Last modified by Xiaoling on 2025/04/27 13:54

From version 138.7
edited by Xiaoling
on 2022/06/10 17:07
Change comment: There is no comment for this version
To version 101.4
edited by Xiaoling
on 2022/06/10 11:39
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,6 +1,7 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:image-20220610095606-1.png]]
3 3  
4 +
4 4  **Contents:**
5 5  
6 6  
... ... @@ -9,36 +9,28 @@
9 9  
10 10  
11 11  
12 -
13 13  = 1.  Introduction =
14 14  
15 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
15 +== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
16 16  
17 17  (((
18 18  
19 19  
20 -(((
21 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
20 +The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
22 22  
22 +The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23 23  
24 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
24 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
25 25  
26 +The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
26 26  
27 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28 +LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
28 28  
29 -
30 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 -
32 -
33 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 -
35 -
36 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
30 +Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 -)))
39 39  
40 40  
41 -[[image:1654847051249-359.png]]
34 +[[image:1654826306458-414.png]]
42 42  
43 43  
44 44  
... ... @@ -45,51 +45,42 @@
45 45  == ​1.2  Features ==
46 46  
47 47  * LoRaWAN 1.0.3 Class A
48 -* Ultra low power consumption
49 -* Distance Detection by Ultrasonic technology
50 -* Flat object range 280mm - 7500mm
51 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 -* Cable Length : 25cm
41 +* Ultra-low power consumption
42 +* Laser technology for distance detection
43 +* Operating Range - 0.1m~~12m
44 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 +* Monitor Battery Level
53 53  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 54  * AT Commands to change parameters
55 55  * Uplink on periodically
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 -* 4000mAh or 8500mAh Battery for long term use
50 +* 8500mAh Battery for long term use
59 59  
52 +== 1.3  Probe Specification ==
60 60  
61 -== 1.3  Specification ==
54 +* Storage temperature :-20℃~~75℃
55 +* Operating temperature - -20℃~~60℃
56 +* Operating Range - 0.1m~~12m①
57 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
58 +* Distance resolution - 5mm
59 +* Ambient light immunity - 70klux
60 +* Enclosure rating - IP65
61 +* Light source - LED
62 +* Central wavelength - 850nm
63 +* FOV - 3.6°
64 +* Material of enclosure - ABS+PC
65 +* Wire length - 25cm
62 62  
63 -=== 1.3.1  Rated environmental conditions ===
67 +== 1.4  Probe Dimension ==
64 64  
65 -[[image:image-20220610154839-1.png]]
66 66  
67 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
70 +[[image:1654827224480-952.png]]
68 68  
69 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
70 70  
71 71  
72 -
73 -=== 1.3.2  Effective measurement range Reference beam pattern ===
74 -
75 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="377" width="1021"]]
76 -
77 -
78 -
79 -**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
80 -
81 -(% style="display:none" %) (%%)
82 -
83 -(% style="display:none" %)** **[[image:image-20220610155021-3.png||height="374" width="1020"]]
84 -
85 -(% style="display:none" %) (%%)
86 -
87 -
88 -
89 89  == 1.5 ​ Applications ==
90 90  
91 91  * Horizontal distance measurement
92 -* Liquid level measurement
93 93  * Parking management system
94 94  * Object proximity and presence detection
95 95  * Intelligent trash can management system
... ... @@ -96,38 +96,35 @@
96 96  * Robot obstacle avoidance
97 97  * Automatic control
98 98  * Sewer
99 -* Bottom water level monitoring
100 100  
84 +== 1.6 Pin mapping and power on ==
101 101  
102 -== 1.6  Pin mapping and power on ==
103 103  
87 +[[image:1654827332142-133.png]]
104 104  
105 -[[image:1654847583902-256.png]]
106 106  
107 107  
91 += 2. Configure LLDS12 to connect to LoRaWAN network =
108 108  
109 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
93 +== 2.1 How it works ==
110 110  
111 -== 2.1  How it works ==
112 -
113 113  (((
114 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
