Version 140.7 by Xiaoling on 2022/06/10 17:14

Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60
61
62 == 1.3  Specification ==
63
64 === 1.3.1  Rated environmental conditions ===
65
66 [[image:image-20220610154839-1.png]]
67
68 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69
70 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71
72
73
74 === 1.3.2  Effective measurement range Reference beam pattern ===
75
76 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
77
78
79
80 [[image:1654852253176-749.png]]
81
82
83 **(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
84
85
86 [[image:1654852175653-550.png]](% style="display:none" %) ** **
87
88
89
90 == 1.5 ​ Applications ==
91
92 * Horizontal distance measurement
93 * Liquid level measurement
94 * Parking management system
95 * Object proximity and presence detection
96 * Intelligent trash can management system
97 * Robot obstacle avoidance
98 * Automatic control
99 * Sewer
100 * Bottom water level monitoring
101
102
103
104 == 1.6  Pin mapping and power on ==
105
106
107 [[image:1654847583902-256.png]]
108
109
110
111 = 2.  Configure LDDS75 to connect to LoRaWAN network =
112
113 == 2.1  How it works ==
114
115 (((
116 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
117 )))
118
119 (((
120 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
121 )))
122
123
124
125 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126
127 (((
128 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
129 )))
130
131 (((
132 [[image:1654848616367-242.png]]
133 )))
134
135 (((
136 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
137 )))
138
139 (((
140 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
141 )))
142
143 (((
144 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
145 )))
146
147 [[image:image-20220607170145-1.jpeg]]
148
149
150 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
151
152 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
153
154 **Add APP EUI in the application**
155
156 [[image:image-20220610161353-4.png]]
157
158 [[image:image-20220610161353-5.png]]
159
160 [[image:image-20220610161353-6.png]]
161
162
163 [[image:image-20220610161353-7.png]]
164
165
166 You can also choose to create the device manually.
167
168 [[image:image-20220610161538-8.png]]
169
170
171
172 **Add APP KEY and DEV EUI**
173
174 [[image:image-20220610161538-9.png]]
175
176
177
178 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
179
180
181 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182
183 [[image:image-20220610161724-10.png]]
184
185
186 (((
187 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
188 )))
189
190 [[image:1654849068701-275.png]]
191
192
193
194 == 2.3  ​Uplink Payload ==
195
196 (((
197 LDDS75 will uplink payload via LoRaWAN with below payload format: 
198
199 Uplink payload includes in total 4 bytes.
200 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
201 )))
202
203 (((
204
205 )))
206
207 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
208 |=(% style="width: 62.5px;" %)(((
209 **Size (bytes)**
210 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
211 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
212 [[Distance>>||anchor="H2.3.3A0Distance"]]
213
214 (unit: mm)
215 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
216 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
217 )))|[[Sensor Flag>>path:#Sensor_Flag]]
218
219 [[image:1654850511545-399.png]]
220
221
222
223 === 2.3.1  Battery Info ===
224
225
226 Check the battery voltage for LDDS75.
227
228 Ex1: 0x0B45 = 2885mV
229
230 Ex2: 0x0B49 = 2889mV
231
232
233
234 === 2.3.2  Distance ===
235
236 Get the distance. Flat object range 280mm - 7500mm.
237
238 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
239
240
241 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
242 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
243
244
245
246 === 2.3.3  Interrupt Pin ===
247
248 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
249
250 **Example:**
251
252 0x00: Normal uplink packet.
253
254 0x01: Interrupt Uplink Packet.
255
256
257
258 === 2.3.4  DS18B20 Temperature sensor ===
259
260 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
261
262 **Example**:
