Last modified by Xiaoling on 2025/04/27 13:54

From version 153.3
edited by Xiaoling
on 2022/06/11 10:00
Change comment: There is no comment for this version
To version 131.1
edited by Xiaoling
on 2022/06/10 16:15
Change comment: Uploaded new attachment "image-20220610161538-9.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS45 - LoRaWAN Distance Detection Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,9 +1,8 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654912614655-664.png||height="530" width="628"]]
2 +[[image:1654846127817-788.png]]
3 3  
4 4  **Contents:**
5 5  
6 -{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -11,7 +11,6 @@
11 11  
12 12  
13 13  
14 -
15 15  = 1.  Introduction =
16 16  
17 17  == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
... ... @@ -20,53 +20,27 @@
20 20  
21 21  
22 22  (((
23 -(((
24 24  The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 -)))
26 26  
27 -(((
28 -
29 -)))
30 30  
31 -(((
32 32  It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
33 -)))
34 34  
35 -(((
36 -
37 -)))
38 38  
39 -(((
40 40  The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 -)))
42 42  
43 -(((
44 -
45 -)))
46 46  
47 -(((
48 -LDDS75 is powered by (% style="color:#4472c4" %)** 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
49 -)))
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
50 50  
51 -(((
52 -
53 -)))
54 54  
55 -(((
56 56  Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
57 -)))
58 58  
59 -(((
60 -
61 -)))
62 62  
63 -(((
64 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors.
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
65 65  )))
66 66  )))
67 -)))
68 68  
69 69  
41 +[[image:1654847051249-359.png]]
70 70  
71 71  
72 72  
... ... @@ -85,8 +85,6 @@
85 85  * IP66 Waterproof Enclosure
86 86  * 4000mAh or 8500mAh Battery for long term use
87 87  
88 -
89 -
90 90  == 1.3  Specification ==
91 91  
92 92  === 1.3.1  Rated environmental conditions ===
... ... @@ -93,31 +93,23 @@
93 93  
94 94  [[image:image-20220610154839-1.png]]
95 95  
96 -(((
97 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);  b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
98 -)))
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
99 99  
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
100 100  
101 101  
71 +
102 102  === 1.3.2  Effective measurement range Reference beam pattern ===
103 103  
104 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
105 105  
106 106  
107 107  
108 -[[image:1654852253176-749.png]]
78 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
109 109  
80 +(% style="display:none" %) (%%)
110 110  
111 111  
112 -(((
113 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
114 -)))
115 -
116 -
117 -[[image:1654852175653-550.png]](% style="display:none" %) ** **
118 -
119 -
120 -
121 121  == 1.5 ​ Applications ==
122 122  
123 123  * Horizontal distance measurement
... ... @@ -131,7 +131,6 @@
131 131  * Bottom water level monitoring
132 132  
133 133  
134 -
135 135  == 1.6  Pin mapping and power on ==
136 136  
137 137  
... ... @@ -138,7 +138,6 @@
138 138  [[image:1654847583902-256.png]]
139 139  
140 140  
141 -
142 142  = 2.  Configure LDDS75 to connect to LoRaWAN network =
143 143  
144 144  == 2.1  How it works ==
... ... @@ -152,7 +152,6 @@
152 152  )))
153 153  
154 154  
155 -
156 156  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
157 157  
158 158  (((
... ... @@ -178,53 +178,48 @@
178 178  [[image:image-20220607170145-1.jpeg]]
179 179  
180 180  
181 -(((
182 182  For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
183 -)))
184 184  
185 -(((
186 186  Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
187 -)))
188 188  
189 -(((
190 -**Add APP EUI in the application**
191 -)))
192 192  
193 -[[image:image-20220610161353-4.png]]
145 +**Register the device**
194 194  
195 -[[image:image-20220610161353-5.png]]
196 196  
197 -[[image:image-20220610161353-6.png]]
148 +[[image:1654592600093-601.png]]
198 198  
199 199  
200 -[[image:image-20220610161353-7.png]]
201 201  
152 +**Add APP EUI and DEV EUI**
202 202  
203 -You can also choose to create the device manually.
