Get or Set UNIX timestamp in second
1684
1685 AT+LEAPSEC:  Get or Set Leap Second
1686
1687 AT+SYNCMOD:  Get or Set time synchronization method
1688
1689 AT+SYNCTDC:  Get or set time synchronization interval in day
1690
1691 AT+PID:  Get or set the PID
1692
1693
1694 == 6.2 Where to use AT commands and Downlink commands ==
1695
1696
1697 **AT commands: **
1698
1699 [[image:image-20220620153708-1.png||_mstalt="429806" height="603" width="723"]]
1700
1701
1702 **Downlink commands:**
1703
1704
1705 (% style="color:blue" %)**TTN:**
1706
1707 [[image:image-20220615092124-2.png||_mstalt="429221" height="649" width="688"]]
1708
1709
1710
1711 (% style="color:blue" %)**Helium: **
1712
1713 [[image:image-20220615092551-3.png||_mstalt="430794" height="423" width="835"]]
1714
1715
1716
1717 (% style="color:blue" %)**Chirpstack: The downlink window will not be displayed until the network is accessed**
1718
1719
1720 [[image:image-20220615094850-6.png||_mstalt="433082"]]
1721
1722
1723 [[image:image-20220615094904-7.png||_mstalt="433485" height="281" width="911"]]
1724
1725
1726
1727 (% style="color:blue" %)**Aws:**
1728
1729 [[image:image-20220615092939-4.png||_mstalt="434460" height="448" width="894"]]
1730
1731
1732 == 6.3 How to change the uplink interval? ==
1733
1734
1735 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/||_mstmutation="1" style="background-color: rgb(255, 255, 255);"]]
1736
1737
1738 == 6.4 How to use TTL-USB to connect a PC to input AT commands? ==
1739
1740
1741 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1742
1743 [[image:1655802313617-381.png||_mstalt="293917"]]
1744
1745
1746 (((
1747 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1748 )))
1749
1750
1751 Input password and ATZ to activate LHT65N, As shown below:
1752
1753 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1754
1755
1756 == 6.5 How to use TTL-USB to connect PC to upgrade firmware? ==
1757
1758
1759 [[image:image-20220615153355-1.png||_mstalt="430222"]]
1760
1761
1762 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1763
1764 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1765
1766
1767
1768 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1769
1770 First connect the four lines;(% style="display:none" %)
1771
1772 [[image:image-20220621170938-1.png||_mstalt="431340" height="413" width="419"]],(% style="display:none" %)
1773
1774
1775 Then use DuPont cable to short circuit port3 and port1, and then release them, so that the device enters bootlaod mode.
1776
1777 [[image:image-20220621170938-2.png||_mstalt="431704"]]
1778
1779
1780
1781 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1782
1783 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1784
1785
1786 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1787
1788
1789 When this interface appears, it indicates that the download has been completed.
1790
1791 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1792
1793
1794 Finally, unplug the DuPont cable on port4, and then use the DuPont cable to short circuit port3 and port1 to reset the device.
1795
1796
1797 == 6.6 Using USB-TYPE-C to connect to the computer using the AT command ==
1798
1799
1800 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1801
1802
1803 **UART Port of LHT65N:**
1804
1805 * (% class="mark" %)**PB0: RXD**
1806 * (% class="mark" %)**PB1: TXD**
1807 * (% class="mark" %)**GND**
1808
1809 [[image:image-20220623112117-4.png||_mstalt="428350" height="459" width="343"]]
1810
1811
1812 (((
1813 In PC, User needs to set serial tool(such as [[**putty**>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600** (%%)to access to access serial console for LHT65N. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**(% style="color:red" %))(%%) to active it. Timeout to input AT Command is 5 min, after 5-minute, user need to input password again. User can use AT+DISAT command to disable AT command before timeout.
1814 )))
1815
1816
1817 Input password and ATZ to activate LHT65N,As shown below:
1818
1819 [[image:image-20220615154519-3.png||_mstalt="431925" height="672" width="807"]]
1820
1821
1822 == 6.7 How to use  USB-TYPE-C to connect PC to upgrade firmware? ==
1823
1824
1825 [[image:image-20220623110706-1.png||_mstalt="427869"]]
1826
1827
1828 (% style="color:blue" %)**Step1**(%%): Install [[TremoProgrammer>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AAAnJD_qGZ42bB52o4UmH9v9a/LHT65N%20Temperature%20%26%20Humidity%20Sensor/tool?dl=0&subfolder_nav_tracking=1]]  first.
1829
1830 [[image:image-20220615170542-5.png||_mstalt="430638"]]
1831
1832
1833
1834 (% _mstmutation="1" style="color:blue" %)**Step2**(%%): wiring method.(% style="display:none" %)
1835
1836 First connect the four lines;
1837
1838 [[image:image-20220623113959-5.png||_mstalt="433485" height="528" width="397"]]
1839
1840 Connect A8 and GND with Dupont wire for a while and then separate, enter reset mode
1841
1842
1843
1844 (% style="color:blue" %)**Step3: **(%%)Select the device port to be connected, baud rate and bin file to be downloaded.
1845
1846 [[image:image-20220615171334-6.png||_mstalt="431028"]]
1847
1848
1849 Click the (% style="color:blue" %)**start**(%%) button to start the firmware upgrade.
1850
1851
1852 When this interface appears, it indicates that the download has been completed.
1853
1854 [[image:image-20220620160723-8.png||_mstalt="430703"]]
1855
1856
1857 Finally,Disconnect 3.3v, Connect A8 and GND with Dupont wire for a while and then separate, exit reset mode
1858
1859
1860 == 6.8 Why can't I see the datalog information ==
1861
1862
1863 ~1. The time is not aligned, and the correct query command is not used.
1864
1865 2. Decoder error, did not parse the datalog data, the data was filtered.
1866
1867
1868 = 7. Order Info =
1869
1870
1871 Part Number: (% style="color:#4f81bd" %)** LHT65N-XX-YY**
1872
1873 (% style="color:#4f81bd" %)**XX **(%%): The default frequency band
1874
1875 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1876 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1877 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1878 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1879 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1880 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**US915**(%%): LoRaWAN US915 band
1881 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1882 * (% style="color:#4f81bd" %)** **(% _mstmutation="1" style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1883
1884 (% style="color:#4f81bd" %)**YY**(%%): Sensor Accessories
1885
1886 * (% style="color:red" %)**E3**(%%): External Temperature Probe
1887
1888
1889 = 8. Packing Info =
1890
1891
1892 **Package Includes**:
1893
1894 * LHT65N Temperature & Humidity Sensor x 1
1895 * Optional external sensor
1896
1897 **Dimension and weight**:
1898
1899 * Device Size:  10 x 10 x 3.5 mm
1900 * Device Weight: 120.5g
1901
1902
1903 = 9. Reference material =
1904
1905
1906 * [[Datasheet, photos, decoder, firmware>>https://www.dropbox.com/sh/una19zsni308dme/AACOKp6J2RF5TMlKWT5zU3RTa?dl=0]]
1907
1908
1909 = 10. FCC Warning =
1910
1911
1912 This device complies with part 15 of the FCC Rules.Operation is subject to the following two conditions:
1913
1914 (1) This device may not cause harmful interference;
1915
1916 (2) this device must accept any interference received, including interference that may cause undesired operation.