Last modified by Xiaoling on 2025/04/27 13:54

From version 138.4
edited by Xiaoling
on 2022/06/10 17:04
Change comment: There is no comment for this version
To version 101.3
edited by Xiaoling
on 2022/06/10 11:39
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,6 +1,7 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:image-20220610095606-1.png]]
3 3  
4 +
4 4  **Contents:**
5 5  
6 6  
... ... @@ -9,36 +9,28 @@
9 9  
10 10  
11 11  
12 -
13 13  = 1.  Introduction =
14 14  
15 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
15 +== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
16 16  
17 17  (((
18 18  
19 19  
20 -(((
21 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
20 +The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
22 22  
22 +The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23 23  
24 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
24 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
25 25  
26 +The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
26 26  
27 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28 +LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
28 28  
29 -
30 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 -
32 -
33 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 -
35 -
36 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
30 +Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 -)))
39 39  
40 40  
41 -[[image:1654847051249-359.png]]
34 +[[image:1654826306458-414.png]]
42 42  
43 43  
44 44  
... ... @@ -45,49 +45,42 @@
45 45  == ​1.2  Features ==
46 46  
47 47  * LoRaWAN 1.0.3 Class A
48 -* Ultra low power consumption
49 -* Distance Detection by Ultrasonic technology
50 -* Flat object range 280mm - 7500mm
51 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 -* Cable Length : 25cm
41 +* Ultra-low power consumption
42 +* Laser technology for distance detection
43 +* Operating Range - 0.1m~~12m
44 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 +* Monitor Battery Level
53 53  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 54  * AT Commands to change parameters
55 55  * Uplink on periodically
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 -* 4000mAh or 8500mAh Battery for long term use
50 +* 8500mAh Battery for long term use
59 59  
52 +== 1.3  Probe Specification ==
60 60  
54 +* Storage temperature :-20℃~~75℃
55 +* Operating temperature - -20℃~~60℃
56 +* Operating Range - 0.1m~~12m①
57 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
58 +* Distance resolution - 5mm
59 +* Ambient light immunity - 70klux
60 +* Enclosure rating - IP65
61 +* Light source - LED
62 +* Central wavelength - 850nm
63 +* FOV - 3.6°
64 +* Material of enclosure - ABS+PC
65 +* Wire length - 25cm
61 61  
67 +== 1.4  Probe Dimension ==
62 62  
63 -== 1.3  Specification ==
64 64  
65 -=== 1.3.1  Rated environmental conditions ===
70 +[[image:1654827224480-952.png]]
66 66  
67 -[[image:image-20220610154839-1.png]]
68 68  
69 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
70 70  
71 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
72 -
73 -
74 -
75 -=== 1.3.2  Effective measurement range Reference beam pattern ===
76 -
77 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
78 -
79 -
80 -
81 -**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
82 -
83 -(% style="display:none" %) (%%)
84 -
85 -
86 -
87 87  == 1.5 ​ Applications ==
88 88  
89 89  * Horizontal distance measurement
90 -* Liquid level measurement
91 91  * Parking management system
92 92  * Object proximity and presence detection
93 93  * Intelligent trash can management system
... ... @@ -94,40 +94,35 @@
94 94  * Robot obstacle avoidance
95 95  * Automatic control
96 96  * Sewer
97 -* Bottom water level monitoring
98 98  
84 +== 1.6 Pin mapping and power on ==
99 99  
100 100  
87 +[[image:1654827332142-133.png]]
101 101  
102 -== 1.6  Pin mapping and power on ==
103 103  
104 104  
105 -[[image:1654847583902-256.png]]
91 += 2. Configure LLDS12 to connect to LoRaWAN network =
106 106  
93 +== 2.1 How it works ==
107 107  
108 -
109 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
110 -
111 -== 2.1  How it works ==
112 -
113 113  (((
114 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
96 +The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
115 115  )))
116 116  
117 117  (((
118 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
100 +In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
119 119  )))
120 120  
121 121  
104 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
122 122  
123 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
124 -
125 125  (((
126 126  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
127 127  )))
128 128  
129 129  (((
130 -[[image:1654848616367-242.png]]
111 +[[image:1654827857527-556.png]]
131 131  )))
132 132  
133 133  (((
... ... @@ -135,93 +135,94 @@
135 135  )))
136 136  
137 137  (((
138 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
119 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
139 139  )))
140 140  
141 141  (((
142 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
123 +Each LSPH01 is shipped with a sticker with the default device EUI as below:
143 143  )))
144 144  
145 145  [[image:image-20220607170145-1.jpeg]]
146 146  
147 147  
148 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
149 149  
150 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
130 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
151 151  
152 -**Add APP EUI in the application**
153 153  
154 -[[image:image-20220610161353-4.png]]
133 +**Register the device**
155 155  
156 -[[image:image-20220610161353-5.png]]
157 157  
158 -[[image:image-20220610161353-6.png]]
136 +[[image:1654592600093-601.png]]
159 159  
160 160  
161 -[[image:image-20220610161353-7.png]]
139 +**Add APP EUI and DEV EUI**
162 162  
141 +[[image:1654592619856-881.png]]
163 163  
164 -You can also choose to create the device manually.
