Last modified by Xiaoling on 2025/04/27 13:54

From version 154.4
edited by Xiaoling
on 2022/06/11 10:05
Change comment: There is no comment for this version
To version 132.1
edited by Xiaoling
on 2022/06/10 16:17
Change comment: Uploaded new attachment "image-20220610161724-10.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS45 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,9 +1,8 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654912614655-664.png||height="530" width="628"]]
2 +[[image:1654846127817-788.png]]
3 3  
4 4  **Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -11,7 +11,6 @@
11 11  
12 12  
13 13  
14 -
15 15  = 1.  Introduction =
16 16  
17 17  == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
... ... @@ -20,56 +20,27 @@
20 20  
21 21  
22 22  (((
23 -(((
24 -The Dragino LDDS45 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS45 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
26 26  
27 -(((
28 -
29 -)))
30 30  
31 -(((
32 32  It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
33 -)))
34 34  
35 -(((
36 -
37 -)))
38 38  
39 -(((
40 -The LoRa wireless technology used in LDDS45 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
42 42  
43 -(((
44 -
45 -)))
46 46  
47 -(((
48 -LDDS45 is powered by (% style="color:#4472c4" %)** 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
49 -)))
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
50 50  
51 -(((
52 -
53 -)))
54 54  
55 -(((
56 -Each LDDS45 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
57 -)))
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
58 58  
59 -(((
60 -
61 -)))
62 62  
63 -(((
64 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
65 -
66 -
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
67 67  )))
68 68  )))
69 -)))
70 70  
71 -[[image:1654912858581-740.png]]
72 72  
41 +[[image:1654847051249-359.png]]
73 73  
74 74  
75 75  
... ... @@ -76,11 +76,10 @@
76 76  == ​1.2  Features ==
77 77  
78 78  * LoRaWAN 1.0.3 Class A
79 -* Ultra-low power consumption
48 +* Ultra low power consumption
80 80  * Distance Detection by Ultrasonic technology
81 -* Flat object range 30mm - 4500mm
50 +* Flat object range 280mm - 7500mm
82 82  * Accuracy: ±(1cm+S*0.3%) (S: Distance)
83 -* Measure Angle: 60°
84 84  * Cable Length : 25cm
85 85  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
86 86  * AT Commands to change parameters
... ... @@ -87,10 +87,8 @@
87 87  * Uplink on periodically
88 88  * Downlink to change configure
89 89  * IP66 Waterproof Enclosure
90 -* 8500mAh Battery for long term use
58 +* 4000mAh or 8500mAh Battery for long term use
91 91  
92 -
93 -
94 94  == 1.3  Specification ==
95 95  
96 96  === 1.3.1  Rated environmental conditions ===
... ... @@ -97,31 +97,23 @@
97 97  
98 98  [[image:image-20220610154839-1.png]]
99 99  
100 -(((
101 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);  b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
102 -)))
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
103 103  
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
104 104  
105 105  
71 +
106 106  === 1.3.2  Effective measurement range Reference beam pattern ===
107 107  
108 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
109 109  
110 110  
111 111  
112 -[[image:1654852253176-749.png]]
78 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
113 113  
80 +(% style="display:none" %) (%%)
114 114  
115 115  
116 -(((
117 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
118 -)))
119 -
120 -
121 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
122 -
123 -
124 -
125 125  == 1.5 ​ Applications ==
126 126  
127 127  * Horizontal distance measurement
... ... @@ -135,7 +135,6 @@
135 135  * Bottom water level monitoring
136 136  
137 137  
138 -
139 139  == 1.6  Pin mapping and power on ==
140 140  
141 141  
... ... @@ -142,7 +142,6 @@
142 142  [[image:1654847583902-256.png]]
143 143  
144 144  
145 -
146 146  = 2.  Configure LDDS75 to connect to LoRaWAN network =
147 147  
148 148  == 2.1  How it works ==
... ... @@ -156,7 +156,6 @@
156 156  )))
157 157  
158 158  
159 -
160 160  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
161 161  
162 162  (((
... ... @@ -182,53 +182,48 @@
182 182  [[image:image-20220607170145-1.jpeg]]
183 183  
184 184  
185 -(((
186 186  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
187 -)))
188 188  
189 -(((
190 190  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
191 -)))
192 192  
193 -(((
194 -**Add APP EUI in the application**
195 -)))
196 196  
197 -[[image:image-20220610161353-4.png]]
145 +**Register the device**
198 198  
199 -[[image:image-20220610161353-5.png]]
200 200  
201 -[[image:image-20220610161353-6.png]]
148 +[[image:1654592600093-601.png]]
202 202  
203 203  
204 -[[image:image-20220610161353-7.png]]
205 205  
152 +**Add APP EUI and DEV EUI**
206 206  
207 -You can also choose to create the device manually.
