Version 140.9 by Xiaoling on 2022/06/10 17:14

Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60
61
62 == 1.3  Specification ==
63
64 === 1.3.1  Rated environmental conditions ===
65
66 [[image:image-20220610154839-1.png]]
67
68 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69
70 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71
72
73
74 === 1.3.2  Effective measurement range Reference beam pattern ===
75
76 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
77
78
79
80 [[image:1654852253176-749.png]]
81
82
83 **(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
84
85
86 [[image:1654852175653-550.png]](% style="display:none" %) ** **
87
88
89
90 == 1.5 ​ Applications ==
91
92 * Horizontal distance measurement
93 * Liquid level measurement
94 * Parking management system
95 * Object proximity and presence detection
96 * Intelligent trash can management system
97 * Robot obstacle avoidance
98 * Automatic control
99 * Sewer
100 * Bottom water level monitoring
101
102
103
104 == 1.6  Pin mapping and power on ==
105
106
107 [[image:1654847583902-256.png]]
108
109
110
111 = 2.  Configure LDDS75 to connect to LoRaWAN network =
112
113 == 2.1  How it works ==
114
115 (((
116 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
117 )))
118
119 (((
120 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
121 )))
122
123
124
125 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126
127 (((
128 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
129 )))
130
131 (((
132 [[image:1654848616367-242.png]]
133 )))
134
135 (((
136 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
137 )))
138
139 (((
140 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
141 )))
142
143 (((
144 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
145 )))
146
147 [[image:image-20220607170145-1.jpeg]]
148
149
150 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
151
152 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
153
154 **Add APP EUI in the application**
155
156 [[image:image-20220610161353-4.png]]
157
158 [[image:image-20220610161353-5.png]]
159
160 [[image:image-20220610161353-6.png]]
161
162
163 [[image:image-20220610161353-7.png]]
164
165
166 You can also choose to create the device manually.
167
168 [[image:image-20220610161538-8.png]]
169
170
171
172 **Add APP KEY and DEV EUI**
173
174 [[image:image-20220610161538-9.png]]
175
176
177
178 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
179
180
181 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182
183 [[image:image-20220610161724-10.png]]
184
185
186 (((
187 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
188 )))
189
190 [[image:1654849068701-275.png]]
191
192
193
194 == 2.3  ​Uplink Payload ==
195
196 (((
197 LDDS75 will uplink payload via LoRaWAN with below payload format: 
198
199 Uplink payload includes in total 4 bytes.
200 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
201 )))
202
203 (((
204
205 )))
206
207 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
208 |=(% style="width: 62.5px;" %)(((
209 **Size (bytes)**
210 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
211 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
212 [[Distance>>||anchor="H2.3.3A0Distance"]]
213
214 (unit: mm)
215 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
216 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
217 )))|[[Sensor Flag>>path:#Sensor_Flag]]
218
219 [[image:1654850511545-399.png]]
220
221
222
223 === 2.3.1  Battery Info ===
224
225
226 Check the battery voltage for LDDS75.
227
228 Ex1: 0x0B45 = 2885mV
229
230 Ex2: 0x0B49 = 2889mV
231
232
233
234 === 2.3.2  Distance ===
235
236 Get the distance. Flat object range 280mm - 7500mm.
237
238 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
239
240
241 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
242 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
243
244
245
246 === 2.3.3  Interrupt Pin ===
247
248 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
249
250 **Example:**
251
252 0x00: Normal uplink packet.
253
254 0x01: Interrupt Uplink Packet.
255
256
257
258 === 2.3.4  DS18B20 Temperature sensor ===
259
260 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
261
262 **Example**:
263
264 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
265
266 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
267
268 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
269
270
271
272 === 2.3.5  Sensor Flag ===
273
274 0x01: Detect Ultrasonic Sensor
275
276 0x00: No Ultrasonic Sensor
277
278
279 ===
280 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
281
282 While using TTN network, you can add the payload format to decode the payload.
283
284
285 [[image:1654850829385-439.png]]
286
287 The payload decoder function for TTN V3 is here:
288
289 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
290
291
292
293 == 2.4  Uplink Interval ==
294
295 The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
296
297
298
299 == 2.5  ​Show Data in DataCake IoT Server ==
300
301 (((
302 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
303 )))
304
305 (((
306
307 )))
308
309 (((
310 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
311 )))
312
313 (((
314 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
315 )))
316
317
318 [[image:1654592790040-760.png]]
319
320
321 [[image:1654592800389-571.png]]
322
323
324 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
325
326 (% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
327
328 [[image:1654851029373-510.png]]
329
330
331 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
332
333 [[image:image-20220610165129-11.png||height="595" width="1088"]]
334
335
336
337 == 2.6  Frequency Plans ==
338
339 (((
340 The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
341 )))
342
343
344
345 === 2.6.1  EU863-870 (EU868) ===
346
347 (((
348 (% style="color:blue" %)**Uplink:**
349 )))
350
351 (((
352 868.1 - SF7BW125 to SF12BW125
353 )))
354
355 (((
356 868.3 - SF7BW125 to SF12BW125 and SF7BW250
357 )))
358
359 (((
360 868.5 - SF7BW125 to SF12BW125
361 )))
362
363 (((
364 867.1 - SF7BW125 to SF12BW125
365 )))
366
367 (((
368 867.3 - SF7BW125 to SF12BW125
369 )))
370
371 (((
372 867.5 - SF7BW125 to SF12BW125
373 )))
374
375 (((
376 867.7 - SF7BW125 to SF12BW125
377 )))
378
379 (((
380 867.9 - SF7BW125 to SF12BW125
381 )))
382
383 (((
384 868.8 - FSK
385 )))
386
387 (((
388
389 )))
390
391 (((
392 (% style="color:blue" %)**Downlink:**
393 )))
394
395 (((
396 Uplink channels 1-9 (RX1)
397 )))
398
399 (((
400 869.525 - SF9BW125 (RX2 downlink only)
401 )))
402
403
404
405 === 2.6.2  US902-928(US915) ===
406
407 (((
408 Used in USA, Canada and South America. Default use CHE=2
409
410 (% style="color:blue" %)**Uplink:**
411
412 903.9 - SF7BW125 to SF10BW125
413
414 904.1 - SF7BW125 to SF10BW125
415
416 904.3 - SF7BW125 to SF10BW125
417
418 904.5 - SF7BW125 to SF10BW125
419
420 904.7 - SF7BW125 to SF10BW125
421
422 904.9 - SF7BW125 to SF10BW125
423
424 905.1 - SF7BW125 to SF10BW125
425
426 905.3 - SF7BW125 to SF10BW125
427
428
429 (% style="color:blue" %)**Downlink:**
430
431 923.3 - SF7BW500 to SF12BW500
432
433 923.9 - SF7BW500 to SF12BW500
434
435 924.5 - SF7BW500 to SF12BW500
436
437 925.1 - SF7BW500 to SF12BW500
438
439 925.7 - SF7BW500 to SF12BW500
440
441 926.3 - SF7BW500 to SF12BW500
442
443 926.9 - SF7BW500 to SF12BW500
444
445 927.5 - SF7BW500 to SF12BW500
446
447 923.3 - SF12BW500(RX2 downlink only)
448
449
450
451 )))
452
453 === 2.6.3  CN470-510 (CN470) ===
454
455 (((
456 Used in China, Default use CHE=1
457 )))
458
459 (((
460 (% style="color:blue" %)**Uplink:**
461 )))
462
463 (((
464 486.3 - SF7BW125 to SF12BW125
465 )))
466
467 (((
468 486.5 - SF7BW125 to SF12BW125
469 )))
470
471 (((
472 486.7 - SF7BW125 to SF12BW125
473 )))
474
475 (((
476 486.9 - SF7BW125 to SF12BW125
477 )))
478
479 (((
480 487.1 - SF7BW125 to SF12BW125
481 )))
482
483 (((
484 487.3 - SF7BW125 to SF12BW125
485 )))
486
487 (((
488 487.5 - SF7BW125 to SF12BW125
489 )))
490
491 (((
492 487.7 - SF7BW125 to SF12BW125
493 )))
494
495 (((
496
497 )))
498
499 (((
500 (% style="color:blue" %)**Downlink:**
501 )))
502
503 (((
504 506.7 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 506.9 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 507.1 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 507.3 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 507.5 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 507.7 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 507.9 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 508.1 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 505.3 - SF12BW125 (RX2 downlink only)