165 165  
166 - [[image:image-20220610161538-8.png]]
144 +**Add APP EUI in the application**
167 167  
146 +[[image:1654592632656-512.png]]
168 168  
169 169  
170 -**Add APP KEY and DEV EUI**
171 171  
172 -[[image:image-20220610161538-9.png]]
150 +**Add APP KEY**
173 173  
152 +[[image:1654592653453-934.png]]
174 174  
175 175  
176 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
155 +(% style="color:blue" %)**Step 2**(%%): Power on LSPH01
177 177  
178 178  
179 179  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
180 180  
181 -[[image:image-20220610161724-10.png]]
160 +[[image:image-20220607170442-2.png]]
182 182  
183 183  
184 184  (((
185 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
164 +(% style="color:blue" %)**Step 3**(%%)**:** The LSPH01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
186 186  )))
187 187  
188 -[[image:1654849068701-275.png]]
167 +[[image:1654592697690-910.png]]
189 189  
190 190  
191 191  
192 -== 2.3  ​Uplink Payload ==
171 +== 2.3 ​Uplink Payload ==
193 193  
194 194  (((
195 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
174 +LSPH01 will uplink payload via LoRaWAN with below payload format: 
175 +)))
196 196  
197 -Uplink payload includes in total 4 bytes.
198 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
177 +(((
178 +Uplink payload includes in total 11 bytes.
199 199  )))
200 200  
201 201  (((
202 -
182 +Normal uplink payload:
203 203  )))
204 204  
205 205  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
206 206  |=(% style="width: 62.5px;" %)(((
207 207  **Size (bytes)**
208 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
209 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
210 -[[Distance>>||anchor="H2.3.3A0Distance"]]
188 +)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
189 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
190 +[[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
211 211  
212 -(unit: mm)
213 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
214 -[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
215 -)))|[[Sensor Flag>>path:#Sensor_Flag]]
192 +[[(Optional)>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
193 +)))|[[Soil pH>>||anchor="H2.3.3SoilpH"]]|[[Soil Temperature>>||anchor="H2.3.4SoilTemperature"]]|(((
194 +[[Digital Interrupt (Optional)>>||anchor="H2.3.5InterruptPin"]]
195 +)))|Reserve|(((
196 +[[Message Type>>||anchor="H2.3.6MessageType"]]
197 +)))
216 216  
217 -[[image:1654850511545-399.png]]
199 +[[image:1654592721645-318.png]]
218 218  
219 219  
220 220  
221 -=== 2.3.1  Battery Info ===
203 +=== 2.3.1 Battery Info ===
222 222  
223 223  
224 -Check the battery voltage for LDDS75.
206 +Check the battery voltage for LSPH01.