154 +[[image:1654592619856-881.png]]
208 208  
209 - [[image:image-20220610161538-8.png]]
210 210  
211 211  
158 +**Add APP EUI in the application**
212 212  
213 -**Add APP KEY and DEV EUI**
160 +[[image:1654592632656-512.png]]
214 214  
215 -[[image:image-20220610161538-9.png]]
216 216  
217 217  
164 +**Add APP KEY**
218 218  
219 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
166 +[[image:1654592653453-934.png]]
220 220  
221 221  
169 +(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
170 +
171 +
222 222  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
223 223  
224 -[[image:image-20220610161724-10.png]]
174 +[[image:image-20220607170442-2.png]]
225 225  
226 226  
227 227  (((
228 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
178 +(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
229 229  )))
230 230  
231 -[[image:1654849068701-275.png]]
181 +[[image:1654833501679-968.png]]
232 232  
233 233  
234 234  
... ... @@ -235,15 +235,12 @@
235 235  == 2.3  ​Uplink Payload ==
236 236  
237 237  (((
238 -(((
239 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
188 +LLDS12 will uplink payload via LoRaWAN with below payload format: 
240 240  )))
241 241  
242 242  (((
243 -Uplink payload includes in total 4 bytes.
244 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
192 +Uplink payload includes in total 11 bytes.
245 245  )))
246 -)))
247 247  
248 248  (((
249 249  
... ... @@ -252,23 +252,23 @@
252 252  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
253 253  |=(% style="width: 62.5px;" %)(((
254 254  **Size (bytes)**
255 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
256 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
257 -[[Distance>>||anchor="H2.3.2A0Distance"]]
202 +)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
203 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
204 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
205 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
207 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
208 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
209 +)))
258 258  
259 -(unit: mm)
260 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
261 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
262 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
211 +[[image:1654833689380-972.png]]
263 263  
264 -[[image:1654850511545-399.png]]
265 265  
266 266  
267 -
268 268  === 2.3.1  Battery Info ===
269 269  
270 270  
271 -Check the battery voltage for LDDS75.
218 +Check the battery voltage for LLDS12.
272 272  
273 273  Ex1: 0x0B45 = 2885mV
274 274  
... ... @@ -276,71 +276,96 @@
276 276  
277 277  
278 278  
279 -=== 2.3.2  Distance ===
226 +=== 2.3.2  DS18B20 Temperature sensor ===
280 280  
281 -(((
282 -Get the distance. Flat object range 280mm - 7500mm.
283 -)))
228 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
284 284  
285 -(((
286 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
287 -)))
288 288  
231 +**Example**:
289 289  
290 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
291 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
233 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
292 292  
235 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
293 293  
294 294  
295 -=== 2.3.3  Interrupt Pin ===
296 296  
297 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
239 +=== 2.3.3  Distance ===
298 298  
299 -**Example:**
241 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
300 300  
301 -0x00: Normal uplink packet.
302 302  
303 -0x01: Interrupt Uplink Packet.
244 +**Example**:
304 304  
246 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
305 305  
306 306  
307 -=== 2.3.4  DS18B20 Temperature sensor ===
308 308  
309 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
250 +=== 2.3.4  Distance signal strength ===
310 310  
252 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
253 +
254 +
311 311  **Example**:
312 312  
313 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
257 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
314 314  
315 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
259 +Customers can judge whether they need to adjust the environment based on the signal strength.
