Version 137.4 by Xiaoling on 2022/06/10 16:57

Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60 == 1.3  Specification ==
61
62 === 1.3.1  Rated environmental conditions ===
63
64 [[image:image-20220610154839-1.png]]
65
66 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
67
68 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
69
70
71
72 === 1.3.2  Effective measurement range Reference beam pattern ===
73
74 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75
76
77
78 **(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79
80 (% style="display:none" %) (%%)
81
82
83 == 1.5 ​ Applications ==
84
85 * Horizontal distance measurement
86 * Liquid level measurement
87 * Parking management system
88 * Object proximity and presence detection
89 * Intelligent trash can management system
90 * Robot obstacle avoidance
91 * Automatic control
92 * Sewer
93 * Bottom water level monitoring
94
95 == 1.6  Pin mapping and power on ==
96
97
98 [[image:1654847583902-256.png]]
99
100
101 = 2.  Configure LDDS75 to connect to LoRaWAN network =
102
103 == 2.1  How it works ==
104
105 (((
106 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
107 )))
108
109 (((
110 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
111 )))
112
113
114 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
115
116 (((
117 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
118 )))
119
120 (((
121 [[image:1654848616367-242.png]]
122 )))
123
124 (((
125 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
126 )))
127
128 (((
129 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
130 )))
131
132 (((
133 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
134 )))
135
136 [[image:image-20220607170145-1.jpeg]]
137
138
139 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
140
141 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
142
143 **Add APP EUI in the application**
144
145 [[image:image-20220610161353-4.png]]
146
147 [[image:image-20220610161353-5.png]]
148
149 [[image:image-20220610161353-6.png]]
150
151
152 [[image:image-20220610161353-7.png]]
153
154
155 You can also choose to create the device manually.
156
157 [[image:image-20220610161538-8.png]]
158
159
160
161 **Add APP KEY and DEV EUI**
162
163 [[image:image-20220610161538-9.png]]
164
165
166
167 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
168
169
170 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
171
172 [[image:image-20220610161724-10.png]]
173
174
175 (((
176 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
177 )))
178
179 [[image:1654849068701-275.png]]
180
181
182
183 == 2.3  ​Uplink Payload ==
184
185 (((
186 LDDS75 will uplink payload via LoRaWAN with below payload format: 
187
188 Uplink payload includes in total 4 bytes.
189 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
190 )))
191
192 (((
193
194 )))
195
196 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
197 |=(% style="width: 62.5px;" %)(((
198 **Size (bytes)**
199 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
200 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
201 [[Distance>>||anchor="H2.3.3A0Distance"]]
202
203 (unit: mm)
204 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
205 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
206 )))|[[Sensor Flag>>path:#Sensor_Flag]]
207
208 [[image:1654850511545-399.png]]
209
210
211
212 === 2.3.1  Battery Info ===
213
214
215 Check the battery voltage for LDDS75.
216
217 Ex1: 0x0B45 = 2885mV
218
219 Ex2: 0x0B49 = 2889mV
220
221
222
223 === 2.3.2  Distance ===
224
225 Get the distance. Flat object range 280mm - 7500mm.
226
227 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
228
229
230 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
231 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
232
233
234
235 === 2.3.3  Interrupt Pin ===
236
237 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
238
239 **Example:**
240
241 0x00: Normal uplink packet.
242
243 0x01: Interrupt Uplink Packet.
244
245
246 === 2.3.4  DS18B20 Temperature sensor ===
247
248 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
249
250 **Example**:
251
252 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
253
254 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
255
256 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
257
258
259
260 === 2.3.5  Sensor Flag ===
261
262 0x01: Detect Ultrasonic Sensor
263
264 0x00: No Ultrasonic Sensor
265
266
267 ===
268 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
269
270 While using TTN network, you can add the payload format to decode the payload.
271
272
273 [[image:1654850829385-439.png]]
274
275 The payload decoder function for TTN V3 is here:
276
277 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
278
279
280
281 == 2.4  Uplink Interval ==
282
283 The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284
285
286
287 == 2.5  ​Show Data in DataCake IoT Server ==
288
289 (((
290 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
291 )))
292
293 (((
294
295 )))
296
297 (((
298 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
299 )))
300
301 (((
302 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
303 )))
304
305
306 [[image:1654592790040-760.png]]
307
308
309 [[image:1654592800389-571.png]]
310
311
312 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
313
314 (% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
315
316 [[image:1654851029373-510.png]]
317
318
319 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
320
321 [[image:image-20220610165129-11.png||height="595" width="1088"]]
322
323
324
325 == 2.6  Frequency Plans ==
326
327 (((
328 The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
329 )))
330
331
332 === 2.6.1  EU863-870 (EU868) ===
333
334 (((
335 (% style="color:blue" %)**Uplink:**
336 )))
337
338 (((
339 868.1 - SF7BW125 to SF12BW125
340 )))
341
342 (((
343 868.3 - SF7BW125 to SF12BW125 and SF7BW250
344 )))
345
346 (((
347 868.5 - SF7BW125 to SF12BW125
348 )))
349
350 (((
351 867.1 - SF7BW125 to SF12BW125
352 )))
353
354 (((
355 867.3 - SF7BW125 to SF12BW125
356 )))
357
358 (((
359 867.5 - SF7BW125 to SF12BW125
360 )))
361
362 (((
363 867.7 - SF7BW125 to SF12BW125
364 )))
365
366 (((
367 867.9 - SF7BW125 to SF12BW125
368 )))
369
370 (((
371 868.8 - FSK
372 )))
373
374 (((
375
376 )))
377
378 (((
379 (% style="color:blue" %)**Downlink:**
380 )))
381
382 (((
383 Uplink channels 1-9 (RX1)
384 )))
385
386 (((
387 869.525 - SF9BW125 (RX2 downlink only)
388 )))
389
390
391
392 === 2.6.2  US902-928(US915) ===
393
394 (((
395 Used in USA, Canada and South America. Default use CHE=2
396
397 (% style="color:blue" %)**Uplink:**
398
399 903.9 - SF7BW125 to SF10BW125
400
401 904.1 - SF7BW125 to SF10BW125
402
403 904.3 - SF7BW125 to SF10BW125
404
405 904.5 - SF7BW125 to SF10BW125
406
407 904.7 - SF7BW125 to SF10BW125
408
409 904.9 - SF7BW125 to SF10BW125
410
411 905.1 - SF7BW125 to SF10BW125
412
413 905.3 - SF7BW125 to SF10BW125
414
415
416 (% style="color:blue" %)**Downlink:**
417
418 923.3 - SF7BW500 to SF12BW500
419
420 923.9 - SF7BW500 to SF12BW500
421
422 924.5 - SF7BW500 to SF12BW500
423
424 925.1 - SF7BW500 to SF12BW500
425
426 925.7 - SF7BW500 to SF12BW500
427
428 926.3 - SF7BW500 to SF12BW500
429
430 926.9 - SF7BW500 to SF12BW500
431
432 927.5 - SF7BW500 to SF12BW500
433
434 923.3 - SF12BW500(RX2 downlink only)
435
436
437
438 )))
439
440 === 2.6.3  CN470-510 (CN470) ===
441
442 (((
443 Used in China, Default use CHE=1
444 )))
445
446 (((
447 (% style="color:blue" %)**Uplink:**
448 )))
449
450 (((
451 486.3 - SF7BW125 to SF12BW125
452 )))
453
454 (((
455 486.5 - SF7BW125 to SF12BW125
456 )))
457
458 (((
459 486.7 - SF7BW125 to SF12BW125
460 )))
461
462 (((
463 486.9 - SF7BW125 to SF12BW125
464 )))
465
466 (((
467 487.1 - SF7BW125 to SF12BW125
468 )))
469
470 (((
471 487.3 - SF7BW125 to SF12BW125
472 )))
473
474 (((
475 487.5 - SF7BW125 to SF12BW125
476 )))
477
478 (((
479 487.7 - SF7BW125 to SF12BW125
480 )))
481
482 (((
483
484 )))
485
486 (((
487 (% style="color:blue" %)**Downlink:**
488 )))
489
490 (((
491 506.7 - SF7BW125 to SF12BW125
492 )))
493
494 (((
495 506.9 - SF7BW125 to SF12BW125
496 )))
497
498 (((
499 507.1 - SF7BW125 to SF12BW125
500 )))
501
502 (((
503 507.3 - SF7BW125 to SF12BW125
504 )))
505
506 (((
507 507.5 - SF7BW125 to SF12BW125
508 )))
509
510 (((