225 225  
226 226  Ex1: 0x0B45 = 2885mV
227 227  
... ... @@ -229,70 +229,96 @@
229 229  
230 230  
231 231  
232 -=== 2.3.2  Distance ===
214 +=== 2.3.2 DS18B20 Temperature sensor ===
233 233  
234 -Get the distance. Flat object range 280mm - 7500mm.
216 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
235 235  
236 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
237 237  
219 +**Example**:
238 238  
239 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
240 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
221 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
241 241  
223 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
242 242  
243 -=== 2.3.3  Interrupt Pin ===
244 244  
245 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
246 246  
227 +=== 2.3.3 Soil pH ===
228 +
229 +Range: 0 ~~ 14 pH
230 +
247 247  **Example:**
248 248  
249 -0x00: Normal uplink packet.
233 +(% style="color:#037691" %)** 0x02B7(H) = 695(D) = 6.95pH**
250 250  
251 -0x01: Interrupt Uplink Packet.
252 252  
253 253  
254 -=== 2.3.4  DS18B20 Temperature sensor ===
237 +=== 2.3.4 Soil Temperature ===
255 255  
256 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
239 +Get Soil Temperature 
257 257  
241 +
258 258  **Example**:
259 259  
260 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
244 +If payload is: **0105H**:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
261 261  
262 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
246 +If payload is: **FF3FH** :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
263 263  
264 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
265 265  
266 266  
250 +=== 2.3.5 Interrupt Pin ===
267 267  
268 -=== 2.3.Sensor Flag ===
252 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
269 269  
270 -0x01: Detect Ultrasonic Sensor
271 271  
272 -0x00: No Ultrasonic Sensor
255 +**Example:**
273 273  
257 +0x00: Normal uplink packet.
274 274  
275 -===
276 -(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
259 +0x01: Interrupt Uplink Packet.
277 277  
261 +
262 +
263 +=== 2.3.6 Message Type ===
264 +
265 +(((
266 +For a normal uplink payload, the message type is always 0x01.
267 +)))
268 +
269 +(((
270 +Valid Message Type:
271 +)))
272 +
273 +
274 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
275 +|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
276 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
277 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
278 +|(% style="width:160px" %)0x03|(% style="width:163px" %)Reply Calibration Info|(% style="width:173px" %)[[Calibration Payload>>||anchor="H2.7Calibration"]]
279 +
280 +=== 2.3.7 Decode payload in The Things Network ===
281 +
278 278  While using TTN network, you can add the payload format to decode the payload.
279 279  
280 280  
281 -[[image:1654850829385-439.png]]
285 +[[image:1654592762713-715.png]]
282 282  
283 -The payload decoder function for TTN V3 is here:
287 +(((
288 +The payload decoder function for TTN is here:
289 +)))
284 284  
285 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
291 +(((
292 +LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
293 +)))
286 286  
287 287  
288 288  
289 -== 2.4  Uplink Interval ==
297 +== 2.4 Uplink Interval ==
290 290  
291 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
299 +The LSPH01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
292 292  
293 293  
294 294  
295 -== 2.5  ​Show Data in DataCake IoT Server ==
303 +== 2.5 ​Show Data in DataCake IoT Server ==
296 296  
297 297  (((
298 298  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
... ... @@ -319,134 +319,251 @@
319 319  
320 320  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
321 321  
322 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
330 +(% style="color:blue" %)**Step 4**(%%)**: Create LSPH01 product.**
323 323  
324 -[[image:1654851029373-510.png]]
332 +[[image:1654592819047-535.png]]
325 325  
326 326  
327 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
328 328  
329 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
336 +[[image:1654592833877-762.png]]
330 330  
331 331  
339 +[[image:1654592856403-259.png]]
332 332  
333 -== 2.6  Frequency Plans ==
334 334  
335 335  (((
336 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
343 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
337 337  )))
338 338  
346 +(((
347 +Download Datacake decoder from: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
348 +)))
339 339  
340 340  
341 -=== 2.6.1  EU863-870 (EU868) ===
351 +[[image:1654592878525-845.png]]
342 342  
353 +[[image:1654592892967-474.png]]
354 +
355 +
356 +[[image:1654592905354-123.png]]
357 +
358 +
359 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
360 +
361 +
362 +[[image:1654592917530-261.png]]
363 +
364 +
365 +
366 +== 2.6 Installation and Maintain ==
367 +
368 +=== 2.6.1 Before measurement ===
369 +
343 343  (((
344 -(% style="color:blue" %)**Uplink:**
371 +(((
372 +If the LSPH01 has more than 7 days not use or just clean the pH probe. User should put the probe inside pure water for more than 24 hours for activation. If no put in water, user need to put inside soil for more than 24 hours to ensure the measurement accuracy. 