316 316  
317 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
318 318  
319 319  
263 +=== 2.3.5  Interrupt Pin ===
320 320  
321 -=== 2.3.5  Sensor Flag ===
265 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
322 322  
267 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
268 +
269 +**Example:**
270 +
271 +0x00: Normal uplink packet.
272 +
273 +0x01: Interrupt Uplink Packet.
274 +
275 +
276 +
277 +=== 2.3.6  LiDAR temp ===
278 +
279 +Characterize the internal temperature value of the sensor.
280 +
281 +**Example: **
282 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
283 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
284 +
285 +
286 +
287 +=== 2.3.7  Message Type ===
288 +
323 323  (((
324 -0x01: Detect Ultrasonic Sensor
290 +For a normal uplink payload, the message type is always 0x01.
325 325  )))
326 326  
327 327  (((
328 -0x00: No Ultrasonic Sensor
294 +Valid Message Type:
329 329  )))
330 330  
331 331  
298 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
299 +|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
300 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
301 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
332 332  
333 -=== 2.3.6  Decode payload in The Things Network ===
303 +=== 2.3.8  Decode payload in The Things Network ===
334 334  
335 335  While using TTN network, you can add the payload format to decode the payload.
336 336  
337 337  
338 -[[image:1654850829385-439.png]]
308 +[[image:1654592762713-715.png]]
339 339  
340 -The payload decoder function for TTN V3 is here:
310 +(((
311 +The payload decoder function for TTN is here:
312 +)))
341 341  
342 342  (((
343 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
315 +LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
344 344  )))
345 345  
346 346  
... ... @@ -347,7 +347,7 @@
347 347  
348 348  == 2.4  Uplink Interval ==
349 349  
350 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
322 +The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
351 351  
352 352  
353 353  
... ... @@ -378,25 +378,47 @@
378 378  
379 379  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
380 380  
381 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
353 +(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
382 382  
383 -[[image:1654851029373-510.png]]
355 +[[image:1654832691989-514.png]]
384 384  
385 385  
386 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
358 +[[image:1654592833877-762.png]]
387 387  
388 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
389 389  
361 +[[image:1654832740634-933.png]]
390 390  
391 391  
392 -== 2.6  Frequency Plans ==
393 393  
394 394  (((
395 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
366 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
396 396  )))
397 397  
369 +(((
370 +
371 +)))
398 398  
373 +[[image:1654833065139-942.png]]
399 399  
375 +
376 +
377 +[[image:1654833092678-390.png]]
378 +
379 +
380 +
381 +After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
382 +
383 +[[image:1654833163048-332.png]]
384 +
385 +
386 +
387 +== 2.6  Frequency Plans ==
388 +
389 +(((
390 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
391 +)))
392 +
393 +
400 400  === 2.6.1  EU863-870 (EU868) ===
401 401  
402 402  (((
... ... @@ -460,51 +460,20 @@
460 460  === 2.6.2  US902-928(US915) ===
461 461  
462 462  (((
463 -Used in USA, Canada and South America. Default use CHE=2
457 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
458 +)))
464 464  