96 +The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
115 115  )))
116 116  
117 117  (((
118 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
100 +In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
119 119  )))
120 120  
121 121  
104 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
122 122  
123 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
124 -
125 125  (((
126 126  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
127 127  )))
128 128  
129 129  (((
130 -[[image:1654848616367-242.png]]
111 +[[image:1654827857527-556.png]]
131 131  )))
132 132  
133 133  (((
... ... @@ -135,93 +135,94 @@
135 135  )))
136 136  
137 137  (((
138 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
119 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
139 139  )))
140 140  
141 141  (((
142 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
123 +Each LSPH01 is shipped with a sticker with the default device EUI as below:
143 143  )))
144 144  
145 145  [[image:image-20220607170145-1.jpeg]]
146 146  
147 147  
148 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
149 149  
150 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
130 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
151 151  
152 -**Add APP EUI in the application**
153 153  
154 -[[image:image-20220610161353-4.png]]
133 +**Register the device**
155 155  
156 -[[image:image-20220610161353-5.png]]
157 157  
158 -[[image:image-20220610161353-6.png]]
136 +[[image:1654592600093-601.png]]
159 159  
160 160  
161 -[[image:image-20220610161353-7.png]]
139 +**Add APP EUI and DEV EUI**
162 162  
141 +[[image:1654592619856-881.png]]
163 163  
164 -You can also choose to create the device manually.
165 165  
166 - [[image:image-20220610161538-8.png]]
144 +**Add APP EUI in the application**
167 167  
146 +[[image:1654592632656-512.png]]
168 168  
169 169  
170 -**Add APP KEY and DEV EUI**
171 171  
172 -[[image:image-20220610161538-9.png]]
150 +**Add APP KEY**
173 173  
152 +[[image:1654592653453-934.png]]
174 174  
175 175  
176 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
155 +(% style="color:blue" %)**Step 2**(%%): Power on LSPH01
177 177  
178 178  
179 179  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
180 180  
181 -[[image:image-20220610161724-10.png]]
160 +[[image:image-20220607170442-2.png]]
182 182  
183 183  
184 184  (((
185 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
164 +(% style="color:blue" %)**Step 3**(%%)**:** The LSPH01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
186 186  )))
187 187  
188 -[[image:1654849068701-275.png]]
167 +[[image:1654592697690-910.png]]
189 189  
190 190  
191 191  
192 -== 2.3  ​Uplink Payload ==
171 +== 2.3 ​Uplink Payload ==
193 193  
194 194  (((
195 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
174 +LSPH01 will uplink payload via LoRaWAN with below payload format: 
175 +)))
196 196  
197 -Uplink payload includes in total 4 bytes.
198 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
177 +(((
178 +Uplink payload includes in total 11 bytes.
199 199  )))
200 200  
201 201  (((
202 -
182 +Normal uplink payload:
203 203  )))
204 204  
205 205  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
206 206  |=(% style="width: 62.5px;" %)(((
207 207  **Size (bytes)**
208 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
209 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
210 -[[Distance>>||anchor="H2.3.3A0Distance"]]
188 +)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
189 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
190 +[[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
211 211  
212 -(unit: mm)
213 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
214 -[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
215 -)))|[[Sensor Flag>>path:#Sensor_Flag]]
192 +[[(Optional)>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
193 +)))|[[Soil pH>>||anchor="H2.3.3SoilpH"]]|[[Soil Temperature>>||anchor="H2.3.4SoilTemperature"]]|(((
194 +[[Digital Interrupt (Optional)>>||anchor="H2.3.5InterruptPin"]]
195 +)))|Reserve|(((
196 +[[Message Type>>||anchor="H2.3.6MessageType"]]
197 +)))
216 216  
217 -[[image:1654850511545-399.png]]
199 +[[image:1654592721645-318.png]]
218 218  
219 219  
220 220  
221 -=== 2.3.1  Battery Info ===
203 +=== 2.3.1 Battery Info ===
222 222  
223 223  
224 -Check the battery voltage for LDDS75.
206 +Check the battery voltage for LSPH01.