154 +[[image:1654592619856-881.png]]
204 204  
205 - [[image:image-20220610161538-8.png]]
206 206  
207 207  
158 +**Add APP EUI in the application**
208 208  
209 -**Add APP KEY and DEV EUI**
160 +[[image:1654592632656-512.png]]
210 210  
211 -[[image:image-20220610161538-9.png]]
212 212  
213 213  
164 +**Add APP KEY**
214 214  
215 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
166 +[[image:1654592653453-934.png]]
216 216  
217 217  
169 +(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
170 +
171 +
218 218  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
219 219  
220 -[[image:image-20220610161724-10.png]]
174 +[[image:image-20220607170442-2.png]]
221 221  
222 222  
223 223  (((
224 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
178 +(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
225 225  )))
226 226  
227 -[[image:1654849068701-275.png]]
181 +[[image:1654833501679-968.png]]
228 228  
229 229  
230 230  
... ... @@ -231,15 +231,12 @@
231 231  == 2.3  ​Uplink Payload ==
232 232  
233 233  (((
234 -(((
235 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
188 +LLDS12 will uplink payload via LoRaWAN with below payload format: 
236 236  )))
237 237  
238 238  (((
239 -Uplink payload includes in total 4 bytes.
240 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
192 +Uplink payload includes in total 11 bytes.
241 241  )))
242 -)))
243 243  
244 244  (((
245 245  
... ... @@ -248,23 +248,23 @@
248 248  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
249 249  |=(% style="width: 62.5px;" %)(((
250 250  **Size (bytes)**
251 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
252 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
253 -[[Distance>>||anchor="H2.3.2A0Distance"]]
202 +)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
203 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
204 +[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
205 +)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 +[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
207 +)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
208 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
209 +)))
254 254  
255 -(unit: mm)
256 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.3A0InterruptPin"]]|(((
257 -[[Temperature (Optional )>>||anchor="H2.3.4A0DS18B20Temperaturesensor"]]
258 -)))|[[Sensor Flag>>||anchor="H2.3.5A0SensorFlag"]]
211 +[[image:1654833689380-972.png]]
259 259  
260 -[[image:1654850511545-399.png]]
261 261  
262 262  
263 -
264 264  === 2.3.1  Battery Info ===
265 265  
266 266  
267 -Check the battery voltage for LDDS75.
218 +Check the battery voltage for LLDS12.
268 268  
269 269  Ex1: 0x0B45 = 2885mV
270 270  
... ... @@ -272,71 +272,96 @@
272 272  
273 273  
274 274  
275 -=== 2.3.2  Distance ===
226 +=== 2.3.2  DS18B20 Temperature sensor ===
276 276  
277 -(((
278 -Get the distance. Flat object range 280mm - 7500mm.
279 -)))
228 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
280 280  
281 -(((
282 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
283 -)))
284 284  
231 +**Example**:
285 285  
286 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
287 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
233 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
288 288  
235 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
289 289  
290 290  
291 -=== 2.3.3  Interrupt Pin ===
292 292  
293 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.3A0SetInterruptMode"]] for the hardware and software set up.
239 +=== 2.3.3  Distance ===
294 294  
295 -**Example:**
241 +Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
296 296  
297 -0x00: Normal uplink packet.
298 298  
299 -0x01: Interrupt Uplink Packet.
244 +**Example**:
300 300  
246 +If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
301 301  
302 302  
303 -=== 2.3.4  DS18B20 Temperature sensor ===
304 304  
305 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
250 +=== 2.3.4  Distance signal strength ===
306 306  
252 +Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
253 +
254 +
307 307  **Example**:
308 308  
309 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
257 +If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
310 310  
311 -If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
259 +Customers can judge whether they need to adjust the environment based on the signal strength.
312 312  
313 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
314 314  
315 315  
263 +=== 2.3.5  Interrupt Pin ===
316 316  
317 -=== 2.3.5  Sensor Flag ===
265 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
318 318  
267 +Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
268 +
269 +**Example:**
270 +
271 +0x00: Normal uplink packet.
272 +
273 +0x01: Interrupt Uplink Packet.
274 +
275 +
276 +
277 +=== 2.3.6  LiDAR temp ===
278 +
279 +Characterize the internal temperature value of the sensor.
280 +
281 +**Example: **
282 +If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
283 +If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
284 +
285 +
286 +
287 +=== 2.3.7  Message Type ===
288 +
319 319  (((
320 -0x01: Detect Ultrasonic Sensor
290 +For a normal uplink payload, the message type is always 0x01.
