Last modified by Xiaoling on 2025/04/27 13:54

From version 138.2
edited by Xiaoling
on 2022/06/10 17:03
Change comment: There is no comment for this version
To version 100.8
edited by Xiaoling
on 2022/06/10 11:35
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,6 +1,7 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:image-20220610095606-1.png]]
3 3  
4 +
4 4  **Contents:**
5 5  
6 6  
... ... @@ -9,36 +9,28 @@
9 9  
10 10  
11 11  
12 -
13 13  = 1.  Introduction =
14 14  
15 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
15 +== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
16 16  
17 17  (((
18 18  
19 19  
20 -(((
21 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
20 +The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
22 22  
22 +The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23 23  
24 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
24 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
25 25  
26 +The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
26 26  
27 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28 +LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
28 28  
29 -
30 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 -
32 -
33 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 -
35 -
36 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
30 +Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 -)))
39 39  
40 40  
41 -[[image:1654847051249-359.png]]
34 +[[image:1654826306458-414.png]]
42 42  
43 43  
44 44  
... ... @@ -45,48 +45,42 @@
45 45  == ​1.2  Features ==
46 46  
47 47  * LoRaWAN 1.0.3 Class A
48 -* Ultra low power consumption
49 -* Distance Detection by Ultrasonic technology
50 -* Flat object range 280mm - 7500mm
51 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 -* Cable Length : 25cm
41 +* Ultra-low power consumption
42 +* Laser technology for distance detection
43 +* Operating Range - 0.1m~~12m
44 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 +* Monitor Battery Level
53 53  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 54  * AT Commands to change parameters
55 55  * Uplink on periodically
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 -* 4000mAh or 8500mAh Battery for long term use
50 +* 8500mAh Battery for long term use
59 59  
52 +== 1.3  Probe Specification ==
60 60  
54 +* Storage temperature :-20℃~~75℃
55 +* Operating temperature - -20℃~~60℃
56 +* Operating Range - 0.1m~~12m①
57 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
58 +* Distance resolution - 5mm
59 +* Ambient light immunity - 70klux
60 +* Enclosure rating - IP65
61 +* Light source - LED
62 +* Central wavelength - 850nm
63 +* FOV - 3.6°
64 +* Material of enclosure - ABS+PC
65 +* Wire length - 25cm
61 61  
67 +== 1.4  Probe Dimension ==
62 62  
63 -== 1.3  Specification ==
64 64  
65 -=== 1.3.1  Rated environmental conditions ===
70 +[[image:1654827224480-952.png]]
66 66  
67 -[[image:image-20220610154839-1.png]]
68 68  
69 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
70 70  
71 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
72 -
73 -
74 -
75 -=== 1.3.2  Effective measurement range Reference beam pattern ===
76 -
77 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
78 -
79 -
80 -
81 -**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
82 -
83 -(% style="display:none" %) (%%)
84 -
85 -
86 86  == 1.5 ​ Applications ==
87 87  
88 88  * Horizontal distance measurement
89 -* Liquid level measurement
90 90  * Parking management system
91 91  * Object proximity and presence detection
92 92  * Intelligent trash can management system
... ... @@ -93,28 +93,28 @@
93 93  * Robot obstacle avoidance
94 94  * Automatic control
95 95  * Sewer
96 -* Bottom water level monitoring
97 97  
98 -== 1.6  Pin mapping and power on ==
84 +== 1.6 Pin mapping and power on ==
99 99  
100 100  
101 -[[image:1654847583902-256.png]]
87 +[[image:1654827332142-133.png]]
102 102  
103 103  
104 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
105 105  
106 -== 2.1  How it works ==
91 += 2. Configure LLDS12 to connect to LoRaWAN network =
107 107  
93 +== 2.1 How it works ==
94 +
108 108  (((
109 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
96 +The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
110 110  )))
111 111  
112 112  (((
113 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
100 +In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
114 114  )))
115 115  
116 116  
117 -== 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
104 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
118 118  
119 119  (((
120 120  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
... ... @@ -121,7 +121,7 @@
121 121  )))
122 122  
123 123  (((
124 -[[image:1654848616367-242.png]]
111 +[[image:1654827857527-556.png]]
125 125  )))
126 126  
127 127  (((
... ... @@ -129,93 +129,94 @@
129 129  )))
130 130  
131 131  (((
132 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
119 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
133 133  )))
134 134  
135 135  (((
136 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
123 +Each LSPH01 is shipped with a sticker with the default device EUI as below:
137 137  )))
138 138  
139 139  [[image:image-20220607170145-1.jpeg]]
140 140  
141 141  
142 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
143 143  
144 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
130 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
145 145  
146 -**Add APP EUI in the application**
147 147  
148 -[[image:image-20220610161353-4.png]]
133 +**Register the device**
149 149  
150 -[[image:image-20220610161353-5.png]]
151 151  
152 -[[image:image-20220610161353-6.png]]
136 +[[image:1654592600093-601.png]]
153 153  
154 154  
155 -[[image:image-20220610161353-7.png]]
139 +**Add APP EUI and DEV EUI**
156 156  
141 +[[image:1654592619856-881.png]]
157 157  
158 -You can also choose to create the device manually.