225 225  
226 226  Ex1: 0x0B45 = 2885mV
227 227  
... ... @@ -229,72 +229,96 @@
229 229  
230 230  
231 231  
232 -=== 2.3.2  Distance ===
214 +=== 2.3.2 DS18B20 Temperature sensor ===
233 233  
234 -Get the distance. Flat object range 280mm - 7500mm.
216 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
235 235  
236 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
237 237  
219 +**Example**:
238 238  
239 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
240 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
221 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
241 241  
223 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
242 242  
243 243  
244 -=== 2.3.3  Interrupt Pin ===
245 245  
246 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
227 +=== 2.3.3 Soil pH ===
247 247  
229 +Range: 0 ~~ 14 pH
230 +
248 248  **Example:**
249 249  
250 -0x00: Normal uplink packet.
233 +(% style="color:#037691" %)** 0x02B7(H) = 695(D) = 6.95pH**
251 251  
252 -0x01: Interrupt Uplink Packet.
253 253  
254 254  
237 +=== 2.3.4 Soil Temperature ===
255 255  
256 -=== 2.3.4  DS18B20 Temperature sensor ===
239 +Get Soil Temperature 
257 257  
258 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
259 259  
260 260  **Example**:
261 261  
262 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
244 +If payload is: **0105H**:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
263 263  
264 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
246 +If payload is: **FF3FH** :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
265 265  
266 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
267 267  
268 268  
250 +=== 2.3.5 Interrupt Pin ===
269 269  
270 -=== 2.3.Sensor Flag ===
252 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
271 271  
272 -0x01: Detect Ultrasonic Sensor
273 273  
274 -0x00: No Ultrasonic Sensor
255 +**Example:**
275 275  
257 +0x00: Normal uplink packet.
276 276  
277 -===
278 -(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
259 +0x01: Interrupt Uplink Packet.
279 279  
261 +
262 +
263 +=== 2.3.6 Message Type ===
264 +
265 +(((
266 +For a normal uplink payload, the message type is always 0x01.
267 +)))
268 +
269 +(((
270 +Valid Message Type:
271 +)))
272 +
273 +
274 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
275 +|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
276 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
277 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
278 +|(% style="width:160px" %)0x03|(% style="width:163px" %)Reply Calibration Info|(% style="width:173px" %)[[Calibration Payload>>||anchor="H2.7Calibration"]]
279 +
280 +=== 2.3.7 Decode payload in The Things Network ===
281 +
280 280  While using TTN network, you can add the payload format to decode the payload.
281 281  
282 282  
283 -[[image:1654850829385-439.png]]
285 +[[image:1654592762713-715.png]]
284 284  
285 -The payload decoder function for TTN V3 is here:
287 +(((
288 +The payload decoder function for TTN is here:
289 +)))
286 286  
287 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
291 +(((
292 +LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
293 +)))
288 288  
289 289  
290 290  
291 -== 2.4  Uplink Interval ==
297 +== 2.4 Uplink Interval ==
292 292  
293 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
299 +The LSPH01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
294 294  
295 295  
296 296  
297 -== 2.5  ​Show Data in DataCake IoT Server ==
303 +== 2.5 ​Show Data in DataCake IoT Server ==
298 298  
299 299  (((
300 300  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
... ... @@ -321,135 +321,251 @@
321 321  
322 322  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
323 323  
324 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
330 +(% style="color:blue" %)**Step 4**(%%)**: Create LSPH01 product.**
325 325  
326 -[[image:1654851029373-510.png]]
332 +[[image:1654592819047-535.png]]
327 327  
328 328  
329 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
330 330  
331 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
336 +[[image:1654592833877-762.png]]
332 332  
333 333  
339 +[[image:1654592856403-259.png]]
334 334  
335 -== 2.6  Frequency Plans ==
336 336  
337 337  (((
338 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
343 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
339 339  )))
340 340  
346 +(((
347 +Download Datacake decoder from: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
348 +)))
341 341  
342 342  
343 -=== 2.6.1  EU863-870 (EU868) ===
351 +[[image:1654592878525-845.png]]
344 344  
353 +[[image:1654592892967-474.png]]
354 +
355 +
356 +[[image:1654592905354-123.png]]
357 +
358 +
359 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
360 +
361 +
362 +[[image:1654592917530-261.png]]
363 +
364 +
365 +
366 +== 2.6 Installation and Maintain ==
367 +
368 +=== 2.6.1 Before measurement ===
369 +
345 345  (((
346 -(% style="color:blue" %)**Uplink:**
371 +(((
372 +If the LSPH01 has more than 7 days not use or just clean the pH probe. User should put the probe inside pure water for more than 24 hours for activation. If no put in water, user need to put inside soil for more than 24 hours to ensure the measurement accuracy. 