321 321  )))
322 322  
323 323  (((
324 -0x00: No Ultrasonic Sensor
294 +Valid Message Type:
325 325  )))
326 326  
327 327  
298 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
299 +|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
300 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
301 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
328 328  
329 -=== 2.3.6  Decode payload in The Things Network ===
303 +=== 2.3.8  Decode payload in The Things Network ===
330 330  
331 331  While using TTN network, you can add the payload format to decode the payload.
332 332  
333 333  
334 -[[image:1654850829385-439.png]]
308 +[[image:1654592762713-715.png]]
335 335  
336 -The payload decoder function for TTN V3 is here:
310 +(((
311 +The payload decoder function for TTN is here:
312 +)))
337 337  
338 338  (((
339 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
315 +LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
340 340  )))
341 341  
342 342  
... ... @@ -343,7 +343,7 @@
343 343  
344 344  == 2.4  Uplink Interval ==
345 345  
346 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
322 +The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
347 347  
348 348  
349 349  
... ... @@ -374,25 +374,47 @@
374 374  
375 375  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
376 376  
377 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
353 +(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
378 378  
379 -[[image:1654851029373-510.png]]
355 +[[image:1654832691989-514.png]]
380 380  
381 381  
382 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
358 +[[image:1654592833877-762.png]]
383 383  
384 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
385 385  
361 +[[image:1654832740634-933.png]]
386 386  
387 387  
388 -== 2.6  Frequency Plans ==
389 389  
390 390  (((
391 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
366 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
392 392  )))
393 393  
369 +(((
370 +
371 +)))
394 394  
373 +[[image:1654833065139-942.png]]
395 395  
375 +
376 +
377 +[[image:1654833092678-390.png]]
378 +
379 +
380 +
381 +After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
382 +
383 +[[image:1654833163048-332.png]]
384 +
385 +
386 +
387 +== 2.6  Frequency Plans ==
388 +
389 +(((
390 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
391 +)))
392 +
393 +
396 396  === 2.6.1  EU863-870 (EU868) ===
397 397  
398 398  (((
... ... @@ -456,51 +456,20 @@
456 456  === 2.6.2  US902-928(US915) ===
457 457  
458 458  (((
459 -Used in USA, Canada and South America. Default use CHE=2
457 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
458 +)))
460 460  
461 -(% style="color:blue" %)**Uplink:**
460 +(((
461 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
462 +)))
462 462  
463 -903.9 - SF7BW125 to SF10BW125
464 -
465 -904.1 - SF7BW125 to SF10BW125
466 -
467 -904.3 - SF7BW125 to SF10BW125
468 -
469 -904.5 - SF7BW125 to SF10BW125
470 -
471 -904.7 - SF7BW125 to SF10BW125
472 -
473 -904.9 - SF7BW125 to SF10BW125
474 -
475 -905.1 - SF7BW125 to SF10BW125
476 -
477 -905.3 - SF7BW125 to SF10BW125
478 -
479 -
480 -(% style="color:blue" %)**Downlink:**
481 -
482 -923.3 - SF7BW500 to SF12BW500
483 -
484 -923.9 - SF7BW500 to SF12BW500
485 -
486 -924.5 - SF7BW500 to SF12BW500
487 -
488 -925.1 - SF7BW500 to SF12BW500
489 -
490 -925.7 - SF7BW500 to SF12BW500
491 -
492 -926.3 - SF7BW500 to SF12BW500
493 -
494 -926.9 - SF7BW500 to SF12BW500
495 -
496 -927.5 - SF7BW500 to SF12BW500
497 -
498 -923.3 - SF12BW500(RX2 downlink only)
499 -
500 -
501 -
464 +(((
465 +After Join success, the end node will switch to the correct sub band by:
502 502  )))
503 503  
468 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
469 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
470 +
504 504  === 2.6.3  CN470-510 (CN470) ===
505 505  
506 506  (((
... ... @@ -589,54 +589,28 @@
589 589  
590 590  
591 591  
559 +
592 592  === 2.6.4  AU915-928(AU915) ===
593 593  
594 594  (((
595 -Default use CHE=2
563 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
564 +)))
596 596  
597 -(% style="color:blue" %)**Uplink:**
566 +(((
567 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
568 +)))
598 598  
599 -916.8 - SF7BW125 to SF12BW125
600 -
601 -917.0 - SF7BW125 to SF12BW125
602 -
603 -917.2 - SF7BW125 to SF12BW125
604 -
605 -917.4 - SF7BW125 to SF12BW125
606 -
607 -917.6 - SF7BW125 to SF12BW125
608 -
609 -917.8 - SF7BW125 to SF12BW125
610 -
611 -918.0 - SF7BW125 to SF12BW125
612 -
613 -918.2 - SF7BW125 to SF12BW125
614 -
615 -
616 -(% style="color:blue" %)**Downlink:**
617 -