537 )))
538
539
540
541 === 2.6.4  AU915-928(AU915) ===
542
543 (((
544 Default use CHE=2
545
546 (% style="color:blue" %)**Uplink:**
547
548 916.8 - SF7BW125 to SF12BW125
549
550 917.0 - SF7BW125 to SF12BW125
551
552 917.2 - SF7BW125 to SF12BW125
553
554 917.4 - SF7BW125 to SF12BW125
555
556 917.6 - SF7BW125 to SF12BW125
557
558 917.8 - SF7BW125 to SF12BW125
559
560 918.0 - SF7BW125 to SF12BW125
561
562 918.2 - SF7BW125 to SF12BW125
563
564
565 (% style="color:blue" %)**Downlink:**
566
567 923.3 - SF7BW500 to SF12BW500
568
569 923.9 - SF7BW500 to SF12BW500
570
571 924.5 - SF7BW500 to SF12BW500
572
573 925.1 - SF7BW500 to SF12BW500
574
575 925.7 - SF7BW500 to SF12BW500
576
577 926.3 - SF7BW500 to SF12BW500
578
579 926.9 - SF7BW500 to SF12BW500
580
581 927.5 - SF7BW500 to SF12BW500
582
583 923.3 - SF12BW500(RX2 downlink only)
584
585
586
587 )))
588
589 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
590
591 (((
592 (% style="color:blue" %)**Default Uplink channel:**
593 )))
594
595 (((
596 923.2 - SF7BW125 to SF10BW125
597 )))
598
599 (((
600 923.4 - SF7BW125 to SF10BW125
601 )))
602
603 (((
604
605 )))
606
607 (((
608 (% style="color:blue" %)**Additional Uplink Channel**:
609 )))
610
611 (((
612 (OTAA mode, channel added by JoinAccept message)
613 )))
614
615 (((
616
617 )))
618
619 (((
620 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
621 )))
622
623 (((
624 922.2 - SF7BW125 to SF10BW125
625 )))
626
627 (((
628 922.4 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632 922.6 - SF7BW125 to SF10BW125
633 )))
634
635 (((
636 922.8 - SF7BW125 to SF10BW125
637 )))
638
639 (((
640 923.0 - SF7BW125 to SF10BW125
641 )))
642
643 (((
644 922.0 - SF7BW125 to SF10BW125
645 )))
646
647 (((
648
649 )))
650
651 (((
652 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
653 )))
654
655 (((
656 923.6 - SF7BW125 to SF10BW125
657 )))
658
659 (((
660 923.8 - SF7BW125 to SF10BW125
661 )))
662
663 (((
664 924.0 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668 924.2 - SF7BW125 to SF10BW125
669 )))
670
671 (((
672 924.4 - SF7BW125 to SF10BW125
673 )))
674
675 (((
676 924.6 - SF7BW125 to SF10BW125
677 )))
678
679 (((
680
681 )))
682
683 (((
684 (% style="color:blue" %)**Downlink:**
685 )))
686
687 (((
688 Uplink channels 1-8 (RX1)
689 )))
690
691 (((
692 923.2 - SF10BW125 (RX2)
693 )))
694
695
696
697 === 2.6.6  KR920-923 (KR920) ===
698
699 (((
700 (% style="color:blue" %)**Default channel:**
701 )))
702
703 (((
704 922.1 - SF7BW125 to SF12BW125
705 )))
706
707 (((
708 922.3 - SF7BW125 to SF12BW125
709 )))
710
711 (((
712 922.5 - SF7BW125 to SF12BW125
713 )))
714
715 (((
716
717 )))
718
719 (((
720 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
721 )))
722
723 (((
724 922.1 - SF7BW125 to SF12BW125
725 )))
726
727 (((
728 922.3 - SF7BW125 to SF12BW125
729 )))
730
731 (((
732 922.5 - SF7BW125 to SF12BW125
733 )))
734
735 (((
736 922.7 - SF7BW125 to SF12BW125
737 )))
738
739 (((
740 922.9 - SF7BW125 to SF12BW125
741 )))
742
743 (((
744 923.1 - SF7BW125 to SF12BW125
745 )))
746
747 (((
748 923.3 - SF7BW125 to SF12BW125
749 )))
750
751 (((
752
753 )))
754
755 (((
756 (% style="color:blue" %)**Downlink:**
757 )))
758
759 (((
760 Uplink channels 1-7(RX1)
761 )))
762
763 (((
764 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
765 )))
766
767
768
769
770 === 2.6.7  IN865-867 (IN865) ===
771
772 (((
773 (% style="color:blue" %)**Uplink:**
774 )))
775
776 (((
777 865.0625 - SF7BW125 to SF12BW125
778 )))
779
780 (((
781 865.4025 - SF7BW125 to SF12BW125
782 )))
783
784 (((
785 865.9850 - SF7BW125 to SF12BW125
786 )))
787
788 (((
789
790 )))
791
792 (((
793 (% style="color:blue" %)**Downlink:**
794 )))
795
796 (((
797 Uplink channels 1-3 (RX1)
798 )))
799
800 (((
801 866.550 - SF10BW125 (RX2)
802 )))
803
804
805
806
807 == 2.7  LED Indicator ==
808
809 The LLDS12 has an internal LED which is to show the status of different state.
810
811 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
812 * Blink once when device transmit a packet.