347 347  )))
374 +)))
348 348  
376 +
377 +
378 +=== 2.6.2 Measurement ===
379 +
380 +
349 349  (((
350 -868.1 - SF7BW125 to SF12BW125
382 +(% style="color:#4f81bd" %)**Measurement the soil surface:**
351 351  )))
352 352  
353 353  (((
354 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
386 +[[image:1654592946732-634.png]]
355 355  )))
356 356  
357 357  (((
358 -868.5 - SF7BW125 to SF12BW125
390 +Choose the proper measuring position. Split the surface soil according to the measured deep.
359 359  )))
360 360  
361 361  (((
362 -867.1 - SF7BW125 to SF12BW125
394 +Put pure water, or rainwater to make the soil of measurement point to moist mud. Remove rocks or hard things.
363 363  )))
364 364  
365 365  (((
366 -867.3 - SF7BW125 to SF12BW125
398 +Slowly insert the probe to the measure point. Don’t use large force which will break the probe. Make sure not shake when inserting.
367 367  )))
368 368  
369 369  (((
370 -867.5 - SF7BW125 to SF12BW125
402 +Put soil over the probe after insert. And start to measure.
371 371  )))
372 372  
373 373  (((
374 -867.7 - SF7BW125 to SF12BW125
406 +
375 375  )))
376 376  
377 377  (((
378 -867.9 - SF7BW125 to SF12BW125
410 +(% style="color:#4f81bd" %)**Measurement inside soil:**
379 379  )))
380 380  
381 381  (((
382 -868.8 - FSK
414 +Dig a hole with diameter > 20CM.
383 383  )))
384 384  
385 385  (((
418 +Insert the probe inside, method like measure the surface.
419 +)))
420 +
421 +
422 +
423 +=== 2.6.3 Maintain Probe ===
424 +
425 +1. (((
426 +pH probe electrode is fragile and no strong. User must avoid strong force or hitting it.
427 +)))
428 +1. (((
429 +After long time use (3~~ 6  months). The probe electrode needs to be clean; user can use high grade sandpaper to polish it or put in 5% hydrochloric acid for several minutes. After the metal probe looks like new, user can use pure water to wash it.
430 +)))
431 +1. (((
432 +Probe reference electrode is also no strong, need to avoid strong force or hitting.
433 +)))
434 +1. (((
435 +User should keep reference electrode wet while not use.
436 +)))
437 +1. (((
438 +Avoid the probes to touch oily matter. Which will cause issue in accuracy.
439 +)))
440 +1. (((
441 +The probe is IP68 can be put in water.
442 +
443 +
386 386  
387 387  )))
388 388  
447 +== 2.7 Calibration ==
448 +
389 389  (((
390 -(% style="color:blue" %)**Downlink:**
450 +User can do calibration for the probe. It is limited to use below pH buffer solution to calibrate: 4.00, 6.86, 9.18. When calibration, user need to clean the electrode and put the probe in the pH buffer solution to wait the value stable ( a new clean electrode might need max 24 hours to be stable).
391 391  )))
392 392  
393 393  (((
394 -Uplink channels 1-9 (RX1)
454 +After stable, user can use below command to calibrate.