465 -(% style="color:blue" %)**Uplink:**
460 +(((
461 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
462 +)))
466 466  
467 -903.9 - SF7BW125 to SF10BW125
468 -
469 -904.1 - SF7BW125 to SF10BW125
470 -
471 -904.3 - SF7BW125 to SF10BW125
472 -
473 -904.5 - SF7BW125 to SF10BW125
474 -
475 -904.7 - SF7BW125 to SF10BW125
476 -
477 -904.9 - SF7BW125 to SF10BW125
478 -
479 -905.1 - SF7BW125 to SF10BW125
480 -
481 -905.3 - SF7BW125 to SF10BW125
482 -
483 -
484 -(% style="color:blue" %)**Downlink:**
485 -
486 -923.3 - SF7BW500 to SF12BW500
487 -
488 -923.9 - SF7BW500 to SF12BW500
489 -
490 -924.5 - SF7BW500 to SF12BW500
491 -
492 -925.1 - SF7BW500 to SF12BW500
493 -
494 -925.7 - SF7BW500 to SF12BW500
495 -
496 -926.3 - SF7BW500 to SF12BW500
497 -
498 -926.9 - SF7BW500 to SF12BW500
499 -
500 -927.5 - SF7BW500 to SF12BW500
501 -
502 -923.3 - SF12BW500(RX2 downlink only)
503 -
504 -
505 -
464 +(((
465 +After Join success, the end node will switch to the correct sub band by:
506 506  )))
507 507  
468 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
469 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
470 +
508 508  === 2.6.3  CN470-510 (CN470) ===
509 509  
510 510  (((
... ... @@ -593,54 +593,28 @@
593 593  
594 594  
595 595  
559 +
596 596  === 2.6.4  AU915-928(AU915) ===
597 597  
598 598  (((
599 -Default use CHE=2
563 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
564 +)))
600 600  
601 -(% style="color:blue" %)**Uplink:**
566 +(((
567 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
568 +)))
602 602  
603 -916.8 - SF7BW125 to SF12BW125
604 -
605 -917.0 - SF7BW125 to SF12BW125
606 -
607 -917.2 - SF7BW125 to SF12BW125
608 -
609 -917.4 - SF7BW125 to SF12BW125
610 -
611 -917.6 - SF7BW125 to SF12BW125
612 -
613 -917.8 - SF7BW125 to SF12BW125
614 -
615 -918.0 - SF7BW125 to SF12BW125
616 -
617 -918.2 - SF7BW125 to SF12BW125
618 -
619 -
620 -(% style="color:blue" %)**Downlink:**
621 -
622 -923.3 - SF7BW500 to SF12BW500
623 -
624 -923.9 - SF7BW500 to SF12BW500
625 -
626 -924.5 - SF7BW500 to SF12BW500
627 -
628 -925.1 - SF7BW500 to SF12BW500
629 -
630 -925.7 - SF7BW500 to SF12BW500
631 -
632 -926.3 - SF7BW500 to SF12BW500
633 -
634 -926.9 - SF7BW500 to SF12BW500
635 -
636 -927.5 - SF7BW500 to SF12BW500
637 -
638 -923.3 - SF12BW500(RX2 downlink only)
639 -
640 -
570 +(((
641 641  
642 642  )))
643 643  
574 +(((
575 +After Join success, the end node will switch to the correct sub band by:
576 +)))
577 +
578 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
579 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
580 +
644 644  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
645 645  
646 646  (((
... ... @@ -749,6 +749,7 @@
749 749  
750 750  
751 751  
689 +
752 752  === 2.6.6  KR920-923 (KR920) ===
753 753  
754 754  (((
... ... @@ -821,6 +821,7 @@
821 821  
822 822  
823 823  
762 +
824 824  === 2.6.7  IN865-867 (IN865) ===
825 825  
826 826  (((
... ... @@ -857,95 +857,95 @@
857 857  
858 858  
859 859  
799 +
860 860  == 2.7  LED Indicator ==
861 861  
862 -The LDDS75 has an internal LED which is to show the status of different state.
802 +The LLDS12 has an internal LED which is to show the status of different state.
863 863  
864 -
865 -* Blink once when device power on.
866 -* The device detects the sensor and flashes 5 times.
867 -* Solid ON for 5 seconds once device successful Join the network.
804 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
868 868  * Blink once when device transmit a packet.