813
814 == 2.8  ​Firmware Change Log ==
815
816
817 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
818
819
820 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
821
822
823
824 = 3.  LiDAR ToF Measurement =
825
826 == 3.1 Principle of Distance Measurement ==
827
828 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
829
830 [[image:1654831757579-263.png]]
831
832
833
834 == 3.2 Distance Measurement Characteristics ==
835
836 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
837
838 [[image:1654831774373-275.png]]
839
840
841 (((
842 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
843 )))
844
845 (((
846 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
847 )))
848
849 (((
850 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
851 )))
852
853
854 (((
855 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
856 )))
857
858
859 [[image:1654831797521-720.png]]
860
861
862 (((
863 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
864 )))
865
866 [[image:1654831810009-716.png]]
867
868
869 (((
870 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
871 )))
872
873
874
875 == 3.3 Notice of usage: ==
876
877 Possible invalid /wrong reading for LiDAR ToF tech:
878
879 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
880 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
881 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
882 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
883
884 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
885
886 (((
887 (((
888 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
889 )))
890 )))
891
892 * (((
893 (((
894 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
895 )))
896 )))
897 * (((
898 (((
899 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
900 )))
901 )))
902
903 (((
904 (((
905
906 )))
907
908 (((
909 There are two kinds of commands to configure LLDS12, they are:
910 )))
911 )))
912
913 * (((
914 (((
915 (% style="color:#4f81bd" %)** General Commands**.
916 )))
917 )))
918
919 (((
920 (((
921 These commands are to configure:
922 )))
923 )))
924
925 * (((
926 (((
927 General system settings like: uplink interval.
928 )))
929 )))
930 * (((
931 (((
932 LoRaWAN protocol & radio related command.
933 )))
934 )))
935
936 (((
937 (((
938 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
939 )))
940 )))
941
942 (((
943 (((
944
945 )))
946 )))
947
948 * (((
949 (((
950 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
951 )))
952 )))
953
954 (((
955 (((
956 These commands only valid for LLDS12, as below:
957 )))
958 )))
959
960
961
962 == 4.1  Set Transmit Interval Time ==
963
964 Feature: Change LoRaWAN End Node Transmit Interval.
965
966 (% style="color:#037691" %)**AT Command: AT+TDC**
967
968 [[image:image-20220607171554-8.png]]
969
970
971 (((
972 (% style="color:#037691" %)**Downlink Command: 0x01**
973 )))
974
975 (((
976 Format: Command Code (0x01) followed by 3 bytes time value.
977 )))
978
979 (((
980 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
981 )))
982
983 * (((
984 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
985 )))
986 * (((
987 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
988 )))
989
990 == 4.2  Set Interrupt Mode ==
991
992 Feature, Set Interrupt mode for GPIO_EXIT.
993
994 (% style="color:#037691" %)**AT Command: AT+INTMOD**
995
996 [[image:image-20220610105806-2.png]]
997
998
999 (((
1000 (% style="color:#037691" %)**Downlink Command: 0x06**
1001 )))
1002
1003 (((
1004 Format: Command Code (0x06) followed by 3 bytes.
1005 )))
1006
1007 (((
1008 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1009 )))
1010
1011 * (((
1012 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1013 )))
1014 * (((
1015 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1016 )))