395 395  )))
396 396  
397 -(((
398 -869.525 - SF9BW125 (RX2 downlink only)
457 +[[image:image-20220607171149-4.png]]
458 +
459 +
460 +(% style="color:#037691" %)**Calibration Payload**
461 +
462 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
463 +|=(% style="width: 62.5px;" %)(((
464 +**Size (bytes)**
465 +)))|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**7**|=(% style="width: 89px;" %)**1**
466 +|**Value**|(((
467 +PH4
468 +
469 +Calibrate value
470 +)))|PH6.86 Calibrate value|(((
471 +PH9.18
472 +
473 +Calibrate value
474 +)))|Reserve|(((
475 +[[Message Type>>||anchor="H2.3.6MessageType"]]
476 +
477 +Always 0x03
399 399  )))
400 400  
480 +User can also send 0x14 downlink command to poll the current calibration payload.
401 401  
482 +[[image:image-20220607171416-7.jpeg]]
402 402  
403 -=== 2.6.2  US902-928(US915) ===
404 404  
485 +* Reply to the confirmation package: 14 01
486 +* Reply to non-confirmed packet: 14 00
487 +
488 +== 2.6  Frequency Plans ==
489 +
405 405  (((
406 -Used in USA, Canada and South America. Default use CHE=2
491 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
492 +)))
407 407  
408 -(% style="color:blue" %)**Uplink:**
409 409  
410 -903.9 - SF7BW125 to SF10BW125
495 +=== 2.6.1  EU863-870 (EU868) ===
411 411  
412 -904.1 - SF7BW125 to SF10BW125
497 +(((
498 +(% style="color:blue" %)**Uplink:**
499 +)))
413 413  
414 -904.3 - SF7BW125 to SF10BW125
501 +(((
502 +868.1 - SF7BW125 to SF12BW125
503 +)))
415 415  
416 -904.5 - SF7BW125 to SF10BW125
505 +(((
506 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
507 +)))
417 417  
418 -904.7 - SF7BW125 to SF10BW125
509 +(((
510 +868.5 - SF7BW125 to SF12BW125
511 +)))
419 419  
420 -904.9 - SF7BW125 to SF10BW125
513 +(((
514 +867.1 - SF7BW125 to SF12BW125
515 +)))
421 421  
422 -905.1 - SF7BW125 to SF10BW125
517 +(((
518 +867.3 - SF7BW125 to SF12BW125
519 +)))
423 423  
424 -905.3 - SF7BW125 to SF10BW125
521 +(((
522 +867.5 - SF7BW125 to SF12BW125
523 +)))
425 425  
525 +(((
526 +867.7 - SF7BW125 to SF12BW125
527 +)))
426 426  
427 -(% style="color:blue" %)**Downlink:**
529 +(((
530 +867.9 - SF7BW125 to SF12BW125
531 +)))
428 428  
429 -923.3 - SF7BW500 to SF12BW500
533 +(((
534 +868.8 - FSK
535 +)))
430 430  
431 -923.9 - SF7BW500 to SF12BW500
537 +(((
538 +
539 +)))
432 432  
433 -924.5 - SF7BW500 to SF12BW500
541 +(((
542 +(% style="color:blue" %)**Downlink:**
543 +)))
434 434  
435 -925.1 - SF7BW500 to SF12BW500
545 +(((
546 +Uplink channels 1-9 (RX1)
547 +)))
436 436  
437 -925.7 - SF7BW500 to SF12BW500
549 +(((
550 +869.525 - SF9BW125 (RX2 downlink only)
551 +)))
438 438  
439 -926.3 - SF7BW500 to SF12BW500
440 440  
441 -926.9 - SF7BW500 to SF12BW500
442 442  
443 -927.5 - SF7BW500 to SF12BW500
555 +=== 2.6.2  US902-928(US915) ===
444 444  
445 -923.3 - SF12BW500(RX2 downlink only)
557 +(((
558 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
559 +)))
446 446  
561 +(((
562 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
563 +)))
447 447  
448 -
565 +(((
566 +After Join success, the end node will switch to the correct sub band by:
449 449  )))
450 450  
451 -=== 2.6.3  CN470-510 (CN470) ===
569 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
570 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
452 452  
572 +
573 +=== 2.6.3 CN470-510 (CN470) ===
574 +
453 453  (((
454 454  Used in China, Default use CHE=1
455 455  )))
... ... @@ -537,56 +537,29 @@
537 537  
538 538  
539 539  
540 -=== 2.6.4  AU915-928(AU915) ===
662 +=== 2.6.4 AU915-928(AU915) ===
541 541  
542 542  (((
543 -Default use CHE=2
665 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
666 +)))
544 544  
545 -(% style="color:blue" %)**Uplink:**
668 +(((
669 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
670 +)))
546 546  
547 -916.8 - SF7BW125 to SF12BW125
548 -
549 -917.0 - SF7BW125 to SF12BW125