618 -923.3 - SF7BW500 to SF12BW500
619 -
620 -923.9 - SF7BW500 to SF12BW500
621 -
622 -924.5 - SF7BW500 to SF12BW500
623 -
624 -925.1 - SF7BW500 to SF12BW500
625 -
626 -925.7 - SF7BW500 to SF12BW500
627 -
628 -926.3 - SF7BW500 to SF12BW500
629 -
630 -926.9 - SF7BW500 to SF12BW500
631 -
632 -927.5 - SF7BW500 to SF12BW500
633 -
634 -923.3 - SF12BW500(RX2 downlink only)
635 -
636 -
570 +(((
637 637  
638 638  )))
639 639  
574 +(((
575 +After Join success, the end node will switch to the correct sub band by:
576 +)))
577 +
578 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
579 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
580 +
640 640  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
641 641  
642 642  (((
... ... @@ -745,6 +745,7 @@
745 745  
746 746  
747 747  
689 +
748 748  === 2.6.6  KR920-923 (KR920) ===
749 749  
750 750  (((
... ... @@ -817,6 +817,7 @@
817 817  
818 818  
819 819  
762 +
820 820  === 2.6.7  IN865-867 (IN865) ===
821 821  
822 822  (((
... ... @@ -853,95 +853,95 @@
853 853  
854 854  
855 855  
799 +
856 856  == 2.7  LED Indicator ==
857 857  
858 -The LDDS75 has an internal LED which is to show the status of different state.
802 +The LLDS12 has an internal LED which is to show the status of different state.
859 859  
860 -
861 -* Blink once when device power on.
862 -* The device detects the sensor and flashes 5 times.
863 -* Solid ON for 5 seconds once device successful Join the network.
804 +* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
864 864  * Blink once when device transmit a packet.
865 865  
866 -
867 -
868 868  == 2.8  ​Firmware Change Log ==
869 869  
870 870  
871 -(((
872 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
873 -)))
810 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
874 874  
875 -(((
876 -
877 -)))
878 878  
879 -(((
880 880  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
881 -)))
882 882  
883 883  
884 884  
885 -== 2.9  Mechanical ==
817 += 3LiDAR ToF Measurement =
886 886  
819 +== 3.1 Principle of Distance Measurement ==
887 887  
888 -[[image:image-20220610172003-1.png]]
821 +The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
889 889  
823 +[[image:1654831757579-263.png]]
890 890  
891 -[[image:image-20220610172003-2.png]]
892 892  
893 893  
827 +== 3.2 Distance Measurement Characteristics ==
894 894  
895 -== 2.10  Battery Analysis ==
829 +With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
896 896  
897 -=== 2.10.1  Battery Type ===
831 +[[image:1654831774373-275.png]]
898 898  
899 -The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
900 900  
834 +(((
835 +(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 +)))
901 901  
902 -The battery related documents as below:
838 +(((
839 +(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
840 +)))
903 903  
904 -* (((
905 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
842 +(((
843 +(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
906 906  )))
907 -* (((
908 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
909 -)))
910 -* (((
911 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
912 -)))
913 913  
914 - [[image:image-20220610172400-3.png]]
915 915  
847 +(((
848 +Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
849 +)))
916 916  
917 917  
918 -=== 2.10.2  Replace the battery ===
852 +[[image:1654831797521-720.png]]
919 919  
920 -(((
921 -You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
922 -)))
923 923  
924 924  (((
925 -
856 +In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
926 926  )))
927 927  
859 +[[image:1654831810009-716.png]]
860 +
861 +
928 928  (((
929 -The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can't find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
863 +If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
930 930  )))
931 931  
932 932  
933 933  
934 -= 3.  Configure LDDS75 via AT Command or LoRaWAN Downlink =
868 +== 3.3 Notice of usage: ==
935 935  
870 +Possible invalid /wrong reading for LiDAR ToF tech:
871 +
872 +* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
873 +* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
874 +* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
875 +* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
876 +
877 += 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
878 +
936 936  (((
937 937  (((
938 -Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
881 +Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
939 939  )))
940 940  )))
941 941  
942 942  * (((
943 943  (((
944 -AT Command Connection: See [[FAQ>>||anchor="H4.A0FAQ"]].