869 869  
870 -
871 -
872 872  == 2.8  ​Firmware Change Log ==
873 873  
874 874  
875 -(((
876 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
877 -)))
810 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
878 878  
879 -(((
880 -
881 -)))
882 882  
883 -(((
884 884  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
885 -)))
886 886  
887 887  
888 888  
889 -== 2.9  Mechanical ==
817 += 3LiDAR ToF Measurement =
890 890  
819 +== 3.1 Principle of Distance Measurement ==
891 891  
892 -[[image:image-20220610172003-1.png]]
821 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
893 893  
823 +[[image:1654831757579-263.png]]
894 894  
895 -[[image:image-20220610172003-2.png]]
896 896  
897 897  
827 +== 3.2 Distance Measurement Characteristics ==
898 898  
899 -== 2.10  Battery Analysis ==
829 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
900 900  
901 -=== 2.10.1  Battery Type ===
831 +[[image:1654831774373-275.png]]
902 902  
903 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
904 904  
834 +(((
835 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 +)))
905 905  
906 -The battery related documents as below:
838 +(((
839 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
840 +)))
907 907  
908 -* (((
909 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
842 +(((
843 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
910 910  )))
911 -* (((
912 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
913 -)))
914 -* (((
915 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
916 -)))
917 917  
918 - [[image:image-20220610172400-3.png]]
919 919  
847 +(((
848 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
849 +)))
920 920  
921 921  
922 -=== 2.10.2  Replace the battery ===
852 +[[image:1654831797521-720.png]]
923 923  
924 -(((
925 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
926 -)))
927 927  
928 928  (((
929 -
856 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
930 930  )))
931 931  
859 +[[image:1654831810009-716.png]]
860 +
861 +
932 932  (((
933 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
863 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
934 934  )))
935 935  
936 936  
937 937  
938 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
868 +== 3.3 Notice of usage: ==
939 939  
870 +Possible invalid /wrong reading for LiDAR ToF tech:
871 +
872 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
873 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
874 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
875 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
876 +
877 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
878 +
940 940  (((
941 941  (((
942 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
881 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
943 943  )))
944 944  )))
945 945  
946 946  * (((
947 947  (((
948 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
887 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
949 949  )))
950 950  )))
951 951  * (((
... ... @@ -960,7 +960,7 @@
960 960  )))
961 961  
962 962  (((
963 -There are two kinds of commands to configure LDDS75, they are:
902 +There are two kinds of commands to configure LLDS12, they are:
964 964  )))
965 965  )))
966 966  
... ... @@ -1001,159 +1001,351 @@
1001 1001  
1002 1002  * (((
1003 1003  (((
1004 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
943 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
1005 1005  )))
1006 1006  )))
1007 1007  
1008 1008  (((
1009 1009  (((
1010 -These commands only valid for LDDS75, as below:
949 +These commands only valid for LLDS12, as below:
1011 1011  )))
1012 1012  )))
1013 1013  
1014 1014  
1015 1015  
1016 -== 3.1  Access AT Commands ==
955 +== 4.1  Set Transmit Interval Time ==
1017 1017  
1018 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
957 +Feature: Change LoRaWAN End Node Transmit Interval.
1019 1019  
1020 -[[image:image-20220610172924-4.png||height="483" width="988"]]
959 +(% style="color:#037691" %)**AT Command: AT+TDC**
1021 1021  
961 +[[image:image-20220607171554-8.png]]
1022 1022  
1023 -Or if you have below board, use below connection:
1024 1024  
964 +(((
965 +(% style="color:#037691" %)**Downlink Command: 0x01**
966 +)))
1025 1025  
1026 -[[image:image-20220610172924-5.png]]
968 +(((
969 +Format: Command Code (0x01) followed by 3 bytes time value.
970 +)))
1027 1027  
972 +(((
973 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
974 +)))
1028 1028  
976 +* (((
977 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
978 +)))
979 +* (((
980 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
981 +)))
982 +
983 +== 4.2  Set Interrupt Mode ==
984 +
985 +Feature, Set Interrupt mode for GPIO_EXIT.
986 +
987 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
988 +
989 +[[image:image-20220610105806-2.png]]
990 +
991 +
1029 1029  (((
1030 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
993 +(% style="color:#037691" %)**Downlink Command: 0x06**
1031 1031  )))
1032 1032  
996 +(((
997 +Format: Command Code (0x06) followed by 3 bytes.
998 +)))
1033 1033  
1034 - [[image:image-20220610172924-6.png||height="601" width="860"]]
1000 +(((
1001 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1002 +)))
1035 1035  
1004 +* (((
1005 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1006 +)))
1007 +* (((
1008 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1009 +)))
1036 1036  
1011 +== 4.3  Get Firmware Version Info ==
1037 1037  
1038 -== 3.2  Set Transmit Interval Time ==
1013 +Feature: use downlink to get firmware version.