159 159  
160 - [[image:image-20220610161538-8.png]]
144 +**Add APP EUI in the application**
161 161  
146 +[[image:1654592632656-512.png]]
162 162  
163 163  
164 -**Add APP KEY and DEV EUI**
165 165  
166 -[[image:image-20220610161538-9.png]]
150 +**Add APP KEY**
167 167  
152 +[[image:1654592653453-934.png]]
168 168  
169 169  
170 -(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
155 +(% style="color:blue" %)**Step 2**(%%): Power on LSPH01
171 171  
172 172  
173 173  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
174 174  
175 -[[image:image-20220610161724-10.png]]
160 +[[image:image-20220607170442-2.png]]
176 176  
177 177  
178 178  (((
179 -(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
164 +(% style="color:blue" %)**Step 3**(%%)**:** The LSPH01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
180 180  )))
181 181  
182 -[[image:1654849068701-275.png]]
167 +[[image:1654592697690-910.png]]
183 183  
184 184  
185 185  
186 -== 2.3  ​Uplink Payload ==
171 +== 2.3 ​Uplink Payload ==
187 187  
188 188  (((
189 -LDDS75 will uplink payload via LoRaWAN with below payload format: 
174 +LSPH01 will uplink payload via LoRaWAN with below payload format: 
175 +)))
190 190  
191 -Uplink payload includes in total 4 bytes.
192 -Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
177 +(((
178 +Uplink payload includes in total 11 bytes.
193 193  )))
194 194  
195 195  (((
196 -
182 +Normal uplink payload:
197 197  )))
198 198  
199 199  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
200 200  |=(% style="width: 62.5px;" %)(((
201 201  **Size (bytes)**
202 -)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
203 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
204 -[[Distance>>||anchor="H2.3.3A0Distance"]]
188 +)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
189 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
190 +[[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
205 205  
206 -(unit: mm)
207 -)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
208 -[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
209 -)))|[[Sensor Flag>>path:#Sensor_Flag]]
192 +[[(Optional)>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
193 +)))|[[Soil pH>>||anchor="H2.3.3SoilpH"]]|[[Soil Temperature>>||anchor="H2.3.4SoilTemperature"]]|(((
194 +[[Digital Interrupt (Optional)>>||anchor="H2.3.5InterruptPin"]]
195 +)))|Reserve|(((
196 +[[Message Type>>||anchor="H2.3.6MessageType"]]
197 +)))
210 210  
211 -[[image:1654850511545-399.png]]
199 +[[image:1654592721645-318.png]]
212 212  
213 213  
214 214  
215 -=== 2.3.1  Battery Info ===
203 +=== 2.3.1 Battery Info ===
216 216  
217 217  
218 -Check the battery voltage for LDDS75.
206 +Check the battery voltage for LSPH01.
219 219  
220 220  Ex1: 0x0B45 = 2885mV
221 221  
... ... @@ -223,70 +223,96 @@
223 223  
224 224  
225 225  
226 -=== 2.3.2  Distance ===
214 +=== 2.3.2 DS18B20 Temperature sensor ===
227 227  
228 -Get the distance. Flat object range 280mm - 7500mm.