345 345  )))
374 +)))
346 346  
376 +
377 +
378 +=== 2.6.2 Measurement ===
379 +
380 +
347 347  (((
348 -868.1 - SF7BW125 to SF12BW125
382 +(% style="color:#4f81bd" %)**Measurement the soil surface:**
349 349  )))
350 350  
351 351  (((
352 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
386 +[[image:1654592946732-634.png]]
353 353  )))
354 354  
355 355  (((
356 -868.5 - SF7BW125 to SF12BW125
390 +Choose the proper measuring position. Split the surface soil according to the measured deep.
357 357  )))
358 358  
359 359  (((
360 -867.1 - SF7BW125 to SF12BW125
394 +Put pure water, or rainwater to make the soil of measurement point to moist mud. Remove rocks or hard things.
361 361  )))
362 362  
363 363  (((
364 -867.3 - SF7BW125 to SF12BW125
398 +Slowly insert the probe to the measure point. Don’t use large force which will break the probe. Make sure not shake when inserting.
365 365  )))
366 366  
367 367  (((
368 -867.5 - SF7BW125 to SF12BW125
402 +Put soil over the probe after insert. And start to measure.
369 369  )))
370 370  
371 371  (((
372 -867.7 - SF7BW125 to SF12BW125
406 +
373 373  )))
374 374  
375 375  (((
376 -867.9 - SF7BW125 to SF12BW125
410 +(% style="color:#4f81bd" %)**Measurement inside soil:**
377 377  )))
378 378  
379 379  (((
380 -868.8 - FSK
414 +Dig a hole with diameter > 20CM.
381 381  )))
382 382  
383 383  (((
418 +Insert the probe inside, method like measure the surface.
419 +)))
420 +
421 +
422 +
423 +=== 2.6.3 Maintain Probe ===
424 +
425 +1. (((
426 +pH probe electrode is fragile and no strong. User must avoid strong force or hitting it.
427 +)))
428 +1. (((
429 +After long time use (3~~ 6  months). The probe electrode needs to be clean; user can use high grade sandpaper to polish it or put in 5% hydrochloric acid for several minutes. After the metal probe looks like new, user can use pure water to wash it.
430 +)))
431 +1. (((
432 +Probe reference electrode is also no strong, need to avoid strong force or hitting.
433 +)))
434 +1. (((
435 +User should keep reference electrode wet while not use.
436 +)))
437 +1. (((
438 +Avoid the probes to touch oily matter. Which will cause issue in accuracy.
439 +)))
440 +1. (((
441 +The probe is IP68 can be put in water.
442 +
443 +
384 384  
385 385  )))
386 386  
447 +== 2.7 Calibration ==
448 +
387 387  (((
388 -(% style="color:blue" %)**Downlink:**
450 +User can do calibration for the probe. It is limited to use below pH buffer solution to calibrate: 4.00, 6.86, 9.18. When calibration, user need to clean the electrode and put the probe in the pH buffer solution to wait the value stable ( a new clean electrode might need max 24 hours to be stable).
389 389  )))
390 390  
391 391  (((
392 -Uplink channels 1-9 (RX1)
454 +After stable, user can use below command to calibrate.