263
264 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
265
266 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
267
268 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
269
270
271
272 === 2.3.5  Sensor Flag ===
273
274 0x01: Detect Ultrasonic Sensor
275
276 0x00: No Ultrasonic Sensor
277
278
279 ===
280 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
281
282 While using TTN network, you can add the payload format to decode the payload.
283
284
285 [[image:1654850829385-439.png]]
286
287 The payload decoder function for TTN V3 is here:
288
289 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
290
291
292
293 == 2.4  Uplink Interval ==
294
295 The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
296
297
298
299 == 2.5  ​Show Data in DataCake IoT Server ==
300
301 (((
302 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
303 )))
304
305 (((
306
307 )))
308
309 (((
310 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
311 )))
312
313 (((
314 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
315 )))
316
317
318 [[image:1654592790040-760.png]]
319
320
321 [[image:1654592800389-571.png]]
322
323
324 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
325
326 (% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
327
328 [[image:1654851029373-510.png]]
329
330
331 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
332
333 [[image:image-20220610165129-11.png||height="595" width="1088"]]
334
335
336
337 == 2.6  Frequency Plans ==
338
339 (((
340 The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
341 )))
342
343
344
345 === 2.6.1  EU863-870 (EU868) ===
346
347 (((
348 (% style="color:blue" %)**Uplink:**
349 )))
350
351 (((
352 868.1 - SF7BW125 to SF12BW125
353 )))
354
355 (((
356 868.3 - SF7BW125 to SF12BW125 and SF7BW250
357 )))
358
359 (((
360 868.5 - SF7BW125 to SF12BW125
361 )))
362
363 (((
364 867.1 - SF7BW125 to SF12BW125
365 )))
366
367 (((
368 867.3 - SF7BW125 to SF12BW125
369 )))
370
371 (((
372 867.5 - SF7BW125 to SF12BW125
373 )))
374
375 (((
376 867.7 - SF7BW125 to SF12BW125
377 )))
378
379 (((
380 867.9 - SF7BW125 to SF12BW125
381 )))
382
383 (((
384 868.8 - FSK
385 )))
386
387 (((
388
389 )))
390
391 (((
392 (% style="color:blue" %)**Downlink:**
393 )))
394
395 (((
396 Uplink channels 1-9 (RX1)
397 )))
398
399 (((
400 869.525 - SF9BW125 (RX2 downlink only)
401 )))
402
403
404
405 === 2.6.2  US902-928(US915) ===
406
407 (((
408 Used in USA, Canada and South America. Default use CHE=2
409
410 (% style="color:blue" %)**Uplink:**
411
412 903.9 - SF7BW125 to SF10BW125
413
414 904.1 - SF7BW125 to SF10BW125
415
416 904.3 - SF7BW125 to SF10BW125
417
418 904.5 - SF7BW125 to SF10BW125
419
420 904.7 - SF7BW125 to SF10BW125
421
422 904.9 - SF7BW125 to SF10BW125
423
424 905.1 - SF7BW125 to SF10BW125
425
426 905.3 - SF7BW125 to SF10BW125
427
428
429 (% style="color:blue" %)**Downlink:**
430
431 923.3 - SF7BW500 to SF12BW500
432
433 923.9 - SF7BW500 to SF12BW500
434
435 924.5 - SF7BW500 to SF12BW500
436
437 925.1 - SF7BW500 to SF12BW500
438
439 925.7 - SF7BW500 to SF12BW500
440
441 926.3 - SF7BW500 to SF12BW500
442
443 926.9 - SF7BW500 to SF12BW500
444
445 927.5 - SF7BW500 to SF12BW500
446
447 923.3 - SF12BW500(RX2 downlink only)
448
449
450
451 )))
452
453 === 2.6.3  CN470-510 (CN470) ===
454
455 (((
456 Used in China, Default use CHE=1
457 )))
458
459 (((
460 (% style="color:blue" %)**Uplink:**
461 )))
462
463 (((
464 486.3 - SF7BW125 to SF12BW125
465 )))
466
467 (((
468 486.5 - SF7BW125 to SF12BW125
469 )))
470
471 (((
472 486.7 - SF7BW125 to SF12BW125
473 )))
474
475 (((
476 486.9 - SF7BW125 to SF12BW125
477 )))
478
479 (((
480 487.1 - SF7BW125 to SF12BW125
481 )))
482
483 (((
484 487.3 - SF7BW125 to SF12BW125
485 )))
486
487 (((
488 487.5 - SF7BW125 to SF12BW125
489 )))
490
491 (((
492 487.7 - SF7BW125 to SF12BW125
493 )))
494
495 (((
496
497 )))
498
499 (((
500 (% style="color:blue" %)**Downlink:**
501 )))
502
503 (((
504 506.7 - SF7BW125 to SF12BW125
505 )))
506
507 (((
508 506.9 - SF7BW125 to SF12BW125
509 )))
510
511 (((
512 507.1 - SF7BW125 to SF12BW125
513 )))
514
515 (((
516 507.3 - SF7BW125 to SF12BW125
517 )))
518
519 (((
520 507.5 - SF7BW125 to SF12BW125
521 )))
522
523 (((