887 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
945 945  )))
946 946  )))
947 947  * (((
... ... @@ -956,7 +956,7 @@
956 956  )))
957 957  
958 958  (((
959 -There are two kinds of commands to configure LDDS75, they are:
902 +There are two kinds of commands to configure LLDS12, they are:
960 960  )))
961 961  )))
962 962  
... ... @@ -997,159 +997,351 @@
997 997  
998 998  * (((
999 999  (((
1000 -(% style="color:#4f81bd" %)** Commands special design for LDDS75**
943 +(% style="color:#4f81bd" %)** Commands special design for LLDS12**
1001 1001  )))
1002 1002  )))
1003 1003  
1004 1004  (((
1005 1005  (((
1006 -These commands only valid for LDDS75, as below:
949 +These commands only valid for LLDS12, as below:
1007 1007  )))
1008 1008  )))
1009 1009  
1010 1010  
1011 1011  
1012 -== 3.1  Access AT Commands ==
955 +== 4.1  Set Transmit Interval Time ==
1013 1013  
1014 -LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
957 +Feature: Change LoRaWAN End Node Transmit Interval.
1015 1015  
1016 -[[image:image-20220610172924-4.png||height="483" width="988"]]
959 +(% style="color:#037691" %)**AT Command: AT+TDC**
1017 1017  
961 +[[image:image-20220607171554-8.png]]
1018 1018  
1019 -Or if you have below board, use below connection:
1020 1020  
964 +(((
965 +(% style="color:#037691" %)**Downlink Command: 0x01**
966 +)))
1021 1021  
1022 -[[image:image-20220610172924-5.png]]
968 +(((
969 +Format: Command Code (0x01) followed by 3 bytes time value.
970 +)))
1023 1023  
972 +(((
973 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
974 +)))
1024 1024  
976 +* (((
977 +Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
978 +)))
979 +* (((
980 +Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
981 +)))
982 +
983 +== 4.2  Set Interrupt Mode ==
984 +
985 +Feature, Set Interrupt mode for GPIO_EXIT.
986 +
987 +(% style="color:#037691" %)**AT Command: AT+INTMOD**
988 +
989 +[[image:image-20220610105806-2.png]]
990 +
991 +
1025 1025  (((
1026 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
993 +(% style="color:#037691" %)**Downlink Command: 0x06**
1027 1027  )))
1028 1028  
996 +(((
997 +Format: Command Code (0x06) followed by 3 bytes.
998 +)))
1029 1029  
1030 - [[image:image-20220610172924-6.png||height="601" width="860"]]
1000 +(((
1001 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1002 +)))
1031 1031  
1004 +* (((
1005 +Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1006 +)))
1007 +* (((
1008 +Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1009 +)))
1032 1032  
1011 +== 4.3  Get Firmware Version Info ==
1033 1033  
1034 -== 3.2  Set Transmit Interval Time ==
1013 +Feature: use downlink to get firmware version.
1035 1035  
1036 -Feature: Change LoRaWAN End Node Transmit Interval.