393 393  )))
394 394  
395 -(((
396 -869.525 - SF9BW125 (RX2 downlink only)
457 +[[image:image-20220607171149-4.png]]
458 +
459 +
460 +(% style="color:#037691" %)**Calibration Payload**
461 +
462 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
463 +|=(% style="width: 62.5px;" %)(((
464 +**Size (bytes)**
465 +)))|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**7**|=(% style="width: 89px;" %)**1**
466 +|**Value**|(((
467 +PH4
468 +
469 +Calibrate value
470 +)))|PH6.86 Calibrate value|(((
471 +PH9.18
472 +
473 +Calibrate value
474 +)))|Reserve|(((
475 +[[Message Type>>||anchor="H2.3.6MessageType"]]
476 +
477 +Always 0x03
397 397  )))
398 398  
480 +User can also send 0x14 downlink command to poll the current calibration payload.
399 399  
482 +[[image:image-20220607171416-7.jpeg]]
400 400  
401 -=== 2.6.2  US902-928(US915) ===
402 402  
485 +* Reply to the confirmation package: 14 01
486 +* Reply to non-confirmed packet: 14 00
487 +
488 +== 2.6  Frequency Plans ==
489 +
403 403  (((
404 -Used in USA, Canada and South America. Default use CHE=2
491 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
492 +)))
405 405  
494 +
495 +=== 2.6.1  EU863-870 (EU868) ===
496 +
497 +(((
406 406  (% style="color:blue" %)**Uplink:**
499 +)))
407 407  
408 -903.9 - SF7BW125 to SF10BW125
501 +(((
502 +868.1 - SF7BW125 to SF12BW125
503 +)))
409 409  
410 -904.1 - SF7BW125 to SF10BW125
505 +(((
506 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
507 +)))
411 411  
412 -904.3 - SF7BW125 to SF10BW125
509 +(((
510 +868.5 - SF7BW125 to SF12BW125
511 +)))
413 413  
414 -904.5 - SF7BW125 to SF10BW125
513 +(((
514 +867.1 - SF7BW125 to SF12BW125
515 +)))
415 415  
416 -904.7 - SF7BW125 to SF10BW125
517 +(((
518 +867.3 - SF7BW125 to SF12BW125
519 +)))
417 417  
418 -904.9 - SF7BW125 to SF10BW125
521 +(((
522 +867.5 - SF7BW125 to SF12BW125
523 +)))
419 419  
420 -905.1 - SF7BW125 to SF10BW125
525 +(((
526 +867.7 - SF7BW125 to SF12BW125
527 +)))
421 421  
422 -905.3 - SF7BW125 to SF10BW125
529 +(((
530 +867.9 - SF7BW125 to SF12BW125
531 +)))
423 423  
533 +(((
534 +868.8 - FSK
535 +)))
424 424  
537 +(((
538 +
539 +)))
540 +
541 +(((
425 425  (% style="color:blue" %)**Downlink:**
543 +)))
426 426  
427 -923.3 - SF7BW500 to SF12BW500
545 +(((
546 +Uplink channels 1-9 (RX1)
547 +)))
428 428  
429 -923.9 - SF7BW500 to SF12BW500
549 +(((
550 +869.525 - SF9BW125 (RX2 downlink only)
551 +)))
430 430  
431 -924.5 - SF7BW500 to SF12BW500
432 432  
433 -925.1 - SF7BW500 to SF12BW500
434 434  
435 -925.7 - SF7BW500 to SF12BW500
555 +=== 2.6.2  US902-928(US915) ===
436 436  
437 -926.3 - SF7BW500 to SF12BW500
557 +(((
558 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
559 +)))
438 438  
439 -926.9 - SF7BW500 to SF12BW500
561 +(((
562 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
563 +)))
440 440  
441 -927.5 - SF7BW500 to SF12BW500
565 +(((
566 +After Join success, the end node will switch to the correct sub band by:
567 +)))
442 442  
443 -923.3 - SF12BW500(RX2 downlink only)
569 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
570 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
444 444  
445 445  
446 -
447 -)))
448 448  
449 -=== 2.6.3  CN470-510 (CN470) ===
574 +=== 2.6.3 CN470-510 (CN470) ===
450 450  
451 451  (((
452 452  Used in China, Default use CHE=1
... ... @@ -535,56 +535,30 @@
535 535  
536 536  
537 537  
538 -=== 2.6.4  AU915-928(AU915) ===
663 +=== 2.6.4 AU915-928(AU915) ===
539 539  
540 540  (((
541 -Default use CHE=2
666 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
667 +)))
542 542  
543 -(% style="color:blue" %)**Uplink:**
669 +(((
670 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
671 +)))
544 544  
545 -916.8 - SF7BW125 to SF12BW125
673 +(((
674 +
675 +)))
546 546  
547 -917.0 - SF7BW125 to SF12BW125