511 507.7 - SF7BW125 to SF12BW125
512 )))
513
514 (((
515 507.9 - SF7BW125 to SF12BW125
516 )))
517
518 (((
519 508.1 - SF7BW125 to SF12BW125
520 )))
521
522 (((
523 505.3 - SF12BW125 (RX2 downlink only)
524 )))
525
526
527
528
529 === 2.6.4  AU915-928(AU915) ===
530
531 (((
532 Default use CHE=2
533
534 (% style="color:blue" %)**Uplink:**
535
536 916.8 - SF7BW125 to SF12BW125
537
538 917.0 - SF7BW125 to SF12BW125
539
540 917.2 - SF7BW125 to SF12BW125
541
542 917.4 - SF7BW125 to SF12BW125
543
544 917.6 - SF7BW125 to SF12BW125
545
546 917.8 - SF7BW125 to SF12BW125
547
548 918.0 - SF7BW125 to SF12BW125
549
550 918.2 - SF7BW125 to SF12BW125
551
552
553 (% style="color:blue" %)**Downlink:**
554
555 923.3 - SF7BW500 to SF12BW500
556
557 923.9 - SF7BW500 to SF12BW500
558
559 924.5 - SF7BW500 to SF12BW500
560
561 925.1 - SF7BW500 to SF12BW500
562
563 925.7 - SF7BW500 to SF12BW500
564
565 926.3 - SF7BW500 to SF12BW500
566
567 926.9 - SF7BW500 to SF12BW500
568
569 927.5 - SF7BW500 to SF12BW500
570
571 923.3 - SF12BW500(RX2 downlink only)
572
573
574
575 )))
576
577 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
578
579 (((
580 (% style="color:blue" %)**Default Uplink channel:**
581 )))
582
583 (((
584 923.2 - SF7BW125 to SF10BW125
585 )))
586
587 (((
588 923.4 - SF7BW125 to SF10BW125
589 )))
590
591 (((
592
593 )))
594
595 (((
596 (% style="color:blue" %)**Additional Uplink Channel**:
597 )))
598
599 (((
600 (OTAA mode, channel added by JoinAccept message)
601 )))
602
603 (((
604
605 )))
606
607 (((
608 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
609 )))
610
611 (((
612 922.2 - SF7BW125 to SF10BW125
613 )))
614
615 (((
616 922.4 - SF7BW125 to SF10BW125
617 )))
618
619 (((
620 922.6 - SF7BW125 to SF10BW125
621 )))
622
623 (((
624 922.8 - SF7BW125 to SF10BW125
625 )))
626
627 (((
628 923.0 - SF7BW125 to SF10BW125
629 )))
630
631 (((
632 922.0 - SF7BW125 to SF10BW125
633 )))
634
635 (((
636
637 )))
638
639 (((
640 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
641 )))
642
643 (((
644 923.6 - SF7BW125 to SF10BW125
645 )))
646
647 (((
648 923.8 - SF7BW125 to SF10BW125
649 )))
650
651 (((
652 924.0 - SF7BW125 to SF10BW125
653 )))
654
655 (((
656 924.2 - SF7BW125 to SF10BW125
657 )))
658
659 (((
660 924.4 - SF7BW125 to SF10BW125
661 )))
662
663 (((
664 924.6 - SF7BW125 to SF10BW125
665 )))
666
667 (((
668
669 )))
670
671 (((
672 (% style="color:blue" %)**Downlink:**
673 )))
674
675 (((
676 Uplink channels 1-8 (RX1)
677 )))
678
679 (((
680 923.2 - SF10BW125 (RX2)
681 )))
682
683
684
685
686 === 2.6.6  KR920-923 (KR920) ===
687
688 (((
689 (% style="color:blue" %)**Default channel:**
690 )))
691
692 (((
693 922.1 - SF7BW125 to SF12BW125
694 )))
695
696 (((
697 922.3 - SF7BW125 to SF12BW125
698 )))
699
700 (((
701 922.5 - SF7BW125 to SF12BW125
702 )))
703
704 (((
705
706 )))
707
708 (((
709 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
710 )))
711
712 (((
713 922.1 - SF7BW125 to SF12BW125
714 )))
715
716 (((
717 922.3 - SF7BW125 to SF12BW125
718 )))
719
720 (((
721 922.5 - SF7BW125 to SF12BW125
722 )))
723
724 (((
725 922.7 - SF7BW125 to SF12BW125
726 )))
727
728 (((
729 922.9 - SF7BW125 to SF12BW125
730 )))
731
732 (((
733 923.1 - SF7BW125 to SF12BW125
734 )))
735
736 (((
737 923.3 - SF7BW125 to SF12BW125
738 )))
739
740 (((
741
742 )))
743
744 (((
745 (% style="color:blue" %)**Downlink:**
746 )))
747
748 (((
749 Uplink channels 1-7(RX1)
750 )))
751
752 (((
753 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
754 )))
755
756
757
758
759 === 2.6.7  IN865-867 (IN865) ===
760
761 (((
762 (% style="color:blue" %)**Uplink:**
763 )))
764
765 (((
766 865.0625 - SF7BW125 to SF12BW125
767 )))
768
769 (((
770 865.4025 - SF7BW125 to SF12BW125
771 )))
772
773 (((
774 865.9850 - SF7BW125 to SF12BW125
775 )))
776
777 (((
778
779 )))
780
781 (((
782 (% style="color:blue" %)**Downlink:**
783 )))
784
785 (((
786 Uplink channels 1-3 (RX1)
787 )))
788
789 (((
790 866.550 - SF10BW125 (RX2)
791 )))
792
793
794
795
796 == 2.7  LED Indicator ==
797
798 The LLDS12 has an internal LED which is to show the status of different state.
799
800 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
801 * Blink once when device transmit a packet.