216 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
229 229  
230 -For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
231 231  
219 +**Example**:
232 232  
233 -* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
234 -* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
221 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
235 235  
223 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
236 236  
237 -=== 2.3.3  Interrupt Pin ===
238 238  
239 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
240 240  
227 +=== 2.3.3 Soil pH ===
228 +
229 +Range: 0 ~~ 14 pH
230 +
241 241  **Example:**
242 242  
243 -0x00: Normal uplink packet.
233 +(% style="color:#037691" %)** 0x02B7(H) = 695(D) = 6.95pH**
244 244  
245 -0x01: Interrupt Uplink Packet.
246 246  
247 247  
248 -=== 2.3.4  DS18B20 Temperature sensor ===
237 +=== 2.3.4 Soil Temperature ===
249 249  
250 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
239 +Get Soil Temperature 
251 251  
241 +
252 252  **Example**:
253 253  
254 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
244 +If payload is: **0105H**:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
255 255  
256 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
246 +If payload is: **FF3FH** :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
257 257  
258 -(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
259 259  
260 260  
250 +=== 2.3.5 Interrupt Pin ===
261 261  
262 -=== 2.3.Sensor Flag ===
252 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
263 263  
264 -0x01: Detect Ultrasonic Sensor
265 265  
266 -0x00: No Ultrasonic Sensor
255 +**Example:**
267 267  
257 +0x00: Normal uplink packet.
268 268  
269 -===
270 -(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
259 +0x01: Interrupt Uplink Packet.
271 271  
261 +
262 +
263 +=== 2.3.6 Message Type ===
264 +
265 +(((
266 +For a normal uplink payload, the message type is always 0x01.
267 +)))
268 +
269 +(((
270 +Valid Message Type:
271 +)))
272 +
273 +
274 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
275 +|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
276 +|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
277 +|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
278 +|(% style="width:160px" %)0x03|(% style="width:163px" %)Reply Calibration Info|(% style="width:173px" %)[[Calibration Payload>>||anchor="H2.7Calibration"]]
279 +
280 +=== 2.3.7 Decode payload in The Things Network ===
281 +
272 272  While using TTN network, you can add the payload format to decode the payload.
273 273  
274 274  
275 -[[image:1654850829385-439.png]]
285 +[[image:1654592762713-715.png]]
276 276  
277 -The payload decoder function for TTN V3 is here:
287 +(((
288 +The payload decoder function for TTN is here:
289 +)))
278 278  
279 -LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
291 +(((
292 +LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
293 +)))
280 280  
281 281  
282 282  
283 -== 2.4  Uplink Interval ==
297 +== 2.4 Uplink Interval ==
284 284  
285 -The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
299 +The LSPH01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
286 286  
287 287  
288 288  
289 -== 2.5  ​Show Data in DataCake IoT Server ==
303 +== 2.5 ​Show Data in DataCake IoT Server ==
290 290  
291 291  (((
292 292  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
... ... @@ -313,135 +313,252 @@
313 313  
314 314  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
315 315  
316 -(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
330 +(% style="color:blue" %)**Step 4**(%%)**: Create LSPH01 product.**
317 317  
318 -[[image:1654851029373-510.png]]
332 +[[image:1654592819047-535.png]]
319 319  
320 320  
321 -After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
322 322  
323 -[[image:image-20220610165129-11.png||height="595" width="1088"]]
336 +[[image:1654592833877-762.png]]
324 324  
325 325  
339 +[[image:1654592856403-259.png]]
326 326  
327 -== 2.6  Frequency Plans ==
328 328  
329 329  (((
330 -The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
343 +(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
331 331  )))
332 332  
346 +(((
347 +Download Datacake decoder from: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
348 +)))
333 333  
334 334  
335 -=== 2.6.1  EU863-870 (EU868) ===
351 +[[image:1654592878525-845.png]]
336 336  
353 +[[image:1654592892967-474.png]]
354 +
355 +
356 +[[image:1654592905354-123.png]]
357 +
358 +
359 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
360 +
361 +
362 +[[image:1654592917530-261.png]]
363 +
364 +
365 +
366 +== 2.6 Installation and Maintain ==
367 +
368 +=== 2.6.1 Before measurement ===
369 +
337 337  (((
338 -(% style="color:blue" %)**Uplink:**
371 +(((
372 +If the LSPH01 has more than 7 days not use or just clean the pH probe. User should put the probe inside pure water for more than 24 hours for activation. If no put in water, user need to put inside soil for more than 24 hours to ensure the measurement accuracy. 