1039 1039  
1040 -Feature: Change LoRaWAN End Node Transmit Interval.
1015 +(% style="color:#037691" %)**Downlink Command: 0x26**
1041 1041  
1042 -(% style="color:#037691" %)**AT Command: AT+TDC**
1017 +[[image:image-20220607171917-10.png]]
1043 1043  
1044 -[[image:image-20220610173409-7.png]]
1019 +* Reply to the confirmation package: 26 01
1020 +* Reply to non-confirmed packet: 26 00
1045 1045  
1022 +Device will send an uplink after got this downlink command. With below payload:
1046 1046  
1024 +Configures info payload:
1025 +
1026 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1027 +|=(((
1028 +**Size(bytes)**
1029 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1030 +|**Value**|Software Type|(((
1031 +Frequency
1032 +
1033 +Band
1034 +)))|Sub-band|(((
1035 +Firmware
1036 +
1037 +Version
1038 +)))|Sensor Type|Reserve|(((
1039 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1040 +Always 0x02
1041 +)))
1042 +
1043 +**Software Type**: Always 0x03 for LLDS12
1044 +
1045 +
1046 +**Frequency Band**:
1047 +
1048 +*0x01: EU868
1049 +
1050 +*0x02: US915
1051 +
1052 +*0x03: IN865
1053 +
1054 +*0x04: AU915
1055 +
1056 +*0x05: KZ865
1057 +
1058 +*0x06: RU864
1059 +
1060 +*0x07: AS923
1061 +
1062 +*0x08: AS923-1
1063 +
1064 +*0x09: AS923-2
1065 +
1066 +*0xa0: AS923-3
1067 +
1068 +
1069 +**Sub-Band**: value 0x00 ~~ 0x08
1070 +
1071 +
1072 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1073 +
1074 +
1075 +**Sensor Type**:
1076 +
1077 +0x01: LSE01
1078 +
1079 +0x02: LDDS75
1080 +
1081 +0x03: LDDS20
1082 +
1083 +0x04: LLMS01
1084 +
1085 +0x05: LSPH01
1086 +
1087 +0x06: LSNPK01
1088 +
1089 +0x07: LLDS12
1090 +
1091 +
1092 +
1093 += 5.  Battery & How to replace =
1094 +
1095 +== 5.1  Battery Type ==
1096 +
1047 1047  (((
1048 -(% style="color:#037691" %)**Downlink Command: 0x01**
1098 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1049 1049  )))
1050 1050  
1051 1051  (((
1102 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1103 +)))
1104 +
1105 +[[image:1654593587246-335.png]]
1106 +
1107 +
1108 +Minimum Working Voltage for the LLDS12:
1109 +
1110 +LLDS12:  2.45v ~~ 3.6v
1111 +
1112 +
1113 +
1114 +== 5.2  Replace Battery ==
1115 +
1052 1052  (((
1053 -Format: Command Code (0x01) followed by 3 bytes time value.
1117 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1118 +)))
1054 1054  
1055 1055  (((
1056 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1121 +And make sure the positive and negative pins match.
1057 1057  )))
1058 1058  
1059 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1060 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1124 +
1125 +
1126 +== 5.3  Power Consumption Analyze ==
1127 +
1128 +(((
1129 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1061 1061  )))
1131 +
1132 +(((
1133 +Instruction to use as below:
1062 1062  )))
1063 1063  
1064 1064  
1137 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1065 1065  
1139 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1066 1066  
1067 1067  
1068 -== 3.3  Set Interrupt Mode ==
1142 +**Step 2**: Open it and choose
1069 1069  
1070 -Feature, Set Interrupt mode for GPIO_EXIT.
1144 +* Product Model
1145 +* Uplink Interval
1146 +* Working Mode
1071 1071  
1072 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1148 +And the Life expectation in difference case will be shown on the right.
1073 1073  
1074 -[[image:image-20220610174917-9.png]]
1150 +[[image:1654593605679-189.png]]
1075 1075  
1076 1076  
1077 -(% style="color:#037691" %)**Downlink Command: 0x06**
1153 +The battery related documents as below:
1078 1078  
1079 -Format: Command Code (0x06) followed by 3 bytes.