677 +(((
678 +After Join success, the end node will switch to the correct sub band by:
679 +)))
548 548  
549 -917.2 - SF7BW125 to SF12BW125
681 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
682 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
550 550  
551 -917.4 - SF7BW125 to SF12BW125
552 552  
553 -917.6 - SF7BW125 to SF12BW125
685 +=== 2.6.5 AS920-923 & AS923-925 (AS923) ===
554 554  
555 -917.8 - SF7BW125 to SF12BW125
556 -
557 -918.0 - SF7BW125 to SF12BW125
558 -
559 -918.2 - SF7BW125 to SF12BW125
560 -
561 -
562 -(% style="color:blue" %)**Downlink:**
563 -
564 -923.3 - SF7BW500 to SF12BW500
565 -
566 -923.9 - SF7BW500 to SF12BW500
567 -
568 -924.5 - SF7BW500 to SF12BW500
569 -
570 -925.1 - SF7BW500 to SF12BW500
571 -
572 -925.7 - SF7BW500 to SF12BW500
573 -
574 -926.3 - SF7BW500 to SF12BW500
575 -
576 -926.9 - SF7BW500 to SF12BW500
577 -
578 -927.5 - SF7BW500 to SF12BW500
579 -
580 -923.3 - SF12BW500(RX2 downlink only)
581 -
582 -
583 -
584 -)))
585 -
586 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
587 -
588 588  (((
589 589  (% style="color:blue" %)**Default Uplink channel:**
590 590  )))
... ... @@ -692,7 +692,7 @@
692 692  
693 693  
694 694  
695 -=== 2.6.6  KR920-923 (KR920) ===
794 +=== 2.6.6 KR920-923 (KR920) ===
696 696  
697 697  (((
698 698  (% style="color:blue" %)**Default channel:**
... ... @@ -765,7 +765,7 @@
765 765  
766 766  
767 767  
768 -=== 2.6.7  IN865-867 (IN865) ===
867 +=== 2.6.7 IN865-867 (IN865) ===
769 769  
770 770  (((
771 771  (% style="color:blue" %)**Uplink:**
... ... @@ -809,6 +809,9 @@
809 809  * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
810 810  * Blink once when device transmit a packet.
811 811  
911 +
912 +
913 +
812 812  == 2.8  ​Firmware Change Log ==
813 813  
814 814  
... ... @@ -815,7 +815,7 @@
815 815  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
816 816  
817 817  
818 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
920 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
819 819  
820 820  
821 821  
... ... @@ -836,37 +836,25 @@
836 836  [[image:1654831774373-275.png]]
837 837  
838 838  
839 -(((
840 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
841 -)))
941 +①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
842 842  
843 -(((
844 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
845 -)))
943 +②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
846 846  
847 -(((
848 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
849 -)))
945 +③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
850 850  
851 851  
852 -(((
853 853  Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
854 -)))
855 855  
856 856  
857 857  [[image:1654831797521-720.png]]
858 858  
859 859  
860 -(((
861 861  In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
862 -)))
863 863  
864 864  [[image:1654831810009-716.png]]
865 865  
866 866  
867 -(((
868 868  If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
869 -)))
870 870  
871 871  
872 872  
... ... @@ -882,78 +882,52 @@
882 882  = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
883 883  
884 884  (((
885 -(((
886 886  Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
887 887  )))
888 -)))
889 889  
890 890  * (((
891 -(((
892 -AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
979 +AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
893 893  )))
894 -)))
895 895  * (((
896 -(((
897 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
982 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
898 898  )))
899 -)))
900 900  
901 901  (((
902 -(((
903 903  
904 -)))
905 905  
906 -(((
907 907  There are two kinds of commands to configure LLDS12, they are:
908 908  )))
909 -)))
910 910  
911 911  * (((
912 -(((
913 913  (% style="color:#4f81bd" %)** General Commands**.