524 507.7 - SF7BW125 to SF12BW125
525 )))
526
527 (((
528 507.9 - SF7BW125 to SF12BW125
529 )))
530
531 (((
532 508.1 - SF7BW125 to SF12BW125
533 )))
534
535 (((
536 505.3 - SF12BW125 (RX2 downlink only)
537 )))
538
539
540
541 === 2.6.4  AU915-928(AU915) ===
542
543 (((
544 Default use CHE=2
545
546 (% style="color:blue" %)**Uplink:**
547
548 916.8 - SF7BW125 to SF12BW125
549
550 917.0 - SF7BW125 to SF12BW125
551
552 917.2 - SF7BW125 to SF12BW125
553
554 917.4 - SF7BW125 to SF12BW125
555
556 917.6 - SF7BW125 to SF12BW125
557
558 917.8 - SF7BW125 to SF12BW125
559
560 918.0 - SF7BW125 to SF12BW125
561
562 918.2 - SF7BW125 to SF12BW125
563
564
565 (% style="color:blue" %)**Downlink:**
566
567 923.3 - SF7BW500 to SF12BW500
568
569 923.9 - SF7BW500 to SF12BW500
570
571 924.5 - SF7BW500 to SF12BW500
572
573 925.1 - SF7BW500 to SF12BW500
574
575 925.7 - SF7BW500 to SF12BW500
576
577 926.3 - SF7BW500 to SF12BW500
578
579 926.9 - SF7BW500 to SF12BW500
580
581 927.5 - SF7BW500 to SF12BW500
582
583 923.3 - SF12BW500(RX2 downlink only)
584
585
586
587 )))
588
589 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
590
591 (((
592 (% style="color:blue" %)**Default Uplink channel:**
593 )))
594
595 (((
596 923.2 - SF7BW125 to SF10BW125
597 )))
598
599 (((
600 923.4 - SF7BW125 to SF10BW125
601 )))
602
603 (((
604
605 )))
606
607 (((
608 (% style="color:blue" %)**Additional Uplink Channel**:
609 )))
610
611 (((
612 (OTAA mode, channel added by JoinAccept message)
613 )))
614
615 (((
616
617 )))
618
619 (((
620 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
621 )))
622
623 (((
624 922.2 - SF7BW125 to SF10BW125
625 )))
626
627 (((
628 922.4 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632 922.6 - SF7BW125 to SF10BW125
633 )))
634
635 (((
636 922.8 - SF7BW125 to SF10BW125
637 )))
638
639 (((
640 923.0 - SF7BW125 to SF10BW125
641 )))
642
643 (((
644 922.0 - SF7BW125 to SF10BW125
645 )))
646
647 (((
648
649 )))
650
651 (((
652 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
653 )))
654
655 (((
656 923.6 - SF7BW125 to SF10BW125
657 )))
658
659 (((
660 923.8 - SF7BW125 to SF10BW125
661 )))
662
663 (((
664 924.0 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668 924.2 - SF7BW125 to SF10BW125
669 )))
670
671 (((
672 924.4 - SF7BW125 to SF10BW125
673 )))
674
675 (((
676 924.6 - SF7BW125 to SF10BW125
677 )))
678
679 (((
680
681 )))
682
683 (((
684 (% style="color:blue" %)**Downlink:**
685 )))
686
687 (((
688 Uplink channels 1-8 (RX1)
689 )))
690
691 (((
692 923.2 - SF10BW125 (RX2)
693 )))
694
695
696
697
698 === 2.6.6  KR920-923 (KR920) ===
699
700 (((
701 (% style="color:blue" %)**Default channel:**
702 )))
703
704 (((
705 922.1 - SF7BW125 to SF12BW125
706 )))
707
708 (((
709 922.3 - SF7BW125 to SF12BW125
710 )))
711
712 (((
713 922.5 - SF7BW125 to SF12BW125
714 )))
715
716 (((
717
718 )))
719
720 (((
721 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
722 )))
723
724 (((
725 922.1 - SF7BW125 to SF12BW125
726 )))
727
728 (((
729 922.3 - SF7BW125 to SF12BW125
730 )))
731
732 (((
733 922.5 - SF7BW125 to SF12BW125
734 )))
735
736 (((
737 922.7 - SF7BW125 to SF12BW125
738 )))
739
740 (((
741 922.9 - SF7BW125 to SF12BW125
742 )))
743
744 (((
745 923.1 - SF7BW125 to SF12BW125
746 )))
747
748 (((
749 923.3 - SF7BW125 to SF12BW125
750 )))
751
752 (((
753
754 )))
755
756 (((
757 (% style="color:blue" %)**Downlink:**
758 )))
759
760 (((
761 Uplink channels 1-7(RX1)
762 )))
763
764 (((
765 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
766 )))
767
768
769
770
771 === 2.6.7  IN865-867 (IN865) ===
772
773 (((
774 (% style="color:blue" %)**Uplink:**
775 )))
776
777 (((
778 865.0625 - SF7BW125 to SF12BW125
779 )))
780
781 (((
782 865.4025 - SF7BW125 to SF12BW125
783 )))
784
785 (((
786 865.9850 - SF7BW125 to SF12BW125
787 )))
788
789 (((
790
791 )))
792
793 (((
794 (% style="color:blue" %)**Downlink:**
795 )))
796
797 (((
798 Uplink channels 1-3 (RX1)
799 )))
800
801 (((
802 866.550 - SF10BW125 (RX2)
803 )))
804
805
806
807
808 == 2.7  LED Indicator ==
809
810 The LLDS12 has an internal LED which is to show the status of different state.
811
812 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
813 * Blink once when device transmit a packet.