339 339  )))
374 +)))
340 340  
376 +
377 +
378 +=== 2.6.2 Measurement ===
379 +
380 +
341 341  (((
342 -868.1 - SF7BW125 to SF12BW125
382 +(% style="color:#4f81bd" %)**Measurement the soil surface:**
343 343  )))
344 344  
345 345  (((
346 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
386 +[[image:1654592946732-634.png]]
347 347  )))
348 348  
349 349  (((
350 -868.5 - SF7BW125 to SF12BW125
390 +Choose the proper measuring position. Split the surface soil according to the measured deep.
351 351  )))
352 352  
353 353  (((
354 -867.1 - SF7BW125 to SF12BW125
394 +Put pure water, or rainwater to make the soil of measurement point to moist mud. Remove rocks or hard things.
355 355  )))
356 356  
357 357  (((
358 -867.3 - SF7BW125 to SF12BW125
398 +Slowly insert the probe to the measure point. Don’t use large force which will break the probe. Make sure not shake when inserting.
359 359  )))
360 360  
361 361  (((
362 -867.5 - SF7BW125 to SF12BW125
402 +Put soil over the probe after insert. And start to measure.
363 363  )))
364 364  
365 365  (((
366 -867.7 - SF7BW125 to SF12BW125
406 +
367 367  )))
368 368  
369 369  (((
370 -867.9 - SF7BW125 to SF12BW125
410 +(% style="color:#4f81bd" %)**Measurement inside soil:**
371 371  )))
372 372  
373 373  (((
374 -868.8 - FSK
414 +Dig a hole with diameter > 20CM.
375 375  )))
376 376  
377 377  (((
418 +Insert the probe inside, method like measure the surface.
419 +)))
420 +
421 +
422 +
423 +=== 2.6.3 Maintain Probe ===
424 +
425 +1. (((
426 +pH probe electrode is fragile and no strong. User must avoid strong force or hitting it.
427 +)))
428 +1. (((
429 +After long time use (3~~ 6  months). The probe electrode needs to be clean; user can use high grade sandpaper to polish it or put in 5% hydrochloric acid for several minutes. After the metal probe looks like new, user can use pure water to wash it.
430 +)))
431 +1. (((
432 +Probe reference electrode is also no strong, need to avoid strong force or hitting.
433 +)))
434 +1. (((
435 +User should keep reference electrode wet while not use.
436 +)))
437 +1. (((
438 +Avoid the probes to touch oily matter. Which will cause issue in accuracy.
439 +)))
440 +1. (((
441 +The probe is IP68 can be put in water.
442 +
443 +
378 378  
379 379  )))
380 380  
447 +== 2.7 Calibration ==
448 +
381 381  (((
382 -(% style="color:blue" %)**Downlink:**
450 +User can do calibration for the probe. It is limited to use below pH buffer solution to calibrate: 4.00, 6.86, 9.18. When calibration, user need to clean the electrode and put the probe in the pH buffer solution to wait the value stable ( a new clean electrode might need max 24 hours to be stable).
383 383  )))
384 384  
385 385  (((
386 -Uplink channels 1-9 (RX1)
454 +After stable, user can use below command to calibrate.