1155 +* (((
1156 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1157 +)))
1158 +* (((
1159 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1160 +)))
1161 +* (((
1162 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1163 +)))
1080 1080  
1165 +[[image:image-20220607172042-11.png]]
1166 +
1167 +
1168 +
1169 +=== 5.3.1  ​Battery Note ===
1170 +
1081 1081  (((
1082 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1172 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1083 1083  )))
1084 1084  
1085 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1086 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1087 1087  
1088 1088  
1177 +=== ​5.3.2  Replace the battery ===
1089 1089  
1090 -= 4.  FAQ =
1179 +(((
1180 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1181 +)))
1091 1091  
1092 -== 4.1  What is the frequency plan for LDDS75? ==
1183 +(((
1184 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1185 +)))
1093 1093  
1094 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1095 1095  
1096 1096  
1189 += 6.  Use AT Command =
1097 1097  
1098 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1191 +== 6.1  Access AT Commands ==
1099 1099  
1100 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1101 -When downloading the images, choose the required image file for download. ​
1193 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1102 1102  
1195 +[[image:1654593668970-604.png]]
1103 1103  
1197 +**Connection:**
1104 1104  
1105 -== 4.3  Can I use LDDS75 in condensation environment? ==
1199 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1106 1106  
1107 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1201 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1108 1108  
1203 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1109 1109  
1110 1110  
1111 -= 5.  Trouble Shooting =
1206 +(((
1207 +(((
1208 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1209 +)))
1112 1112  
1113 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1211 +(((
1212 +LLDS12 will output system info once power on as below:
1213 +)))
1214 +)))
1114 1114  
1115 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1116 1116  
1217 + [[image:1654593712276-618.png]]
1117 1117  
1118 -== 5.2  AT Command input doesn't work ==
1219 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1119 1119  
1221 +
1222 += 7.  FAQ =
1223 +
1224 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1225 +
1226 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1227 +When downloading the images, choose the required image file for download. ​
1228 +
1229 +
1230 += 8.  Trouble Shooting =
1231 +
1232 +== 8.1  AT Commands input doesn’t work ==
1233 +
1234 +
1235 +(((
1120 1120  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1237 +)))
1121 1121  
1239 +
1240 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1241 +
1242 +
1122 1122  (((
1123 -
1244 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1124 1124  )))
1125 1125  
1247 +(((
1248 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1249 +)))
1126 1126  
1127 -= 6.  Order Info =
1251 +(((
1252 +
1253 +)))
1128 1128  
1255 +(((
1256 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1257 +)))
1129 1129  
1130 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
1259 +(((
1260 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1261 +)))
1131 1131  
1132 1132  
1133 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
1134 1134  
1135 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1136 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1137 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1138 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1139 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1140 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1141 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1142 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1265 += 9.  Order Info =
1143 1143  
1144 -(% style="color:blue" %)**YY**(%%): Battery Option
1145 1145  
1146 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1147 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1268 +Part Number: (% style="color:blue" %)**LLDS12-XX**
1148 1148  
1149 1149  
1271 +(% style="color:blue" %)**XX**(%%): The default frequency band
1150 1150  
1151 -= 7. ​ Packing Info =
1273 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1274 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1275 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1276 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1277 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1278 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1279 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1280 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1152 1152  
1282 += 10. ​ Packing Info =
1153 1153  
1284 +
1154 1154  **Package Includes**:
1155 1155  
1156 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1287 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1157 1157  
1158 1158  **Dimension and weight**:
1159 1159  
... ... @@ -1162,9 +1162,7 @@
1162 1162  * Package Size / pcs : cm
1163 1163  * Weight / pcs : g
1164 1164  
1296 += 11.  ​Support =
1165 1165  
1166 -
1167 -= 8.  ​Support =
1168 -
1169 1169  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1170 1170  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654849068701-275.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.6 KB
Content
1654912614655-664.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -169.3 KB
Content
1654912858581-740.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -84.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content