550 -
551 -917.2 - SF7BW125 to SF12BW125
552 -
553 -917.4 - SF7BW125 to SF12BW125
554 -
555 -917.6 - SF7BW125 to SF12BW125
556 -
557 -917.8 - SF7BW125 to SF12BW125
558 -
559 -918.0 - SF7BW125 to SF12BW125
560 -
561 -918.2 - SF7BW125 to SF12BW125
562 -
563 -
564 -(% style="color:blue" %)**Downlink:**
565 -
566 -923.3 - SF7BW500 to SF12BW500
567 -
568 -923.9 - SF7BW500 to SF12BW500
569 -
570 -924.5 - SF7BW500 to SF12BW500
571 -
572 -925.1 - SF7BW500 to SF12BW500
573 -
574 -925.7 - SF7BW500 to SF12BW500
575 -
576 -926.3 - SF7BW500 to SF12BW500
577 -
578 -926.9 - SF7BW500 to SF12BW500
579 -
580 -927.5 - SF7BW500 to SF12BW500
581 -
582 -923.3 - SF12BW500(RX2 downlink only)
583 -
584 -
672 +(((
585 585  
586 586  )))
587 587  
588 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
676 +(((
677 +After Join success, the end node will switch to the correct sub band by:
678 +)))
589 589  
680 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
681 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
682 +
683 +=== 2.6.5 AS920-923 & AS923-925 (AS923) ===
684 +
590 590  (((
591 591  (% style="color:blue" %)**Default Uplink channel:**
592 592  )))
... ... @@ -694,7 +694,7 @@
694 694  
695 695  
696 696  
697 -=== 2.6.6  KR920-923 (KR920) ===
792 +=== 2.6.6 KR920-923 (KR920) ===
698 698  
699 699  (((
700 700  (% style="color:blue" %)**Default channel:**
... ... @@ -767,7 +767,7 @@
767 767  
768 768  
769 769  
770 -=== 2.6.7  IN865-867 (IN865) ===
865 +=== 2.6.7 IN865-867 (IN865) ===
771 771  
772 772  (((
773 773  (% style="color:blue" %)**Uplink:**
... ... @@ -811,6 +811,8 @@
811 811  * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
812 812  * Blink once when device transmit a packet.
813 813  
909 +
910 +
814 814  == 2.8  ​Firmware Change Log ==
815 815  
816 816  
... ... @@ -817,7 +817,7 @@
817 817  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
818 818  
819 819  
820 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
917 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
821 821  
822 822  
823 823  
... ... @@ -838,37 +838,25 @@
838 838  [[image:1654831774373-275.png]]
839 839  
840 840  
841 -(((
842 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
843 -)))
938 +①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
844 844  
845 -(((
846 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
847 -)))
940 +②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
848 848  
849 -(((
850 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
851 -)))
942 +③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
852 852  
853 853  
854 -(((
855 855  Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
856 -)))
857 857  
858 858  
859 859  [[image:1654831797521-720.png]]
860 860  
861 861  
862 -(((
863 863  In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
864 -)))
865 865  
866 866  [[image:1654831810009-716.png]]
867 867  
868 868  
869 -(((
870 870  If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
871 -)))
872 872  
873 873  
874 874  
... ... @@ -884,78 +884,52 @@
884 884  = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
885 885  
886 886  (((
887 -(((
888 888  Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
889 889  )))
890 -)))
891 891  
892 892  * (((
893 -(((
894 -AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
976 +AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
895 895  )))
896 -)))
897 897  * (((
898 -(((
899 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
979 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
900 900  )))
901 -)))
902 902  
903 903  (((
904 -(((
905 905  
906 -)))
907 907  
908 -(((
909 909  There are two kinds of commands to configure LLDS12, they are:
910 910  )))
911 -)))
912 912  
913 913  * (((
914 -(((
915 915  (% style="color:#4f81bd" %)** General Commands**.