387 387  )))
388 388  
389 -(((
390 -869.525 - SF9BW125 (RX2 downlink only)
457 +[[image:image-20220607171149-4.png]]
458 +
459 +
460 +(% style="color:#037691" %)**Calibration Payload**
461 +
462 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
463 +|=(% style="width: 62.5px;" %)(((
464 +**Size (bytes)**
465 +)))|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**1**|=(% style="width: 89px;" %)**7**|=(% style="width: 89px;" %)**1**
466 +|**Value**|(((
467 +PH4
468 +
469 +Calibrate value
470 +)))|PH6.86 Calibrate value|(((
471 +PH9.18
472 +
473 +Calibrate value
474 +)))|Reserve|(((
475 +[[Message Type>>||anchor="H2.3.6MessageType"]]
476 +
477 +Always 0x03
391 391  )))
392 392  
480 +User can also send 0x14 downlink command to poll the current calibration payload.
393 393  
482 +[[image:image-20220607171416-7.jpeg]]
394 394  
395 -=== 2.6.2  US902-928(US915) ===
396 396  
485 +* Reply to the confirmation package: 14 01
486 +* Reply to non-confirmed packet: 14 00
487 +
488 +
489 +
490 +== 2.6  Frequency Plans ==
491 +
397 397  (((
398 -Used in USA, Canada and South America. Default use CHE=2
493 +The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
494 +)))
399 399  
400 -(% style="color:blue" %)**Uplink:**
401 401  
402 -903.9 - SF7BW125 to SF10BW125
497 +=== 2.6.1  EU863-870 (EU868) ===
403 403  
404 -904.1 - SF7BW125 to SF10BW125
499 +(((
500 +(% style="color:blue" %)**Uplink:**
501 +)))
405 405  
406 -904.3 - SF7BW125 to SF10BW125
503 +(((
504 +868.1 - SF7BW125 to SF12BW125
505 +)))
407 407  
408 -904.5 - SF7BW125 to SF10BW125
507 +(((
508 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
509 +)))
409 409  
410 -904.7 - SF7BW125 to SF10BW125
511 +(((
512 +868.5 - SF7BW125 to SF12BW125
513 +)))
411 411  
412 -904.9 - SF7BW125 to SF10BW125
515 +(((
516 +867.1 - SF7BW125 to SF12BW125
517 +)))
413 413  
414 -905.1 - SF7BW125 to SF10BW125
519 +(((
520 +867.3 - SF7BW125 to SF12BW125
521 +)))
415 415  
416 -905.3 - SF7BW125 to SF10BW125
523 +(((
524 +867.5 - SF7BW125 to SF12BW125
525 +)))
417 417  
527 +(((
528 +867.7 - SF7BW125 to SF12BW125
529 +)))
418 418  
419 -(% style="color:blue" %)**Downlink:**
531 +(((
532 +867.9 - SF7BW125 to SF12BW125
533 +)))
420 420  
421 -923.3 - SF7BW500 to SF12BW500
535 +(((
536 +868.8 - FSK
537 +)))
422 422  
423 -923.9 - SF7BW500 to SF12BW500
539 +(((
540 +
541 +)))
424 424  
425 -924.5 - SF7BW500 to SF12BW500
543 +(((
544 +(% style="color:blue" %)**Downlink:**
545 +)))
426 426  
427 -925.1 - SF7BW500 to SF12BW500
547 +(((
548 +Uplink channels 1-9 (RX1)
549 +)))
428 428  
429 -925.7 - SF7BW500 to SF12BW500
551 +(((
552 +869.525 - SF9BW125 (RX2 downlink only)
553 +)))
430 430  
431 -926.3 - SF7BW500 to SF12BW500
432 432  
433 -926.9 - SF7BW500 to SF12BW500
434 434  
435 -927.5 - SF7BW500 to SF12BW500
557 +=== 2.8.2 US902-928(US915) ===
436 436  
437 -923.3 - SF12BW500(RX2 downlink only)
559 +(((
560 +Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
561 +)))
438 438  
563 +(((
564 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
565 +)))
439 439  
440 -
567 +(((
568 +After Join success, the end node will switch to the correct sub band by:
441 441  )))
442 442  
443 -=== 2.6.3  CN470-510 (CN470) ===
571 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
572 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
444 444  
574 +=== 2.8.3 CN470-510 (CN470) ===
575 +
445 445  (((
446 446  Used in China, Default use CHE=1
447 447  )))
... ... @@ -528,57 +528,29 @@
528 528  
529 529  
530 530  
662 +=== 2.8.4 AU915-928(AU915) ===
531 531  
532 -=== 2.6.4  AU915-928(AU915) ===
664 +(((
665 +Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
666 +)))
533 533  
534 534  (((
535 -Default use CHE=2
669 +To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
670 +)))
536 536  
537 -(% style="color:blue" %)**Uplink:**
538 -
539 -916.8 - SF7BW125 to SF12BW125
540 -
541 -917.0 - SF7BW125 to SF12BW125
542 -
543 -917.2 - SF7BW125 to SF12BW125
544 -
545 -917.4 - SF7BW125 to SF12BW125