1017
1018 == 4.3  Get Firmware Version Info ==
1019
1020 Feature: use downlink to get firmware version.
1021
1022 (% style="color:#037691" %)**Downlink Command: 0x26**
1023
1024 [[image:image-20220607171917-10.png]]
1025
1026 * Reply to the confirmation package: 26 01
1027 * Reply to non-confirmed packet: 26 00
1028
1029 Device will send an uplink after got this downlink command. With below payload:
1030
1031 Configures info payload:
1032
1033 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1034 |=(((
1035 **Size(bytes)**
1036 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1037 |**Value**|Software Type|(((
1038 Frequency
1039
1040 Band
1041 )))|Sub-band|(((
1042 Firmware
1043
1044 Version
1045 )))|Sensor Type|Reserve|(((
1046 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1047 Always 0x02
1048 )))
1049
1050 **Software Type**: Always 0x03 for LLDS12
1051
1052
1053 **Frequency Band**:
1054
1055 *0x01: EU868
1056
1057 *0x02: US915
1058
1059 *0x03: IN865
1060
1061 *0x04: AU915
1062
1063 *0x05: KZ865
1064
1065 *0x06: RU864
1066
1067 *0x07: AS923
1068
1069 *0x08: AS923-1
1070
1071 *0x09: AS923-2
1072
1073 *0xa0: AS923-3
1074
1075
1076 **Sub-Band**: value 0x00 ~~ 0x08
1077
1078
1079 **Firmware Version**: 0x0100, Means: v1.0.0 version
1080
1081
1082 **Sensor Type**:
1083
1084 0x01: LSE01
1085
1086 0x02: LDDS75
1087
1088 0x03: LDDS20
1089
1090 0x04: LLMS01
1091
1092 0x05: LSPH01
1093
1094 0x06: LSNPK01
1095
1096 0x07: LLDS12
1097
1098
1099
1100 = 5.  Battery & How to replace =
1101
1102 == 5.1  Battery Type ==
1103
1104 (((
1105 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1106 )))
1107
1108 (((
1109 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1110 )))
1111
1112 [[image:1654593587246-335.png]]
1113
1114
1115 Minimum Working Voltage for the LLDS12:
1116
1117 LLDS12:  2.45v ~~ 3.6v
1118
1119
1120
1121 == 5.2  Replace Battery ==
1122
1123 (((
1124 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1125 )))
1126
1127 (((
1128 And make sure the positive and negative pins match.
1129 )))
1130
1131
1132
1133 == 5.3  Power Consumption Analyze ==
1134
1135 (((
1136 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1137 )))
1138
1139 (((
1140 Instruction to use as below:
1141 )))
1142
1143
1144 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1145
1146 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1147
1148
1149 **Step 2**: Open it and choose
1150
1151 * Product Model
1152 * Uplink Interval
1153 * Working Mode
1154
1155 And the Life expectation in difference case will be shown on the right.
1156
1157 [[image:1654593605679-189.png]]
1158
1159
1160 The battery related documents as below:
1161
1162 * (((
1163 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1164 )))
1165 * (((
1166 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1167 )))
1168 * (((
1169 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1170 )))
1171
1172 [[image:image-20220607172042-11.png]]
1173
1174
1175
1176 === 5.3.1  ​Battery Note ===
1177
1178 (((
1179 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1180 )))
1181
1182
1183
1184 === ​5.3.2  Replace the battery ===
1185
1186 (((
1187 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1188 )))
1189
1190 (((
1191 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1192 )))
1193
1194
1195
1196 = 6.  Use AT Command =
1197
1198 == 6.1  Access AT Commands ==
1199
1200 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1201
1202 [[image:1654593668970-604.png]]
1203
1204 **Connection:**
1205
1206 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1207
1208 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1209
1210 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1211
1212
1213 (((
1214 (((
1215 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1216 )))
1217
1218 (((
1219 LLDS12 will output system info once power on as below:
1220 )))
1221 )))
1222
1223
1224 [[image:1654593712276-618.png]]
1225
1226 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1227
1228
1229 = 7.  FAQ =
1230
1231 == 7.1  How to change the LoRa Frequency Bands/Region ==
1232
1233 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1234 When downloading the images, choose the required image file for download. ​
1235
1236
1237 = 8.  Trouble Shooting =
1238
1239 == 8.1  AT Commands input doesn’t work ==
1240
1241
1242 (((
1243 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1244 )))
1245
1246
1247 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1248
1249
1250 (((
1251 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1252 )))
1253
1254 (((
1255 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1256 )))
1257
1258 (((
1259
1260 )))
1261
1262 (((
1263 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1264 )))
1265
1266 (((
1267 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1268 )))
1269
1270
1271
1272 = 9.  Order Info =
1273
1274
1275 Part Number: (% style="color:blue" %)**LLDS12-XX**
1276
1277
1278 (% style="color:blue" %)**XX**(%%): The default frequency band
1279
1280 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1281 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1282 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1283 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1284 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1285 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1286 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1287 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1288
1289 = 10. ​ Packing Info =
1290
1291
1292 **Package Includes**:
1293
1294 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1295
1296 **Dimension and weight**:
1297
1298 * Device Size: cm
1299 * Device Weight: g
1300 * Package Size / pcs : cm
1301 * Weight / pcs : g
1302
1303 = 11.  ​Support =
1304
1305 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1306 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].