916 916  )))
917 -)))
918 918  
919 919  (((
920 -(((
921 921  These commands are to configure:
922 922  )))
923 -)))
924 924  
925 925  * (((
926 -(((
927 927  General system settings like: uplink interval.
928 928  )))
929 -)))
930 930  * (((
931 -(((
932 932  LoRaWAN protocol & radio related command.
933 933  )))
934 -)))
935 935  
936 936  (((
937 -(((
938 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1004 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
939 939  )))
940 -)))
941 941  
942 942  (((
943 -(((
944 944  
945 945  )))
946 -)))
947 947  
948 948  * (((
949 -(((
950 950  (% style="color:#4f81bd" %)** Commands special design for LLDS12**
951 951  )))
952 -)))
953 953  
954 954  (((
955 -(((
956 956  These commands only valid for LLDS12, as below:
957 957  )))
958 -)))
959 959  
960 960  
961 961  
... ... @@ -968,6 +968,7 @@
968 968  [[image:image-20220607171554-8.png]]
969 969  
970 970  
1030 +
971 971  (((
972 972  (% style="color:#037691" %)**Downlink Command: 0x01**
973 973  )))
... ... @@ -985,6 +985,9 @@
985 985  )))
986 986  * (((
987 987  Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1048 +
1049 +
1050 +
988 988  )))
989 989  
990 990  == 4.2  Set Interrupt Mode ==
... ... @@ -996,6 +996,8 @@
996 996  [[image:image-20220610105806-2.png]]
997 997  
998 998  
1062 +
1063 +
999 999  (((
1000 1000  (% style="color:#037691" %)**Downlink Command: 0x06**
1001 1001  )))
... ... @@ -1043,7 +1043,7 @@
1043 1043  
1044 1044  Version
1045 1045  )))|Sensor Type|Reserve|(((
1046 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1111 +[[Message Type>>||anchor="H2.3.6MessageType"]]
1047 1047  Always 0x02
1048 1048  )))
1049 1049  
... ... @@ -1211,19 +1211,13 @@
1211 1211  
1212 1212  
1213 1213  (((
1214 -(((
1215 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1279 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1216 1216  )))
1217 1217  
1218 -(((
1219 -LLDS12 will output system info once power on as below:
1220 -)))
1221 -)))
1222 1222  
1223 -
1224 1224   [[image:1654593712276-618.png]]
1225 1225  
1226 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1285 +Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1227 1227  
1228 1228  
1229 1229  = 7.  FAQ =
... ... @@ -1230,7 +1230,7 @@
1230 1230  
1231 1231  == 7.1  How to change the LoRa Frequency Bands/Region ==
1232 1232  
1233 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1292 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1234 1234  When downloading the images, choose the required image file for download. ​
1235 1235  
1236 1236  
... ... @@ -1239,9 +1239,7 @@
1239 1239  == 8.1  AT Commands input doesn’t work ==
1240 1240  
1241 1241  
1242 -(((
1243 1243  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1244 -)))
1245 1245  
1246 1246  
1247 1247  == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
... ... @@ -1304,3 +1304,5 @@
1304 1304  
1305 1305  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1306 1306  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1364 +
1365 +
1654832691989-514.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.9 KB
Content
1654832740634-933.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.6 KB
Content
1654833065139-942.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -49.2 KB
Content
1654833092678-390.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.1 KB
Content
1654833107528-349.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
1654833163048-332.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
1654833501679-968.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -58.3 KB
Content
1654833689380-972.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -60.5 KB
Content
1654846127817-788.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.0 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -50.5 KB
Content