546 -
547 -917.6 - SF7BW125 to SF12BW125
548 -
549 -917.8 - SF7BW125 to SF12BW125
550 -
551 -918.0 - SF7BW125 to SF12BW125
552 -
553 -918.2 - SF7BW125 to SF12BW125
554 -
555 -
556 -(% style="color:blue" %)**Downlink:**
557 -
558 -923.3 - SF7BW500 to SF12BW500
559 -
560 -923.9 - SF7BW500 to SF12BW500
561 -
562 -924.5 - SF7BW500 to SF12BW500
563 -
564 -925.1 - SF7BW500 to SF12BW500
565 -
566 -925.7 - SF7BW500 to SF12BW500
567 -
568 -926.3 - SF7BW500 to SF12BW500
569 -
570 -926.9 - SF7BW500 to SF12BW500
571 -
572 -927.5 - SF7BW500 to SF12BW500
573 -
574 -923.3 - SF12BW500(RX2 downlink only)
575 -
576 -
672 +(((
577 577  
578 578  )))
579 579  
580 -=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
676 +(((
677 +After Join success, the end node will switch to the correct sub band by:
678 +)))
581 581  
680 +* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
681 +* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
682 +
683 +=== 2.8.5 AS920-923 & AS923-925 (AS923) ===
684 +
582 582  (((
583 583  (% style="color:blue" %)**Default Uplink channel:**
584 584  )))
... ... @@ -685,9 +685,8 @@
685 685  
686 686  
687 687  
791 +=== 2.8.6 KR920-923 (KR920) ===
688 688  
689 -=== 2.6.6  KR920-923 (KR920) ===
690 -
691 691  (((
692 692  (% style="color:blue" %)**Default channel:**
693 693  )))
... ... @@ -758,9 +758,8 @@
758 758  
759 759  
760 760  
863 +=== 2.8.7 IN865-867 (IN865) ===
761 761  
762 -=== 2.6.7  IN865-867 (IN865) ===
763 -
764 764  (((
765 765  (% style="color:blue" %)**Uplink:**
766 766  )))
... ... @@ -795,7 +795,6 @@
795 795  
796 796  
797 797  
798 -
799 799  == 2.7  LED Indicator ==
800 800  
801 801  The LLDS12 has an internal LED which is to show the status of different state.
... ... @@ -803,6 +803,7 @@
803 803  * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
804 804  * Blink once when device transmit a packet.
805 805  
906 +
806 806  == 2.8  ​Firmware Change Log ==
807 807  
808 808  
... ... @@ -809,7 +809,7 @@
809 809  **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
810 810  
811 811  
812 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
913 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
813 813  
814 814  
815 815  
... ... @@ -830,37 +830,25 @@
830 830  [[image:1654831774373-275.png]]
831 831  
832 832  
833 -(((
834 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
835 -)))
934 +①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 836  
837 -(((
838 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
839 -)))
936 +②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
840 840  
841 -(((
842 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
843 -)))
938 +③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
844 844  
845 845  
846 -(((
847 847  Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
848 -)))
849 849  
850 850  
851 851  [[image:1654831797521-720.png]]
852 852  
853 853  
854 -(((
855 855  In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
856 -)))
857 857  
858 858  [[image:1654831810009-716.png]]
859 859  
860 860  
861 -(((
862 862  If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
863 -)))
864 864  
865 865  
866 866  
... ... @@ -876,78 +876,52 @@
876 876  = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
877 877  
878 878  (((
879 -(((
880 880  Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
881 881  )))
882 -)))
883 883  
884 884  * (((
885 -(((
886 -AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
972 +AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
887 887  )))
888 -)))
889 889  * (((
890 -(((
891 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
975 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
892 892  )))
893 -)))
894 894  
895 895  (((
896 -(((
897 897  
898 -)))
899 899  
900 -(((
901 901  There are two kinds of commands to configure LLDS12, they are:
902 902  )))
903 -)))
904 904  
905 905  * (((
906 -(((
907 907  (% style="color:#4f81bd" %)** General Commands**.