814
815 == 2.8  ​Firmware Change Log ==
816
817
818 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
819
820
821 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
822
823
824
825 = 3.  LiDAR ToF Measurement =
826
827 == 3.1 Principle of Distance Measurement ==
828
829 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
830
831 [[image:1654831757579-263.png]]
832
833
834
835 == 3.2 Distance Measurement Characteristics ==
836
837 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
838
839 [[image:1654831774373-275.png]]
840
841
842 (((
843 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
844 )))
845
846 (((
847 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
848 )))
849
850 (((
851 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
852 )))
853
854
855 (((
856 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
857 )))
858
859
860 [[image:1654831797521-720.png]]
861
862
863 (((
864 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
865 )))
866
867 [[image:1654831810009-716.png]]
868
869
870 (((
871 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
872 )))
873
874
875
876 == 3.3 Notice of usage: ==
877
878 Possible invalid /wrong reading for LiDAR ToF tech:
879
880 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
881 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
882 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
883 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
884
885 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
886
887 (((
888 (((
889 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
890 )))
891 )))
892
893 * (((
894 (((
895 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
896 )))
897 )))
898 * (((
899 (((
900 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
901 )))
902 )))
903
904 (((
905 (((
906
907 )))
908
909 (((
910 There are two kinds of commands to configure LLDS12, they are:
911 )))
912 )))
913
914 * (((
915 (((
916 (% style="color:#4f81bd" %)** General Commands**.
917 )))
918 )))
919
920 (((
921 (((
922 These commands are to configure:
923 )))
924 )))
925
926 * (((
927 (((
928 General system settings like: uplink interval.
929 )))
930 )))
931 * (((
932 (((
933 LoRaWAN protocol & radio related command.
934 )))
935 )))
936
937 (((
938 (((
939 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
940 )))
941 )))
942
943 (((
944 (((
945
946 )))
947 )))
948
949 * (((
950 (((
951 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
952 )))
953 )))
954
955 (((
956 (((
957 These commands only valid for LLDS12, as below:
958 )))
959 )))
960
961
962
963 == 4.1  Set Transmit Interval Time ==
964
965 Feature: Change LoRaWAN End Node Transmit Interval.
966
967 (% style="color:#037691" %)**AT Command: AT+TDC**
968
969 [[image:image-20220607171554-8.png]]
970
971
972 (((
973 (% style="color:#037691" %)**Downlink Command: 0x01**
974 )))
975
976 (((
977 Format: Command Code (0x01) followed by 3 bytes time value.
978 )))
979
980 (((
981 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
982 )))
983
984 * (((
985 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
986 )))
987 * (((
988 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
989 )))
990
991 == 4.2  Set Interrupt Mode ==
992
993 Feature, Set Interrupt mode for GPIO_EXIT.
994
995 (% style="color:#037691" %)**AT Command: AT+INTMOD**
996
997 [[image:image-20220610105806-2.png]]
998
999
1000 (((
1001 (% style="color:#037691" %)**Downlink Command: 0x06**
1002 )))
1003
1004 (((
1005 Format: Command Code (0x06) followed by 3 bytes.
1006 )))
1007
1008 (((
1009 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1010 )))
1011
1012 * (((
1013 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1014 )))
1015 * (((
1016 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1017 )))