802
803 == 2.8  ​Firmware Change Log ==
804
805
806 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
807
808
809 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
810
811
812
813 = 3.  LiDAR ToF Measurement =
814
815 == 3.1 Principle of Distance Measurement ==
816
817 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
818
819 [[image:1654831757579-263.png]]
820
821
822
823 == 3.2 Distance Measurement Characteristics ==
824
825 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
826
827 [[image:1654831774373-275.png]]
828
829
830 (((
831 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
832 )))
833
834 (((
835 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
836 )))
837
838 (((
839 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
840 )))
841
842
843 (((
844 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
845 )))
846
847
848 [[image:1654831797521-720.png]]
849
850
851 (((
852 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
853 )))
854
855 [[image:1654831810009-716.png]]
856
857
858 (((
859 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
860 )))
861
862
863
864 == 3.3 Notice of usage: ==
865
866 Possible invalid /wrong reading for LiDAR ToF tech:
867
868 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
869 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
870 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
871 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
872
873 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
874
875 (((
876 (((
877 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
878 )))
879 )))
880
881 * (((
882 (((
883 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
884 )))
885 )))
886 * (((
887 (((
888 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
889 )))
890 )))
891
892 (((
893 (((
894
895 )))
896
897 (((
898 There are two kinds of commands to configure LLDS12, they are:
899 )))
900 )))
901
902 * (((
903 (((
904 (% style="color:#4f81bd" %)** General Commands**.
905 )))
906 )))
907
908 (((
909 (((
910 These commands are to configure:
911 )))
912 )))
913
914 * (((
915 (((
916 General system settings like: uplink interval.
917 )))
918 )))
919 * (((
920 (((
921 LoRaWAN protocol & radio related command.
922 )))
923 )))
924
925 (((
926 (((
927 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
928 )))
929 )))
930
931 (((
932 (((
933
934 )))
935 )))
936
937 * (((
938 (((
939 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
940 )))
941 )))
942
943 (((
944 (((
945 These commands only valid for LLDS12, as below:
946 )))
947 )))
948
949
950
951 == 4.1  Set Transmit Interval Time ==
952
953 Feature: Change LoRaWAN End Node Transmit Interval.
954
955 (% style="color:#037691" %)**AT Command: AT+TDC**
956
957 [[image:image-20220607171554-8.png]]
958
959
960 (((
961 (% style="color:#037691" %)**Downlink Command: 0x01**
962 )))
963
964 (((
965 Format: Command Code (0x01) followed by 3 bytes time value.
966 )))
967
968 (((
969 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
970 )))
971
972 * (((
973 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
974 )))
975 * (((
976 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
977 )))
978
979 == 4.2  Set Interrupt Mode ==
980
981 Feature, Set Interrupt mode for GPIO_EXIT.
982
983 (% style="color:#037691" %)**AT Command: AT+INTMOD**
984
985 [[image:image-20220610105806-2.png]]
986
987
988 (((
989 (% style="color:#037691" %)**Downlink Command: 0x06**
990 )))
991
992 (((
993 Format: Command Code (0x06) followed by 3 bytes.
994 )))
995
996 (((
997 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
998 )))
999
1000 * (((
1001 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1002 )))
1003 * (((
1004 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1005 )))