1015 +(% style="color:#037691" %)**Downlink Command: 0x26**
1037 1037  
1038 -(% style="color:#037691" %)**AT Command: AT+TDC**
1017 +[[image:image-20220607171917-10.png]]
1039 1039  
1040 -[[image:image-20220610173409-7.png]]
1019 +* Reply to the confirmation package: 26 01
1020 +* Reply to non-confirmed packet: 26 00
1041 1041  
1022 +Device will send an uplink after got this downlink command. With below payload:
1042 1042  
1024 +Configures info payload:
1025 +
1026 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1027 +|=(((
1028 +**Size(bytes)**
1029 +)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1030 +|**Value**|Software Type|(((
1031 +Frequency
1032 +
1033 +Band
1034 +)))|Sub-band|(((
1035 +Firmware
1036 +
1037 +Version
1038 +)))|Sensor Type|Reserve|(((
1039 +[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1040 +Always 0x02
1041 +)))
1042 +
1043 +**Software Type**: Always 0x03 for LLDS12
1044 +
1045 +
1046 +**Frequency Band**:
1047 +
1048 +*0x01: EU868
1049 +
1050 +*0x02: US915
1051 +
1052 +*0x03: IN865
1053 +
1054 +*0x04: AU915
1055 +
1056 +*0x05: KZ865
1057 +
1058 +*0x06: RU864
1059 +
1060 +*0x07: AS923
1061 +
1062 +*0x08: AS923-1
1063 +
1064 +*0x09: AS923-2
1065 +
1066 +*0xa0: AS923-3
1067 +
1068 +
1069 +**Sub-Band**: value 0x00 ~~ 0x08
1070 +
1071 +
1072 +**Firmware Version**: 0x0100, Means: v1.0.0 version
1073 +
1074 +
1075 +**Sensor Type**:
1076 +
1077 +0x01: LSE01
1078 +
1079 +0x02: LDDS75
1080 +
1081 +0x03: LDDS20
1082 +
1083 +0x04: LLMS01
1084 +
1085 +0x05: LSPH01
1086 +
1087 +0x06: LSNPK01
1088 +
1089 +0x07: LLDS12
1090 +
1091 +
1092 +
1093 += 5.  Battery & How to replace =
1094 +
1095 +== 5.1  Battery Type ==
1096 +
1043 1043  (((
1044 -(% style="color:#037691" %)**Downlink Command: 0x01**
1098 +LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1045 1045  )))
1046 1046  
1047 1047  (((
1102 +The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1103 +)))
1104 +
1105 +[[image:1654593587246-335.png]]
1106 +
1107 +
1108 +Minimum Working Voltage for the LLDS12:
1109 +
1110 +LLDS12:  2.45v ~~ 3.6v
1111 +
1112 +
1113 +
1114 +== 5.2  Replace Battery ==
1115 +
1048 1048  (((
1049 -Format: Command Code (0x01) followed by 3 bytes time value.
1117 +Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1118 +)))
1050 1050  
1051 1051  (((
1052 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1121 +And make sure the positive and negative pins match.
1053 1053  )))
1054 1054  
1055 -* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
1056 -* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1124 +
1125 +
1126 +== 5.3  Power Consumption Analyze ==
1127 +
1128 +(((
1129 +Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1057 1057  )))
1131 +
1132 +(((
1133 +Instruction to use as below:
1058 1058  )))
1059 1059  
1060 1060  
1137 +**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1061 1061  
1139 +[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1062 1062  
1063 1063  
1064 -== 3.3  Set Interrupt Mode ==
1142 +**Step 2**: Open it and choose
1065 1065  
1066 -Feature, Set Interrupt mode for GPIO_EXIT.
1144 +* Product Model
1145 +* Uplink Interval
1146 +* Working Mode
1067 1067  
1068 -(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1148 +And the Life expectation in difference case will be shown on the right.
1069 1069  
1070 -[[image:image-20220610174917-9.png]]
1150 +[[image:1654593605679-189.png]]
1071 1071  
1072 1072  
1073 -(% style="color:#037691" %)**Downlink Command: 0x06**
1153 +The battery related documents as below:
1074 1074  
1075 -Format: Command Code (0x06) followed by 3 bytes.