1018
1019 == 4.3  Get Firmware Version Info ==
1020
1021 Feature: use downlink to get firmware version.
1022
1023 (% style="color:#037691" %)**Downlink Command: 0x26**
1024
1025 [[image:image-20220607171917-10.png]]
1026
1027 * Reply to the confirmation package: 26 01
1028 * Reply to non-confirmed packet: 26 00
1029
1030 Device will send an uplink after got this downlink command. With below payload:
1031
1032 Configures info payload:
1033
1034 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1035 |=(((
1036 **Size(bytes)**
1037 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1038 |**Value**|Software Type|(((
1039 Frequency
1040
1041 Band
1042 )))|Sub-band|(((
1043 Firmware
1044
1045 Version
1046 )))|Sensor Type|Reserve|(((
1047 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1048 Always 0x02
1049 )))
1050
1051 **Software Type**: Always 0x03 for LLDS12
1052
1053
1054 **Frequency Band**:
1055
1056 *0x01: EU868
1057
1058 *0x02: US915
1059
1060 *0x03: IN865
1061
1062 *0x04: AU915
1063
1064 *0x05: KZ865
1065
1066 *0x06: RU864
1067
1068 *0x07: AS923
1069
1070 *0x08: AS923-1
1071
1072 *0x09: AS923-2
1073
1074 *0xa0: AS923-3
1075
1076
1077 **Sub-Band**: value 0x00 ~~ 0x08
1078
1079
1080 **Firmware Version**: 0x0100, Means: v1.0.0 version
1081
1082
1083 **Sensor Type**:
1084
1085 0x01: LSE01
1086
1087 0x02: LDDS75
1088
1089 0x03: LDDS20
1090
1091 0x04: LLMS01
1092
1093 0x05: LSPH01
1094
1095 0x06: LSNPK01
1096
1097 0x07: LLDS12
1098
1099
1100
1101 = 5.  Battery & How to replace =
1102
1103 == 5.1  Battery Type ==
1104
1105 (((
1106 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1107 )))
1108
1109 (((
1110 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1111 )))
1112
1113 [[image:1654593587246-335.png]]
1114
1115
1116 Minimum Working Voltage for the LLDS12:
1117
1118 LLDS12:  2.45v ~~ 3.6v
1119
1120
1121
1122 == 5.2  Replace Battery ==
1123
1124 (((
1125 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1126 )))
1127
1128 (((
1129 And make sure the positive and negative pins match.
1130 )))
1131
1132
1133
1134 == 5.3  Power Consumption Analyze ==
1135
1136 (((
1137 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1138 )))
1139
1140 (((
1141 Instruction to use as below:
1142 )))
1143
1144
1145 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1146
1147 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1148
1149
1150 **Step 2**: Open it and choose
1151
1152 * Product Model
1153 * Uplink Interval
1154 * Working Mode
1155
1156 And the Life expectation in difference case will be shown on the right.
1157
1158 [[image:1654593605679-189.png]]
1159
1160
1161 The battery related documents as below:
1162
1163 * (((
1164 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1165 )))
1166 * (((
1167 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1168 )))
1169 * (((
1170 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1171 )))
1172
1173 [[image:image-20220607172042-11.png]]
1174
1175
1176
1177 === 5.3.1  ​Battery Note ===
1178
1179 (((
1180 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1181 )))
1182
1183
1184
1185 === ​5.3.2  Replace the battery ===
1186
1187 (((
1188 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1189 )))
1190
1191 (((
1192 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1193 )))
1194
1195
1196
1197 = 6.  Use AT Command =
1198
1199 == 6.1  Access AT Commands ==
1200
1201 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1202
1203 [[image:1654593668970-604.png]]
1204
1205 **Connection:**
1206
1207 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1208
1209 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1210
1211 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1212
1213
1214 (((
1215 (((
1216 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1217 )))
1218
1219 (((
1220 LLDS12 will output system info once power on as below:
1221 )))
1222 )))
1223
1224
1225 [[image:1654593712276-618.png]]
1226
1227 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1228
1229
1230 = 7.  FAQ =
1231
1232 == 7.1  How to change the LoRa Frequency Bands/Region ==
1233
1234 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1235 When downloading the images, choose the required image file for download. ​
1236
1237
1238 = 8.  Trouble Shooting =
1239
1240 == 8.1  AT Commands input doesn’t work ==
1241
1242
1243 (((
1244 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1245 )))
1246
1247
1248 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1249
1250
1251 (((
1252 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1253 )))
1254
1255 (((
1256 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1257 )))
1258
1259 (((
1260
1261 )))
1262
1263 (((
1264 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1265 )))
1266
1267 (((
1268 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1269 )))
1270
1271
1272
1273 = 9.  Order Info =
1274
1275
1276 Part Number: (% style="color:blue" %)**LLDS12-XX**
1277
1278
1279 (% style="color:blue" %)**XX**(%%): The default frequency band
1280
1281 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1282 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1283 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1284 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1285 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1286 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1287 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1288 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1289
1290 = 10. ​ Packing Info =
1291
1292
1293 **Package Includes**:
1294
1295 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1296
1297 **Dimension and weight**:
1298
1299 * Device Size: cm
1300 * Device Weight: g
1301 * Package Size / pcs : cm
1302 * Weight / pcs : g
1303
1304 = 11.  ​Support =
1305
1306 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1307 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].