1006
1007 == 4.3  Get Firmware Version Info ==
1008
1009 Feature: use downlink to get firmware version.
1010
1011 (% style="color:#037691" %)**Downlink Command: 0x26**
1012
1013 [[image:image-20220607171917-10.png]]
1014
1015 * Reply to the confirmation package: 26 01
1016 * Reply to non-confirmed packet: 26 00
1017
1018 Device will send an uplink after got this downlink command. With below payload:
1019
1020 Configures info payload:
1021
1022 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1023 |=(((
1024 **Size(bytes)**
1025 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1026 |**Value**|Software Type|(((
1027 Frequency
1028
1029 Band
1030 )))|Sub-band|(((
1031 Firmware
1032
1033 Version
1034 )))|Sensor Type|Reserve|(((
1035 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1036 Always 0x02
1037 )))
1038
1039 **Software Type**: Always 0x03 for LLDS12
1040
1041
1042 **Frequency Band**:
1043
1044 *0x01: EU868
1045
1046 *0x02: US915
1047
1048 *0x03: IN865
1049
1050 *0x04: AU915
1051
1052 *0x05: KZ865
1053
1054 *0x06: RU864
1055
1056 *0x07: AS923
1057
1058 *0x08: AS923-1
1059
1060 *0x09: AS923-2
1061
1062 *0xa0: AS923-3
1063
1064
1065 **Sub-Band**: value 0x00 ~~ 0x08
1066
1067
1068 **Firmware Version**: 0x0100, Means: v1.0.0 version
1069
1070
1071 **Sensor Type**:
1072
1073 0x01: LSE01
1074
1075 0x02: LDDS75
1076
1077 0x03: LDDS20
1078
1079 0x04: LLMS01
1080
1081 0x05: LSPH01
1082
1083 0x06: LSNPK01
1084
1085 0x07: LLDS12
1086
1087
1088
1089 = 5.  Battery & How to replace =
1090
1091 == 5.1  Battery Type ==
1092
1093 (((
1094 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1095 )))
1096
1097 (((
1098 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1099 )))
1100
1101 [[image:1654593587246-335.png]]
1102
1103
1104 Minimum Working Voltage for the LLDS12:
1105
1106 LLDS12:  2.45v ~~ 3.6v
1107
1108
1109
1110 == 5.2  Replace Battery ==
1111
1112 (((
1113 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1114 )))
1115
1116 (((
1117 And make sure the positive and negative pins match.
1118 )))
1119
1120
1121
1122 == 5.3  Power Consumption Analyze ==
1123
1124 (((
1125 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1126 )))
1127
1128 (((
1129 Instruction to use as below:
1130 )))
1131
1132
1133 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1134
1135 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1136
1137
1138 **Step 2**: Open it and choose
1139
1140 * Product Model
1141 * Uplink Interval
1142 * Working Mode
1143
1144 And the Life expectation in difference case will be shown on the right.
1145
1146 [[image:1654593605679-189.png]]
1147
1148
1149 The battery related documents as below:
1150
1151 * (((
1152 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1153 )))
1154 * (((
1155 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1156 )))
1157 * (((
1158 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1159 )))
1160
1161 [[image:image-20220607172042-11.png]]
1162
1163
1164
1165 === 5.3.1  ​Battery Note ===
1166
1167 (((
1168 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1169 )))
1170
1171
1172
1173 === ​5.3.2  Replace the battery ===
1174
1175 (((
1176 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1177 )))
1178
1179 (((
1180 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1181 )))
1182
1183
1184
1185 = 6.  Use AT Command =
1186
1187 == 6.1  Access AT Commands ==
1188
1189 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1190
1191 [[image:1654593668970-604.png]]
1192
1193 **Connection:**
1194
1195 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1196
1197 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1198
1199 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1200
1201
1202 (((
1203 (((
1204 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1205 )))
1206
1207 (((
1208 LLDS12 will output system info once power on as below:
1209 )))
1210 )))
1211
1212
1213 [[image:1654593712276-618.png]]
1214
1215 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1216
1217
1218 = 7.  FAQ =
1219
1220 == 7.1  How to change the LoRa Frequency Bands/Region ==
1221
1222 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1223 When downloading the images, choose the required image file for download. ​
1224
1225
1226 = 8.  Trouble Shooting =
1227
1228 == 8.1  AT Commands input doesn’t work ==
1229
1230
1231 (((
1232 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1233 )))
1234
1235
1236 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1237
1238
1239 (((
1240 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1241 )))
1242
1243 (((
1244 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1245 )))
1246
1247 (((
1248
1249 )))
1250
1251 (((
1252 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1253 )))
1254
1255 (((
1256 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1257 )))
1258
1259
1260
1261 = 9.  Order Info =
1262
1263
1264 Part Number: (% style="color:blue" %)**LLDS12-XX**
1265
1266
1267 (% style="color:blue" %)**XX**(%%): The default frequency band
1268
1269 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1270 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1271 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1272 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1273 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1274 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1275 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1276 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1277
1278 = 10. ​ Packing Info =
1279
1280
1281 **Package Includes**:
1282
1283 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1284
1285 **Dimension and weight**:
1286
1287 * Device Size: cm
1288 * Device Weight: g
1289 * Package Size / pcs : cm
1290 * Weight / pcs : g
1291
1292 = 11.  ​Support =
1293
1294 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1295 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].