1155 +* (((
1156 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1157 +)))
1158 +* (((
1159 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1160 +)))
1161 +* (((
1162 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1163 +)))
1076 1076  
1165 +[[image:image-20220607172042-11.png]]
1166 +
1167 +
1168 +
1169 +=== 5.3.1  ​Battery Note ===
1170 +
1077 1077  (((
1078 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1172 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1079 1079  )))
1080 1080  
1081 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1082 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1083 1083  
1084 1084  
1177 +=== ​5.3.2  Replace the battery ===
1085 1085  
1086 -= 4.  FAQ =
1179 +(((
1180 +You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1181 +)))
1087 1087  
1088 -== 4.1  What is the frequency plan for LDDS75? ==
1183 +(((
1184 +The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1185 +)))
1089 1089  
1090 -LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:  [[Introduction>>doc:Main.End Device Frequency Band.WebHome||anchor="H1.Introduction"]]
1091 1091  
1092 1092  
1189 += 6.  Use AT Command =
1093 1093  
1094 -== 4.2  How to change the LoRa Frequency Bands/Region ==
1191 +== 6.1  Access AT Commands ==
1095 1095  
1096 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1097 -When downloading the images, choose the required image file for download. ​
1193 +LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1098 1098  
1195 +[[image:1654593668970-604.png]]
1099 1099  
1197 +**Connection:**
1100 1100  
1101 -== 4.3  Can I use LDDS75 in condensation environment? ==
1199 +(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1102 1102  
1103 -LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1201 +(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1104 1104  
1203 +(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1105 1105  
1106 1106  
1107 -= 5.  Trouble Shooting =
1206 +(((
1207 +(((
1208 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1209 +)))
1108 1108  
1109 -== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1211 +(((
1212 +LLDS12 will output system info once power on as below:
1213 +)))
1214 +)))
1110 1110  
1111 -It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1112 1112  
1217 + [[image:1654593712276-618.png]]
1113 1113  
1114 -== 5.2  AT Command input doesn't work ==
1219 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1115 1115  
1221 +
1222 += 7.  FAQ =
1223 +
1224 +== 7.1  How to change the LoRa Frequency Bands/Region ==
1225 +
1226 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1227 +When downloading the images, choose the required image file for download. ​
1228 +
1229 +
1230 += 8.  Trouble Shooting =
1231 +
1232 +== 8.1  AT Commands input doesn’t work ==
1233 +
1234 +
1235 +(((
1116 1116  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1237 +)))
1117 1117  
1239 +
1240 +== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1241 +
1242 +
1118 1118  (((
1119 -
1244 +(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1120 1120  )))
1121 1121  
1247 +(((
1248 +Troubleshooting: Please avoid use of this product under such circumstance in practice.
1249 +)))
1122 1122  
1123 -= 6.  Order Info =
1251 +(((
1252 +
1253 +)))
1124 1124  
1255 +(((
1256 +(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1257 +)))
1125 1125  
1126 -Part Number **:** (% style="color:blue" %)**LDDS75-XX-YY**
1259 +(((
1260 +Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1261 +)))
1127 1127  
1128 1128  
1129 -(% style="color:blue" %)**XX**(%%)**: **The default frequency band
1130 1130  
1131 -* (% style="color:red" %)**AS923 **(%%)**:** LoRaWAN AS923 band
1132 -* (% style="color:red" %)**AU915 **(%%)**:** LoRaWAN AU915 band
1133 -* (% style="color:red" %)**EU433 **(%%)**:** LoRaWAN EU433 band
1134 -* (% style="color:red" %)**EU868 **(%%)**:** LoRaWAN EU868 band
1135 -* (% style="color:red" %)**KR920 **(%%)**:** LoRaWAN KR920 band
1136 -* (% style="color:red" %)**US915 **(%%)**:** LoRaWAN US915 band
1137 -* (% style="color:red" %)**IN865 **(%%)**:**  LoRaWAN IN865 band
1138 -* (% style="color:red" %)**CN470 **(%%)**:** LoRaWAN CN470 band
1265 += 9.  Order Info =
1139 1139  
1140 -(% style="color:blue" %)**YY**(%%): Battery Option
1141 1141  
1142 -* (% style="color:red" %)**4 **(%%)**: **4000mAh battery
1143 -* (% style="color:red" %)**8 **(%%)**:** 8500mAh battery
1268 +Part Number: (% style="color:blue" %)**LLDS12-XX**
1144 1144  
1145 1145  
1271 +(% style="color:blue" %)**XX**(%%): The default frequency band
1146 1146  
1147 -= 7. ​ Packing Info =
1273 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1274 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1275 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1276 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1277 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1278 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1279 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1280 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1148 1148  
1282 += 10. ​ Packing Info =
1149 1149  
1284 +
1150 1150  **Package Includes**:
1151 1151  
1152 -* LDDS75 LoRaWAN Distance Detection Sensor x 1
1287 +* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1153 1153  
1154 1154  **Dimension and weight**:
1155 1155  
... ... @@ -1158,9 +1158,7 @@
1158 1158  * Package Size / pcs : cm
1159 1159  * Weight / pcs : g
1160 1160  
1296 += 11.  ​Support =
1161 1161  
1162 -
1163 -= 8.  ​Support =
1164 -
1165 1165  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1166 1166  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654849068701-275.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -106.6 KB
Content
1654912614655-664.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -169.3 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -34.3 KB
Content