908 908  )))
909 -)))
910 910  
911 911  (((
912 -(((
913 913  These commands are to configure:
914 914  )))
915 -)))
916 916  
917 917  * (((
918 -(((
919 919  General system settings like: uplink interval.
920 920  )))
921 -)))
922 922  * (((
923 -(((
924 924  LoRaWAN protocol & radio related command.
925 925  )))
926 -)))
927 927  
928 928  (((
929 -(((
930 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1000 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
931 931  )))
932 -)))
933 933  
934 934  (((
935 -(((
936 936  
937 937  )))
938 -)))
939 939  
940 940  * (((
941 -(((
942 942  (% style="color:#4f81bd" %)** Commands special design for LLDS12**
943 943  )))
944 -)))
945 945  
946 946  (((
947 -(((
948 948  These commands only valid for LLDS12, as below:
949 949  )))
950 -)))
951 951  
952 952  
953 953  
... ... @@ -960,6 +960,7 @@
960 960  [[image:image-20220607171554-8.png]]
961 961  
962 962  
1026 +
963 963  (((
964 964  (% style="color:#037691" %)**Downlink Command: 0x01**
965 965  )))
... ... @@ -977,6 +977,9 @@
977 977  )))
978 978  * (((
979 979  Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1044 +
1045 +
1046 +
980 980  )))
981 981  
982 982  == 4.2  Set Interrupt Mode ==
... ... @@ -988,6 +988,8 @@
988 988  [[image:image-20220610105806-2.png]]
989 989  
990 990  
1058 +
1059 +
991 991  (((
992 992  (% style="color:#037691" %)**Downlink Command: 0x06**
993 993  )))
... ... @@ -1035,7 +1035,7 @@
1035 1035  
1036 1036  Version
1037 1037  )))|Sensor Type|Reserve|(((
1038 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1107 +[[Message Type>>||anchor="H2.3.6MessageType"]]
1039 1039  Always 0x02
1040 1040  )))
1041 1041  
... ... @@ -1203,19 +1203,13 @@
1203 1203  
1204 1204  
1205 1205  (((
1206 -(((
1207 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1275 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1208 1208  )))
1209 1209  
1210 -(((
1211 -LLDS12 will output system info once power on as below:
1212 -)))
1213 -)))
1214 1214  
1215 -
1216 1216   [[image:1654593712276-618.png]]
1217 1217  
1218 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1281 +Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1219 1219  
1220 1220  
1221 1221  = 7.  FAQ =
... ... @@ -1222,7 +1222,7 @@
1222 1222  
1223 1223  == 7.1  How to change the LoRa Frequency Bands/Region ==
1224 1224  
1225 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1288 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1226 1226  When downloading the images, choose the required image file for download. ​
1227 1227  
1228 1228  
... ... @@ -1231,9 +1231,7 @@
1231 1231  == 8.1  AT Commands input doesn’t work ==
1232 1232  
1233 1233  
1234 -(((
1235 1235  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1236 -)))
1237 1237  
1238 1238  
1239 1239  == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
... ... @@ -1296,3 +1296,5 @@
1296 1296  
1297 1297  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1298 1298  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1360 +
1361 +
1654832691989-514.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -112.9 KB
Content
1654832740634-933.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.6 KB
Content
1654833065139-942.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -49.2 KB
Content
1654833092678-390.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -63.1 KB
Content
1654833107528-349.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
1654833163048-332.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
1654833501679-968.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -58.3 KB
Content
1654833689380-972.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -60.5 KB
Content
1654846127817-788.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -92.0 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -50.5 KB
Content