914 914  )))
915 -)))
916 916  
917 917  (((
918 -(((
919 919  These commands are to configure:
920 920  )))
921 -)))
922 922  
923 923  * (((
924 -(((
925 925  General system settings like: uplink interval.
926 926  )))
927 -)))
928 928  * (((
929 -(((
930 930  LoRaWAN protocol & radio related command.
931 931  )))
932 -)))
933 933  
934 934  (((
935 -(((
936 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1007 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
937 937  )))
938 -)))
939 939  
940 940  (((
941 -(((
942 942  
943 943  )))
944 -)))
945 945  
946 946  * (((
947 -(((
948 948  (% style="color:#4f81bd" %)** Commands special design for LLDS12**
949 949  )))
950 -)))
951 951  
952 952  (((
953 -(((
954 954  These commands only valid for LLDS12, as below:
955 955  )))
956 -)))
957 957  
958 958  
959 959  
... ... @@ -966,6 +966,7 @@
966 966  [[image:image-20220607171554-8.png]]
967 967  
968 968  
1033 +
969 969  (((
970 970  (% style="color:#037691" %)**Downlink Command: 0x01**
971 971  )))
... ... @@ -983,6 +983,9 @@
983 983  )))
984 984  * (((
985 985  Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1051 +
1052 +
1053 +
986 986  )))
987 987  
988 988  == 4.2  Set Interrupt Mode ==
... ... @@ -994,6 +994,8 @@
994 994  [[image:image-20220610105806-2.png]]
995 995  
996 996  
1065 +
1066 +
997 997  (((
998 998  (% style="color:#037691" %)**Downlink Command: 0x06**
999 999  )))
... ... @@ -1041,7 +1041,7 @@
1041 1041  
1042 1042  Version
1043 1043  )))|Sensor Type|Reserve|(((
1044 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1114 +[[Message Type>>||anchor="H2.3.6MessageType"]]
1045 1045  Always 0x02
1046 1046  )))
1047 1047  
... ... @@ -1209,19 +1209,13 @@
1209 1209  
1210 1210  
1211 1211  (((
1212 -(((
1213 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1282 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1214 1214  )))
1215 1215  
1216 -(((
1217 -LLDS12 will output system info once power on as below:
1218 -)))
1219 -)))
1220 1220  
1221 -
1222 1222   [[image:1654593712276-618.png]]
1223 1223  
1224 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1288 +Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1225 1225  
1226 1226  
1227 1227  = 7.  FAQ =
... ... @@ -1228,7 +1228,7 @@
1228 1228  
1229 1229  == 7.1  How to change the LoRa Frequency Bands/Region ==
1230 1230  
1231 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1295 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1232 1232  When downloading the images, choose the required image file for download. ​
1233 1233  
1234 1234  
... ... @@ -1237,9 +1237,7 @@
1237 1237  == 8.1  AT Commands input doesn’t work ==
1238 1238  
1239 1239  
1240 -(((
1241 1241  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1242 -)))
1243 1243  
1244 1244  
1245 1245  == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
... ... @@ -1302,3 +1302,5 @@
1302 1302  
1303 1303  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1304 1304  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1367 +
1368 +
1654832691989-514.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.9 KB
Content
1654832740634-933.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.6 KB
Content
1654833065139-942.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -49.2 KB
Content
1654833092678-390.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.1 KB
Content
1654833107528-349.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
1654833163048-332.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
1654833501679-968.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -58.3 KB
Content
1654833689380-972.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -60.5 KB
Content
1654846127817-788.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.0 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -50.5 KB
Content